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ABSTRACT

The brain forms cognitive maps of relational knowledge, an organizing principle thought to underlie our ability to generalize
and make inferences. However, how can a relevant map be selected in situations where a stimulus is embedded in multiple
relational structures? Here, we find that both spatial and temporal cognitive maps influence generalization in a choice task,
where spatial location determines reward magnitude. Mirroring behavior, the hippocampus not only builds a map of spatial
relationships but also encodes temporal distances. As the task progresses, participants’ choices become more influenced by
spatial relationships, reflected in a strengthening of the spatial and a weakening of the temporal map. This change is driven by
orbitofrontal cortex, which represents the evidence that an observed outcome is generated from the spatial rather than the
temporal map and updates hippocampal representations accordingly. Taken together, this demonstrates how hippocampal
cognitive maps are used and updated flexibly for inference.

Introduction
As humans we live in complex, ever-changing environments
that often require us to select appropriate behaviors in situa-
tions never faced before. Luckily, our environment is replete
with statistical structure and our experiences are rarely iso-
lated events1. This allows us to predict outcomes that were
never experienced directly by generalizing information ac-
quired about one state of the environment to related ones2.
Indeed, humans and other animals generalize across spatially
or perceptually similar stimuli3–6 as well as across stimuli
forming associative structures such as those acquired in a
sensory preconditioning task7, 8. Generalization also occurs
in reinforcement learning tasks where the same latent state
determines the outcome associated with choosing different
stimuli9, 10.

For generalization to be possible, an appropriate neural
representation of stimulus relationships is required. Many
studies have shown that spatial relationships, such as dis-
tances between landmarks, are represented in a hippocampal
cognitive map11, 12, which enables flexible goal-directed be-
havior beyond simple stimulus-response learning13. More
recently, it has been suggested that the same organizing prin-
ciple might also underlie the representation of relationships
between non-spatial states such as perceptual14–19 or tempo-
ral relationships between stimuli20–22, or associative links
between objects23–26. Interestingly, cognitive maps even

form incidentally and in the absence of conscious aware-
ness23. This suggests that the hippocampus automatically
extracts the embedding of a stimulus in multiple relational
structures27, even for stimulus features that are not directly
task-relevant28.

If stimuli are part of multiple relational structures such
as space and time, this raises the question how the repre-
sentation that is most beneficial for reward maximisation
and generalization can be selected29. One region implicated
in this process is the orbitofrontal cortex (OFC), known to
represent task states in situations where these are not directly
observable24, 30. Little is known, however, about how in-
formation in the OFC about the task-relevance of different
maps relates to corresponding changes in the representation
of cognitive maps in the hippocampus31, 32.

Here, we combined virtual reality with computational
modeling and functional magnetic resonance imaging (fMRI)
to show that participants represent spatial as well as temporal
stimulus relationships in hippocampal maps. The degree to
which each map was represented neurally determined the de-
gree to which it was used for generalization in a subsequent
choice task, even though only the spatial location determined
the magnitude of rewards. Notably, the neural representation
of each map and its influence on choice changed over the
course of the choice task through an OFC signal reflecting
the evidence that the spatial rather than the temporal map
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caused the observed outcome. Together, our results provide a
computational and neural mechanism for the representation
and adaptive selection of hippocampal cognitive maps during
choice.

Results
Participants used knowledge about stimulus rela-
tionships to generalize value
To examine how humans use information about stimulus rela-
tionships for generalization and inference, forty-eight healthy
human participants (mean age 26.8±3.8 years, 20−34 years
old, 27 male) took part in a 3-day experiment that involved
first learning to locate 12 monster stimuli in a virtual arena,
followed by a choice task in which spatial knowledge could
be used for predicting rewards (Figure 1a).

On day 1, participants performed multiple exploration
blocks in which they were instructed to remember the loca-
tion of the stimuli while freely navigating in the arena (Figure
1c, d). Stimuli became visible when they were approached,
but were otherwise invisible. Exploration policies differed
substantially between individuals (Figure 2a, Supplementary
Figure S1). As a result, participants experienced different
temporal relations between the monsters, which could also
deviate from the spatial distances between objects. For exam-
ple, some participants visited objects in a stereotyped order,
whereas others navigated mostly around the border of the
arena or systematically scanned the environment from top to
bottom (Figure 2a).

After each exploration block, participants performed an
object location memory task. Participants were first tele-
ported to a random location in the arena and instructed to
then navigate to the hidden location of a presented object.
Feedback indicated how far away the current position was
from the correct stimulus location. The session terminated
when the replacement error averaged across all monsters in a
block was below 3vm (vm = virtual meter; 3vm correspond to
< 10% of the arena’s diameter) and at least five and at most
ten blocks had been completed. At the end of the learning
phase, participants could position the stimuli in the correct
location (Supplementary Figure S2a). Before and after each
imaging session on days 2 and 3, participants also performed
one block of the object location memory task without feed-
back. The replacement error did not differ between sessions
(Figure 2b), confirming that no new learning took place. In
a spatial arena task at the end of the 3-day study, participants
also accurately reproduced the stimulus arrangement when
instructed to drag-and-drop stimuli imagining a top-down
view on the spatial arena (Figure 1g). Participants thus
learned the spatial arrangement of the stimuli well.

In a choice task performed in the MRI scanner on day
3, participants were presented with two stimuli simultane-
ously and instructed to select the one that was associated
with a higher reward (Figure 1f). Participants were told
that the reward magnitude was determined by the stimu-
lus location in space (Figure 1a). Participants did initially

not know which locations were rewarding, but they could
combine their knowledge about the stimulus relationships
with previously experienced reward contingencies to infer
the rewards of stimuli they had not yet experienced. In
order to decorrelate spatial distance and reward relation-
ships, we introduced two contexts with different reward
distributions (Figure 1a). Participants performed alternat-
ing choice blocks for each context, with the context sig-
naled by the background color. Participants learned to per-
form the task rapidly (Figure 2c) and their choices were a
function of the difference in value between the stimuli pre-
sented on the left and the right on the screen in both contexts
(Figure 2d, context 1: t(47) = 10.0, p < 0.001, context 2:
t(47) = 12.1, p < 0.001).

To test whether participants could use their knowledge
about the stimulus relationships to generalize, two stimuli
per context were never presented during the choice task (“in-
ference stimuli”, Figure 1a, b). A value rating at the end
of the study (Figure 1g) showed that participants were able
infer which of the two inference stimuli had a higher value
in each context (Figure 2e; repeated measures ANOVA,
F(1,46) = 21.4, p < 0.001), reflecting that they combined
their knowledge about the stimulus location with knowledge
about associated rewards of nearby stimuli. The error be-
tween the true inference values and the value ratings was
larger in participants who struggled to reproduce the spa-
tial map as indicated by a larger error between the true z-
scored spatial distances and the z-scored distances in the
arena task (“Map reproduction error”, r = 0.37, p = 0.01,
Figure 2f). This demonstrates that participants exploited
knowledge about stimulus relationships to infer unseen val-
ues.

Cognitive maps of spatial and temporal stimulus
relationships explain generalization
The fact that participants could successfully infer the val-
ues of the inference stimuli suggests that they formed a
representation of the stimulus relationships. But stimulus
relationships were learned during free exploration, which
was typically non-random and differed substantially between
participants (Figure 2a, Supplementary Figure S1). This
means that the experienced temporal distances between the
objects differed meaningfully from their spatial distances in
most participants (Supplementary Figures S6 and S4b). In-
telligent agents should keep track of both the spatial distance
as well as the temporal relationships between objects, since
either feature may become relevant for generalization. We
therefore reasoned that the brain may extract two relational
maps: one reflecting spatial distances between stimuli and
the other one reflecting temporal relationships.

To test explicitly to what extent generalization was
guided by the spatial or temporal maps – or a combina-
tion of both – we fitted Gaussian process (GP) models to
participants’ choices (see Online Methods). The GP predicts
rewards for a novel stimulus based on the rewards associ-
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Figure 1. Experimental design. a Spatial position of monsters during the navigation tasks and value distribution associated with the same
monsters in context 1 and 2 in the choice task. Darker colors indicate higher values. Numbered circles indicate the location of inference
objects that were never presented during the choice task. b True values of the four inference objects. c Tasks performed on the three
subsequent days, see text. d Exploration and object location memory tasks. In the exploration task, participants navigated around a virtual
arena with button presses corresponding to forward, backward, right and left movements. Monsters appeared when they were approached, but
were never all visible at the same time. In the object location memory task, participants were instructed to navigate to the position of a cued
monster (each monster cued once in each block). Feedback indicated how far away the positioned object was from the correct object location.
On day 1, participants performed between five and ten blocks (depending on performance) of the exploration and the object location memory
task in alternation. On subsequent days, only one block of the object location memory task was performed before and after scanning without
feedback. e Picture viewing task performed in the scanner. Participants were presented with monsters one after another. When two monsters
appeared, participants were instructed to choose the monster that was closer in space to the preceding monster (map symbol) or the monster
that was more similar in value to the preceding monster (coins symbol, day 3 only). On day 2, the background color was irrelevant for the
task, on day 3 it indicated the context determining the stimulus values. f Choice task performed in the scanner. Participants were instructed to
maximize accumulated points by choosing the monster associated with a higher reward. Participants were told that the monsters had different
values in two different contexts, and that the relevant context was signalled by the background color. The values associated with each monster
in the two contexts were learned in alternation, with ten blocks of context 1 followed by ten blocks of context 2, and so forth. g At the end of
day 3, four post-tests were performed: Participants indicated for each monster how many points they would receive in each of the two
contexts and how much they liked each monster. They were then asked to arrange the monsters in terms of their similarity in a circle in such a
way that monsters that were considered similar were positioned near each other (Arena task 1). Lastly, participants were instructed to imagine
a top-down view of the arena they had navigated around and to place the monsters in the corresponding location (Arena task 2).
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Figure 2. Behavioral results. a Trajectories of three example participants during the exploration phase on day 1. Purple dots indicate the
stimulus locations and black lines the participant trajectories. See all participants’ trajectories in Supplementary Figure S1. b replacement
error for days 2 and 3, before (pre) and after (post) the scanning session. The replacement error was defined as the Euclidean distance
between the true location and the drop location. The replacement error did not differ significantly between those four sessions (all p > 0.05),
see object positioning at the end of the learning phase on day 1 in Supplementary Figure S2. c Percent correct of choices over the course of
the choice task. Trials are divided into ten sub-blocks of ten trials each with a constant context. d Probability of choosing the right option as a
function of the difference in value between the right and the left option, separately for each context. e Value rating for the inference stimuli at
the end of the study. f Correlation between the the map reproduction error (root-mean-square error between the true z-scored spatial distances
and the z-scored distances in the arena task) and the root-mean-square error for the inference ratings. Data in b, c and e are plotted as
group-level whisker-boxplots (center line, median; box, 25th to 75th percentiles; whiskers, 1.5 × interquartile range; crosses, outliers). Error
bars in d denote standard error of the mean. Circles and transparent lines in b-f represent individual participant data. ** p < 0.01, ns = not
significant
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Figure 3. Modeling results suggest that participants generalized over spatial and temporal stimulus relationships. a Graph
representation corresponding to the three example exploration paths in Figure 2a. b Model comparison: Model frequency represents how
often a model prevailed in the population. The error bars represent the standard deviation of the estimated Dirichlet distribution. The winning
model generalizes values according to a combination of spatial and temporal relationships between stimuli. c Inference performance as
predicted by the model. Depicted are the inferred values for the inference objects in analogy to the participant ratings in 2e. d Relationship
between inference error predicted by the model and actual inference error in participants´ value ratings. e Model comparison for the value
ratings for the inference objects at the end of the study. The winning model generalizes values according to a combination of spatial and
temporal relationships between stimuli. f Correlation between the spatial and temporal effects on choice behavior. g Correlation between the
relative spatial weight as estimated by the model and inference error. Data in c are plotted as group-level whisker-boxplots (center line,
median; box, 25th to 75th percentiles; whiskers, 1.5 × interquartile range; crosses, outliers). Circles and transparent lines represent individual
participant data. ** p < 0.01, Pexc = exceedance probability.
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ated with all other stimuli, weighted by their similarity to
the novel stimulus. Since the similarity function determines
how the GP generalizes, we can express hypotheses about
what cognitive map participants use by pairing GPs with
similarities implied by spatial or temporal maps.

Specifically, generalizing using a spatial cognitive map
corresponds to pairing the GP with a similarity function
that decays with Euclidean distance. Generalizing using
a temporal cognitive map corresponds to pairing the GP
with a similarity function that decays with temporal distance.
We constructed these temporal similarities based on individ-
ual participants’ navigation runs from day 1: Using their
stimulus visitation history from the exploration phase, we
computed each participants’ successor representation33, re-
flecting the expected number of visits of any stimulus s′

given a starting stimulus s. This can be transformed into a
probability that two stimuli are visited in direct succession
(see Online Methods). We then computed temporal simi-
larities based on the diffusion distance6, 34 implied by these
transition probabilities (Figure 3a).

Finally, kernel functions can be added or multiplied to-
gether35 to model function learning where generalization
may be guided by a combination of multiple similarity func-
tions36, 37. As such, the hypothesis that both the spatial and
temporal maps guide generalization together is captured in
the spatio-temporal GP, which uses the additive composition
of the spatial and the temporal similarities to generalize.

To test which map best explained how participants gener-
alized rewards, we created three GP models that generalized
based on either spatial, temporal or spatio-temporal relation-
ships between monsters. Then, for each trial, we made each
GP model predict the reward of both monsters, conditioning
the GPs on all monster-reward pairs observed in the relevant
context up to that point. We also compared these models
to a “mean tracker” model that assumes participants only
learn about directly experienced stimulus-reward associa-
tions, without generalization (see Online Methods).

To fit our models to participants’ choices, we entered the
predicted difference in reward between the two presented
monsters in a mixed-effect logistic regression model with
random slopes per participant38, and determined the max-
imum likelihood hyper-parameters using grid search. We
then computed model frequency based on the leave-one-out
cross-validated log-likelihood (leaving one trial out) for each
model39.

The model generalizing based on the compositional,
spatio-temporal similarities explained participants’ choices
best (Figure 3b; model frequency = 0.681, XP > 0.999,
see Supplementary Figure S3 for full modeling results).
This model performed substantially better than the temporal
model (model frequency = 0.08), the spatial model (model
frequency = 0.23) and the mean tracker (model frequency =
0.005). The model also reproduced the difference in value
rating for the high- and the low-inference stimuli (Figure 3c;
repeated measures ANOVA, F(1,47) = 2602.3, p < 0.001).

Across participants, the root-mean-square error between true
values and values predicted by the winning model was highly
correlated with the root-mean-square error between the true
values and the value ratings provided by participants (Figure
3d, r = 0.85, p < 0.001).

Furthermore, participants’ value ratings for the inference
objects at the end of the study were also predicted best by a
spatio-temporal model (Figure 2e). This demonstrates that
behavior in two independent parts of the study, the choice
task and the inference test, was influenced by both spatial
and temporal knowledge about stimulus relationships. No-
tably, the value ratings for the stimuli whose values could
be directly sampled were best predicted by the mean tracker
model, rather than the spatio-temporal GP (Supplementary
Figure S3a). This suggests that participants evoked specific
memories of stimulus-reward associations where possible,
but relied on the spatio-temporal map when they needed to
construct values of stimuli which were not directly experi-
enced (Supplementary Figure S3c).

We estimated effect sizes for the spatial and the tem-
poral component as the participant-specific random effects
in a model where the spatial and temporal predictors com-
peted to explain variance in participants’ choices. Spatial
weights were defined as the relative contribution of the spa-
tial compared to the temporal predictor. Both the spatial
and the temporal relationships had non-zero influence on
choice behavior and the effect sizes were negatively cor-
related (Figure 3f, r = −0.45, p = 0.001), suggesting that
participants tended to rely predominantly on one of the two
maps for guiding choice. Consistent with the fact that the
spatial, but not the temporal relationships, were relevant
for generalization, participants whose choices were driven
more by the spatial relationships compared to the tempo-
ral ones performed better in the inference test (Figure 3g,
r =−0.43, p = 0.003).

Spatial and temporal stimulus relationships rep-
resented in the hippocampal system influence
choice
Our modeling results suggest that participants generalized
values based on both the spatial and temporal relationships
experienced between stimuli during the exploration phase.
To investigate the neural representation of these relation-
ships, we scanned participants before the choice task on day
2 and after the choice task on day 3 using fMRI. During
these imaging sessions, stimuli on the two background col-
ors were presented in random order (Figure 2e). Once after
each stimulus on each background color (i.e. in 24 of 144
trials), participants were presented with two stimuli and in-
structed to either report which one was closer in space or
more similar in value in the given context (on day 3 only)
to the preceding stimulus. Participants performed this task
well above chance (correct performance on day 2: 81±10%
(distance judgement); day 3: 78±12% (distance judgement)
and 68±14% (value judgement), mean± standard deviation,

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.10.22.465012doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.22.465012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Spatial and temporal
cognitive maps in the hippocampal
formation are related to generalization
and inference. a Whole-brain analysis
showing a cross-stimulus enhancement
effect in the scanning session after the
choice task (session 3) that scales with
spatial distance. For illustration purposes,
voxels thresholded at p > .01
(uncorrected) are shown; only the right
hippocampal cluster survives correction
for multiple comparisons. b Correlation
between the spatial cross-stimulus
enhancement effect extracted from the
right hippocampal ROI depicted in a
(thresholded at p < 0.001) and the spatial
effects governing decisions in the choice
task. c Correlation between the spatial
cross-stimulus enhancement effect
extracted from the right hippocampal ROI
depicted in a and the root-mean-square
error between ratings for the inference
stimuli and their true value. d Correlation
between temporal cross-stimulus
enhancement effect extracted from the
right hippocampal ROI depicted in a and
the temporal effects governing decisions
in the choice task. e Correlation between
the temporal cross-stimulus enhancement
effect extracted from the right
hippocampal ROI depicted in a and the
root-mean-square error between ratings
for the inference stimuli and their true
value. f Whole-brain analysis where
spatial effects (top) and temporal effects
(bottom) describing generalization during
choice are entered as second-level
covariates for the spatial and temporal
cross-stimulus enhancement effects. Both
analyses reveal significant clusters in the
hippocampal formation. g Whole-brain
analysis where the inference error is
entered as second-level covariate for the
spatial and temporal cross-stimulus
enhancement effects. This analysis reveals
a negative effect for the spatial map and a
positive effect for the temporal map in the
hippocampal formation. h Mediation path
diagram for inference error as predicted
by the hippocampal map and spatial
effects. a, f and g are thresholded at
p < 0.01, uncorrected for visualization.
** p < 0.01; *** p < 0.001
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all p < 0.001).
We used fMRI adaptation40, 41 to investigate the repre-

sentational similarity of the 12 stimuli. This technique uses
the amount of suppression or enhancement observed when
two stimuli are presented in direct succession as a proxy for
the similarity of the underlying neural representations. In
line with previous work demonstrating similar effects for
graph-like structures23, we hypothesized that in regions en-
coding a cognitive map of the stimulus relationships, the
size of the cross-stimulus adaptation effect should scale with
spatial or temporal distance between stimuli. Based on pre-
vious work, we expected the hippocampal formation to be
a candidate region for representing such cognitive maps23

and therefore focus on a bilateral region comprising the hip-
pocampus, the entorhinal cortex and the subiculum (see mask
used for small-volume correction in Supplementary Figure
S5). We tested for adaptation effects by including spatial
and temporal distances as parametric modulators in the same
general linear model (GLM).

We found a significant cross-stimulus enhancement ef-
fect that scaled with spatial distance in session 3 (after the
choice task) in the right hippocampal formation (Figure 4a,
t(47) = 3.86, p = 0.045, [24,−28,−16]). A cluster in the
left hippocampal formation trended in the same direction
(t(47)= 3.63, p= 0.08, [−12,−36−6]). No voxels survived
the conservative correction procedure for the temporal rela-
tions. One reason for this could be that different participants
represented the spatial and temporal aspects to different de-
grees, with a stronger representation of the spatial map across
the group as a whole. Indeed, in most participants (44 out of
48), the spatial component contributed more to generaliza-
tion during choice than the temporal component (t(47) = 9.9,
p < 0.001). We therefore investigated whether the strength
of the neural representation predicted the degree to which
an individual was influenced by either spatial or temporal
distances in the choice task.

To test this, we first extracted parameter estimates for the
spatial and temporal maps from the above-identified region
of interest (ROI) in the right hippocampal formation show-
ing a cross-stimulus enhancement effect that scaled with
spatial distance (Figure 4a, masking threshold p < 0.001).
A significant correlation with the spatial and temporal ef-
fects on choice behavior confirmed a relationship the neural
representation of the respective maps in this region and gener-
alization behavior (Figure 4b, d), spatial: r = 0.37, p = 0.01,
temporal: r = 0.40, p = 0.005). We also found that the rep-
resentation of the spatial, but not the temporal map in this
ROI can be linked to performance in the later, independent
inference test that depended on spatial knowledge (spatial:
r = −0.44, p = 0.002, temporal: r = 0.06, p = 0.7, Figure
4c, e).

To investigate whether the relationship between spatial
and temporal influences on behavior and neural map repre-
sentation is specific to the hippocampus, we included spa-
tial and temporal effects on choice behavior as covariates

on the second level in the GLM that was used to iden-
tify spatial and temporal cross-stimulus enhancement ef-
fects above. For both spatial and temporal maps we found
precisely localized clusters in the hippocampal formation,
where the spatial and temporal fMRI effects were larger the
stronger the respective map’s influence on behavior (Figure
4f, spatial: t(47) = 4.45, p = 0.009, [22,−28,−18], tempo-
ral: t(47) = 4.19, p = 0.02, [26,−− 20,−− 28], t(47) =
4.14, p = 0.02, [28,−14,−16] and t(47) = 3.91, p =
0.04, [−28,−16,−13]). Furthermore, the representation
of the spatial map in the hippocampus was stronger
and the representation of the temporal map was weaker
in individuals who made smaller inference errors (Fig-
ure 4g, spatial: t(47) = 5.08, p = 0.002, [32,−14,−25]
and t(47) = 4.95, p = 0.002, [−32,−14,−22], temporal:
t(47) = 4.53, p = 0.007, [−32,−12,−25]). This suggests
that participants who represented the spatial map more
strongly in the hippocampal formation also generalized more
according to spatial distances in the choice task and per-
formed better in the inference task, with the reverse pattern
for the temporal relationships.

To test whether the hippocampal spatial map formally
mediated the impact of the neural representation on infer-
ence performance, we related the parameter estimates for
the spatial map extracted from the right hippocampal ROI
to both the spatial effects as estimated from behavior in
the choice task as well as the inference performance using
single-level mediation42, 43. The path model jointly tests the
relationship between the neural representation of the spatial
map and the degree to which spatial relationships influenced
generalization in the choice task (path a), the relationship
between spatial weights in the choice task and inference
performance (path b), and a formal mediation effect (path
ab) that indicates that each explains a part of the inference
performance effect while controlling for effects attributable
to the other mediator. All three effects were significant (path
a = 0.26, SE = 0.10, p = 0.01; path b =−3.40, SE = 0.92,
p = 0.003; path ab = −0.86, SE = 0.42; path c = −1.07,
SE = 0.45, p= 0.02; path c′=−1.93, SE = 0.54, p< 0.001,
Figure 4h). This confirms that it is the representation of a
hippocampal cognitive map that is critical for guiding spa-
tial generalization and inference during the choice task and
and the inference test. Furthermore, despite the fact that
the spatial and the temporal kernel were correlated in most
participants (average Pearson’s r = 0.58±0.12), the neural
effect as well as the degree to which behavior was influenced
by either component could not be explained by a correlation
between spatial and temporal kernels (Supplementary Figure
S6).

The representation of cognitive maps adapts to
the task demands
In the choice task, rewards associated with the monsters
were determined by their location in space and participants
who had a better neural representation of the spatial map
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Figure 5. Hippocampal cognitive maps adapted to the task demands. a Logistic functions for each participant fitted to how individual
spatial weights changed over trials. Curves are colored according to a participant’s relative performance in the choice task. b Correlation
between the slopes of the estimated logistic function depicted in a and the inference error. c Correlation between the slopes of the logistic
function and the change in the hippocampal spatial enhancement effect extracted from the ROI depicted in Figure 4a). d Change in spatial
and temporal enhancement cross-stimulus enhancement effects in the ROI depicted in Figure 4a). Because the ROI was defined based on the
existence of a spatial enhancement effect in session 3, the spatial effect is biased and displayed for visualization only. e Correlation between
the change in the hippocampal spatial and temporal enhancement effects. Both were extracted from the ROI depicted in Figure 4a). f
Whole-brain analysis depicting the update in spatial weights at the time of feedback. g Whole-brain analysis depicting voxels where the
increase in the spatial cross-stimulus enhancement effect across participants correlates with the size of the hippocampal spatial weight update
during the choice task as shown in f. h Whole-brain analysis depicting voxels where the difference in unsigned prediction errors as computed
based on the temporal versus the spatial map correlates with with the size of the hippocampal spatial weight update during the choice task as
shown in f. i Mediation path diagram for the change in the hippocampal spatial cross-stimulus enhancement effect extracted from the ROI
depicted in Figure 4a as predicted by the OFC evidence integration signal and the hippocampal spatial weight update. f-h are thresholded at
p < 0.01, uncorrected for visualization. * p < 0.05; ** p < 0.01; *** p < 0.001
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performed better in the inference tasks (Figure 4e). Yet,
we also found evidence for a lingering effect of experienced
temporal distances on choice.

We hypothesized that individuals adjust the degree to
which they rely on one over the other map for guiding choice
depending on the observed outcome contingencies. Indeed,
a logistic function fitted to how individual weights changed
over trials showed that in most participants the temporal
component explained generalization behavior in the choice
task better initially, but as the choice task progressed, spatial
knowledge became more influential (Figure 5a). The slope
of this logistic function was particularly steep for participants
who performed better in the choice task (Figure 5a) as well
as in the inference test (Figure 5b, r =−0.44, p = 0.002).

We reasoned that this might reflect changes in the rep-
resentation of the neural map over the course of the choice
task. If this is the case, then participants who showed a larger
increase in the contribution of spatial knowledge on choices,
i.e. a steeper slope in the logistic regression, should also
show a larger increase in the neural representation of the
spatial map from day 2 (before the choice task) to day 3
(after the choice task). To test this, we extracted parameter
estimates from the same region of interest we used for the
analyses in Figure 4 for session 2 (before the choice task)
and session 3 (after the choice task) and correlated the dif-
ference with the slope of the logistic function. The positive
relation we found suggests that participants whose behavior
in the choice task was characterized by marked increases in
the reliance on the spatial map during choice also showed
a larger increase in the neural representation of the spatial
map (Figure 5c, r =−0.44, p = 0.002). In the same region,
the temporal map decreased significantly across participants
(Figure 5d, t(47) =−2.1, p = 0.04) and the change in the
spatial map representation was negatively correlated with
the change in the temporal map representation (Figure 5e,
r =−0.62, p < 0.001), suggesting that in participants where
the spatial map representation became stronger, the temporal
map representation became weaker.

We reasoned that this change in representation might
be driven by a neural signal reflecting the degree to which
either map was task-relevant during the choice task. To test
this hypothesis, we first set up a GLM which included a
parametric regressor that reflected the difference in the de-
gree to which the spatial map influenced choice from one
trial to the next. This identified a region in the left hip-
pocampus tracking the trial-by-trial change in the degree
to which the spatial dimension guided choice (Figure 5f,
t(47) = 4.14, p = 0.02, [−18,−32,−18]).

If this neural weight update signal led to an increase in
the neural representation of the relevant map, then partic-
ipants with stronger hippocampal weight updating signals
should display a larger change in hippocampal representa-
tion of the spatial map from day 2 to day 3. To test where
the spatial weight updating signal correlated with a change
in the spatial map representation, we looked for changes

in the spatial map representation from session 2 to session
3 across the whole brain, and included the parameter esti-
mates extracted from the hippocampal ROI reflecting the
spatial weight update as a covariate. This analysis revealed
a significant positive effect in the left hippocampal forma-
tion (Figure 5g, p = 0.018, t(47) = 4.21, [18,−14,−25]),
suggesting that participants whose hippocampus tracked the
spatial weight updates during the choice task also updated
the representation of the spatial map in the hippocampus.

The changes in the composition of the hippocampal
map likely reflect a representation learning process that was
driven by the experienced reward contingencies in the choice
task. To test whether any brain region tracks the evidence
that the observed outcomes were generated by either of the
two maps, we calculated the trial-wise unsigned prediction
errors for each outcome separately for the spatial and the
temporal map. The difference between these two prediction
errors indicates how much more expected an outcome was
according to the spatial as compared to the temporal map.
We then set up a GLM that modeled this difference between
spatial and temporal prediction errors at feedback time. Ar-
eas reflecting the evidence for the spatial over the temporal
map should respond positively on trials where the spatial
map made more accurate predictions than the temporal maps.
We reasoned that, if there is a relationship between this sig-
nal and the spatial updating signal, then participants whose
hippocampal weight updating signal was stronger should
also show more of such an evidence tracking signal, and
therefore included the parameter estimate extracted from the
hippocampal ROI as a covariate. The only region where an
evidence integration signal covaried with the hippocampal
updating signal was the medial orbitofrontal cortex (Figure
5h, p = 0.03, [14,46,−13], family-wise error corrected on
the cluster level).

In line with the observation that the OFC adapts behavior
by changing associative representations in other brain re-
gions44, the orbitofrontal evidence signal may thus align task
representation with observed outcomes. By signalling the
degree to which either map is task-relevant, spatial weights
may be updated during the choice task, which in turn leads to
an update of the spatial map representation itself. To test this
assumption, we investigated whether the spatial weight up-
date in the hippocampus formally mediated the relationship
between the evidence integration signal in the OFC and the
hippocampal changes in the spatial map representation. The
fact that the OFC signal and the hippocampal spatial weight
update was significant (path a = 0.7,SE = 0.3, p = 0.02) is
not surprising, since the ROI was identified based on voxels
where the corresponding covariate explains some variance.
However, the effect of the spatial weight updating signal on
the change in representation remains significant if we control
for the OFC signal (path b = 14.0,SE = 4.6, p = 0.0003).
Furthermore, there is a relationship between the OFC signal
and the change in hippocampal map representation (path
c = 13.1,SE = 6.6, p = 0.03), which can be fully accounted
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for by the hippocampal weight update (path c′ = 2.9,SE =
6.5, p = 0.6, path ab = 10.23,SE = 5.71, p = 0.007, Figure
4h). Hence, participants with the largest OFC evidence inte-
gration signal at feedback time exhibited the largest updates
in spatial weights in the hippocampus, which in turn related
to a larger change in the neural representation of the spatial
map. This suggests a role for OFC signal in adjusting the
use of an appropriate map to the current task demands, and
an associated behavioral change.

Discussion
The hippocampal formation is known to organize relation-
ships between events in cognitive maps, thought to be critical
for generalization and inference. However, the neural and
computational mechanisms underlying the ability to use cog-
nitive maps for generalization remains unknown in situations
where stimuli are embedded in multiple relational structures.
Here, we combined virtual reality, computational modeling
and fMRI to demonstrate that the hippocampus extracts both
spatial and temporal stimulus relationships from experience
during navigation in a virtual arena. The strength of each
neural representation was related to the degree to which it
influenced behavior in an independent choice task. Notably,
the OFC tracked the evidence that outcomes observed in
the choice task were consistent with the predictions made
by the spatial and the temporal cognitive map, which led to
corresponding adjustments of the hippocampal map repre-
sentation.

Participants learned to locate stimuli in a virtual arena.
Because most individuals chose non-random behavioral poli-
cies for exploring the arena, stimulus relationships could
be characterized both in terms of spatial distance as well as
temporal co-occurrence. We found that the hippocampal for-
mation extracted both types of relationships and represented
those in clusters well-known to represent distances to goals45,
goal direction signals46 as well as associative distances be-
tween objects forming a non-spatial graph23. Notably, the
degree to which either map was represented in this region
determined the degree to which participant´s generalization
behavior in a later choice task was influenced by the cor-
responding map. This demonstrates a clear link between
hippocampal map representations and their use for guiding
generalization in decision making. It also shows that this
system efficiently deals with higher-dimensional relational
structures and can combine information from multiple maps
for guiding choice.

We found substantial inter-individual differences in terms
of the degree to which participants represented the spatial
and temporal relationships a stimulus was embedded in neu-
rally, and were influenced by those dimensions during choice.
Indeed, in participants whose choices were influenced by
the spatial or the temporal map, we found a cross-stimulus
enhancement effect for spatial or temporal stimulus relation-
ships, respectively. In participants whose choices were not
influenced by those dimensions, on the other hand, the oppo-

site was true: responses to a stimulus were suppressed if the
preceding stimulus was close in space or time. Often, repe-
tition suppression effects are more common than repetition
enhancement effects in fMRI adaptation paradigms40. How-
ever, behavioral relevance can influence the directionality
of an fMRI adaptation effect. For example, while repetition
suppression effects are typically observed in the hippocam-
pus when a stimulus that is irrelevant for the task at hand
is repeated, repetition enhancement effects can be observed
in the same region when a stimulus is task-relevant47. It
is therefore conceivable that what a participant considered
the relevant stimulus dimension was enhanced, while the
irrelevant dimension was suppressed. In the context of our
experiment, it was more adaptive to generalize along spatial
rather than temporal distances, since spatial distances were
used for creating reward contingencies in the first place. The
more a participant therefore succeeded in enhancing the spa-
tial dimension and suppressing the temporal dimension, the
better they performed in the task.

Furthermore, participant choices became increasingly
more influenced by spatial relational knowledge as the choice
task progressed, suggesting that which map is used for guid-
ing choice can be adaptively adjusted to the current task
demands. This effect was driven by an OFC evidence in-
tegration signal, indexing the difference in accuracy of the
predictions made by a spatial compared to a temporal model
at feedback time. Participants whose OFC responded more
strongly also showed a larger spatial weight updating signal
in the hippocampus at feedback, which was in turn related to
a stronger increase in the representation of the spatial map
from before to after the choice task. This suggests that the
OFC tracks the evidence that the currently observable state of
the world was driven by either of the two maps, and updates
the degree to which either influences behavior accordingly.

Our findings are consistent with the proposed function of
the OFC to represent state spaces, in particular in situations
where the current state of the world is not readily observable
and must be inferred48. The OFC is also typically involved in
situations where participants need to adjust their behaviour
when outcome contingencies change30 or when memory
responses require an arbitration between hippocampal and
striatal inputs49. For example, reversal learning or outcome
devaluation, where previously acquired cue–outcome and
response–outcome associations need to be adapted, rely on
an intact OFC50.

Importantly, our results also shed light on the interaction
between OFC and the hippocampus. In line with previous ob-
servations indicating a relation between state representations
in OFC and the hippocampus31, 51, 52, our results indicate that
OFC might play an active role in learning state presentations
in the hippocampus through experience53. Future experi-
ments should assess whether similar adjustments can also
be observed when temporal rather than spatial stimulus re-
lationships govern the reward distribution, or when rewards
are governed by a compositional, spatio-temporal map.
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In conclusion, our results suggest that the hippocampus
represents different dimensions of experienced relationships
between stimuli such as space and time in parallel cognitive
maps. The degree to which each one is used for guiding
choice is governed by an OFC evidence integration signal.
The OFC drives a spatial updating signal in the hippocampus,
which is in turn related to a change in the representation of
the spatial map. This provides a mechanistic insight into the
way in which appropriate stimulus dimensions are selected
for guiding decision making in multi-dimensional environ-
ments.

Online Methods
Participants
52 neurologically and psychiatrically healthy participants
took part in this study (mean age 26.8 ± 3.8 years, 20-34
years old, 27 male). Participants were recruited using the
participant database of the Max Planck Institute for Human
Cognitive and Brain Sciences. Due to a scanner defect, three
participants could not complete the last day. One participant
was excluded due to problems during the preprocessing. 48
participants therefore entered the analyses. Two of those
participants did not do the arena task at the end of the ex-
periment, but their data was included in all other analyses.
The study was approved by the ethics committee at the Med-
ical Faculty at the University of Leipzig (221/18-ek) and all
participants gave written informed consent prior to participa-
tion.

Experimental procedure
The experiment consisted of three parts performed on three
subsequent days. On day 1, participants learned the stim-
ulus distribution in a virtual arena. On day 2, we assessed
the stimulus representation in the fMRI scanner. On day
3, participants performed a choice task to learn the rewards
associated with each stimulus in the scanner. Afterwards,
we again assessed the stimulus representations in the scan-
ner. The sessions are described in more detail below. The
exploration and object location memory task were coded
using the virtual reality software package Vizard (Version
4, Santa Barbara, CA: WorldViz LLC). All other tasks were
written in custom-written Matlab scripts using Psychtoolbox.
Imaging data was preprocessed using fmriprep. Imaging and
behavioural analyses were carried out with Matlab.

Day 1
Participants were first familiarized with the stimuli by being
presented with the monsters one-by-one on the screen. They
could click through the stimuli to proceed to the next one.
Participants were then instructed that they would be asked
to learn where each monster belongs in space, and that this
knowledge would be important for collecting points in later
sessions. Monsters were distributed in a circular arena with
a virtual radius of 15m (Figure 1A). Which monster was pre-
sented in which location was randomized across participants.

5 distinct trees were located behind the wall surrounding the
arena, which functioned as landmarks. The location of the
trees was randomized in such a way that one tree occurred at
a random position in every 72deg block in each participant.
Tree locations were fixed across all experimental session.

Participants then learned the location of stimuli in space
by navigating around a virtual arena (Figure 1E) in multiple
blocks. Each block consisted of an exploration phase and
an object location memory task. In the exploration phase,
participants navigated around the arena in any way they liked
and for as long as they wanted. Whenever a participant ap-
proached a monster (i.e. they entered a 3 m radius around
the monster location), it became visible and slowly turned
around its own axis. This means that participants never saw
all monsters at the same time. After each exploration phase,
participants performed an object location memory task. In
this task, participants were cued with a monster and had to
navigate to the corresponding location (Figure 1F). Feedback
indicated how close to the correct location a monster was po-
sitioned (<3m, <5m, <7m, <9m, >9m). In each block, every
monster had to be positioned once. The order was random-
ized. If performance reached a pre-specified performance
criterion of <3m drop error averaged across all monsters (cor-
responding to <10% error) in a block, the session terminated
if a participant had completed at least five blocks. Partici-
pants performed a minimum number of 5 and a maximum
number of ten blocks of this task to ensure that they had a
good knowledge of the stimulus distribution.

Day 2
Before the scanning session, participants had another oppor-
tunity to explore the monster locations freely, followed by
one more round of the object location memory task with
feedback.

Subsequently, we assessed the monster representations in
the scanner using a picture viewing task. Here, participants
were presented in the fMRI scanner with the monsters in a
random order on a red or a blue background. Participants
were instructed to view the images attentively. Occasionally
(once after each monster on each background color), two
monsters were presented simultaneously and participants
had to indicate which of the two monsters was located closer
in space to the monster they had seen immediately before
the two monsters. Participants received no feedback. The
purpose of this task was to ensure that participants would
always evoke the location a monster was embedded in during
the stimulus presentations. Correct answers were rewarded
with 0.10 EUR. Participants were instructed that the back-
ground color was irrelevant for performing the task. Each
monster was presented 6 times on each background color
(red, blue) per block, resulting in 144 stimulus presentations
in each block. Participants completed three blocks of this
task. Stimulus sequences were generated pseudo-randomly
using a genetic algorithm with the following constraints:
Each stimulus in each context occurred the same number
of times per block and no monster-monster transition was
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presented more than once.
After the scanning session, another round of the object

location memory task was performed without feedback to
assess participants’ memory for the monster locations.

Day 3
Before the scanning session, another round of the object
location memory task was performed without feedback to
assess participants’ memory for the monster locations.

In the scanner, participants then performed a choice task.
Here, they were presented with pairs of monsters and in-
structed to select the monster that would lead to the highest
reward. The reward distribution was related to the position
of the monsters in space and the context as indicated by the
background color (Figure 1H). Participants were instructed
that they would receive similar amounts of points for mon-
sters located near each other in space. They learned the two
value distributions in a blocked fashion, with ten trials of
choices in context 1 alternating with ten trials of choices
in context 2. Background colors and contexts were coun-
terbalanced across participants. Value distributions were
selected such that pairwise spatial distances and pairwise
value differences across both contexts were not significantly
correlated and that the overall value across all objects was
similar across the two contexts.

Two objects in each context (‘inference objects’) could
never be chosen during the choice task (Figure 1B). These
were later used to assess whether participants were able to
combine information about rewards with information about
the relationship between monsters to infer stimulus values
that were never directly experienced. Critically, the value of
one inference object per context was high (71 and 72) and
the value of the other inference objects was low (3 and 13).

After the choice task, three blocks of the picture viewing
task were performed in the scanner. This time, the back-
ground colour indicated the relevant context and participants
were instructed to think about each monster’s location in
space and its associated value. Occasionally (once after each
monster on each background color), two monsters were pre-
sented simultaneously and participants had to indicate which
of the two monsters was located closer in space to the mon-
ster they had seen immediately before the two monsters or
which monster had a more similar value. Which task was to
be performed was indicated with a symbol presented above
the two options. Correct answers were rewarded with 0.10
EUR. Stimulus sequences were the same as on day 2.

After the scanning session, another round of the object
location memory task was performed without feedback to
assess participants memory for the monster locations. This
was followed by four brief tasks. (1) Participants had to
indicate on a sliding scale from 0 to 100 how many points
they would receive for each monster in each context, (2)
Participants rated on a scale from “not at all” to “very much”
how much they liked each monster, (3) Participants arranged
monsters in an arena according to their similarity (Arena task
1), and (4) according to their spatial location (Arena task 2).

In each task, the order in which monsters were presented
was randomized across participants.

Reimbursement
Participants were paid a baseline fee of 9C/hour for the be-
havioral parts of the experiment and 10C/hour for the fMRI
sessions. In addition, participants could earn a monetary
bonus depending on performance. Points accumulated dur-
ing the choice blocks were converted into money (100 points
= 0.1C). Furthermore, each correct choice during the mon-
ster presentation block was rewarded with 0.10C.

Behavioral analysis
Object positioning task. The replacement error in the ob-
ject location memory task was defined as the Euclidean dis-
tance between the drop location and the true object location.
It was reported relative to the arena diameter.

Choice task. A correct choice was the choice corre-
sponding to the object with the higher value.

Inference task. The inference error was defined as the
root-mean-square error between the true inference values
and the error ratings provided by a participant at the end of
the study.

Arena task. The map reproduction error was defined as
the root-mean-square error between the true z-scored spa-
tial distances between the monsters in the virtual arena and
the z-scored distances between the monster positions in the
arena task. We z-scored the distances to ensure that they had
a comparable range.

Modeling
We used Gaussian process regression to model reward learn-
ing and generalization in the choice task. Gaussian pro-
cesses (GPs) define probability distributions over functions
f ∼ N (m(x),k(x,x′)), where m(x) is the mean function,
giving the expected function values ŷ at input points x, and
k(x,x′) the covariance function, or kernel, defining how simi-
lar any pair of input points, x and x′, are. GPs can be updated
to posterior distributions over functions by conditioning on a
set of observed function outputs y. Here the posterior mean
function is given by

mpost(x) = kT (K+σ
2)−1yT (1)

where k is the kernel matrix containing the covariance be-
tween training points and the evaluation points, K is the
kernel matrix containing the covariance between all training
points, and σ2 is a diagonal variance matrix.

The hypothesis that generalization is guided by a spatial
cognitive map corresponds to equipping a GP model with
a Gaussian (or Radial Basis Function) kernel, representing
similarity as an exponentially decaying function of squared
Euclidean distance. The Gaussian kernel defines similarity
as follows:

k(x,x′) = σ
2
f exp

(
‖x−x′‖2

2λ 2

)
(2)
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where σ2
f is a parameter controlling the degree to which the

predictions differ from the mean, and λ is the lengthscale
parameter, controlling how strongly input point similarity
decays with distance. We obtained estimates of stimuli loca-
tions for every participant by performing path integration on
their navigation runs.

To construct a kernel that corresponds to the hypothe-
sis that temporal relations guided generalization, we started
by computing a successor matrix M for every participant33.
Each entry in the successor matrix M(s,s′) (Equation 3)
contains the expected discounted number of future visits of
stimulus s′, starting from a visit to stimulus s

M(s,s′) = E

[
∞

∑
t=0

γ
tI(st = s′) | s0 = s

]
(3)

M̂(s, :)← M̂(s, :) = η
[
1s + γM̂(s′, :)−M̂(s, :)

]
(4)

where γ is the discount factor and I is the indicator function.
The successor matrix can be approximated from a partici-
pant’s stimulus visitation history using a simple temporal-
difference updating rule54 (Equation 4), where M̂(s, :) is the
row corresponding to stimulus s, 1s is a vector of zeros ex-
cept for the sth component which is a 1, and η is the learning
rate. From M we computed the transition matrix T using
the following equation (see Supplementary Note section for
derivation):

T =
M−1− I
−γ

(5)

where I is the identity matrix. We enforced that T was sym-
metric by taking the pairwise maximum of the entries of
its upper and lower triangles. From T, which describes the
relevant participant’s probabilities of walking directly from
one stimulus to another, we computed the diffusion kernel34

K, embodying the hypothesis that temporal relations guide
generalizations (Equation 6).

K = exp(−λL) (6)

Here exp is matrix exponentiation, L is the normalized graph
Laplacian which equals I−T, and λ is a lengthscale param-
eter analogous to that of the Gaussian kernel (Equation 2).
To obtain the compositional kernel we took the average of
the Gaussian and the diffusion kernel55, and to implement
the mean tracker we used a GP model whose kernel was the
identity matrix I.

To obtain the various GP models’ estimates of stimuli’s
rewards at any given trial in the choice task, we conditioned
them on all previously observed stimuli’s rewards for the
relevant context up to that point, and computed the poste-
rior mean using Equation 1. The differences in estimated
rewards were used as single predictors of participant choices
in a logistic mixed-effects model with a participant-specific
random slope38, implemented in R using the lme456 pack-
age. We optimized hyper-parameters to minimize the log-
likelihood of producing the choice data using a grid-search.

For the Gaussian kernel, we optimized the lengthscale λ , for
the diffusion kernel we optimized the learning rate η , and
set the discount rate parameter γ to 0.9 and the lengthscale
λ to 1. For the compositional, spatio-temporal kernel, we
optimized both the Gaussian kernel’s lengthscale and the
learning rate. The variance in Equation 1 was set 0.01 to
improve numerical stability for matrix inversion. Using the
best-fitting hyperparameter configurations, we performed
a leave-one-out cross-validation (LOO-CV) procedure and
obtained each model’s cross-validated log-likelihood of pro-
ducing every choice in the data set. We then computed the
posterior model frequencies and exceedance probabilities57,
reported in Figure 3B.

We used the same procedure for modelling participants’
value judgements. Here, we made the GP models predict the
values of all stimuli, based on all reward-observations the
participants had made, respectively. The GPs were equipped
with the best-fitting hyper-parameters (see Supplementary
Note section ) from the choice task. We then sought to pre-
dict participants’ value judgements for the different stimuli
using the various value estimates as single predictors (plus
an intercept) in separate linear mixed-effects models with a
participant-specific random slope. We split the value judge-
ments into two sets: One containing the value judgements of
the inference objects, and another containing the value judge-
ments of all monsters except the inference objects. Again, we
performed LOO-CV to obtain model-specific log-likelihoods
for all value judgements in the two data sets. Since the mean
tracker could not generate predictions for the inference ob-
ject any different from its prior mean function (which was 0),
we used the average of the mean tracker’s value predictions
for the non-inference objects as a baseline model. From the
cross-validated log-likelihoods we computed the correspond-
ing sets of model frequencies and exceedance probabilities.

To compute the effects of the spatial and temporal compo-
nents on each participant’s choice behaviour, we fitted mixed-
effects logistic regression models like the ones described
above, using the estimated value differences generated by
the spatial and temporal maps as individual predictors (using
their respective best-fitting hyper-parameters) in the same
model. Since the two predictors were correlated, we created
two such models, one where the spatial value difference was
the main predictor, and the second predictor was the tempo-
ral minus the spatial predictor, and a second model where
this relation was inverted58. We aggregated the unsigned
mixed effects (random effects plus the fixed effects) across
these two models for all participants, which left us with the
effects for the two maps. To compute the spatial weights, we
calculated how big the spatial effects were in proportion to
the total effects (spatial + temporal effects). The temporal
weights were consequently 1 minus the spatial weights. To
compute the slopes, we first obtained a weight for the spatial
map for all trials, and for all participants. We computed these
weights by estimating two models similar to the ones used
to estimate participant-specific effects, this time including
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an interaction term with trial number as well. To obtain trial-
specific spatial weights for all participants, we estimated how
likely the spatial×trial interaction predictor was at predict-
ing each individual choice compared to the temporal×trial
interaction predictor, aggregating over our two models. We
then fitted logistic slopes to each participant’s spatial weight
time series, predicting single participants’ spatial weights
from trial number, using logistic regression.

fMRI data acquisition and pre-processing
Visual stimuli were projected onto a screen via a computer
monitor. Participants indicated their choice using an MRI-
compatible button box.

MRI data were acquired using a 32-channel head coil
on a 3 Tesla Siemens Magnetom SkyraFit system (Siemens,
Erlangen, Germany). fMRI scans were acquired in axial
orientation using T2∗-weighted gradient-echo echo planar
imaging (GE-EPI) with multiband acceleration, sensitive to
blood oxygen level-dependent (BOLD) contrast59, 60. Echo-
planar imaging (EPI) with sampling after multiband excita-
tion achieves temporal resolution in the sub-second regime
whilst maintaining a good slice coverage and spatial resolu-
tion59, 60. We collected 60 transverse slices of 2-mm thick-
ness with an in-plane resolution of 2 × 2 mm, a multiband
acceleration factor of 3, a repetition time of 2 s, and an echo
time of 23.6 ms. Slices were tilted by 90 deg relative to the
rostro-caudal axis. The first five volumes of each block were
discarded to allow for scanner equilibration. Furthermore,
a T1-weighted anatomical scan with 1 × 1 × 1 mm reso-
lution was acquired. In addition, a whole-brain field map
with dual echo-time images (TE1 = 5.92 ms, TE2 = 8.38
ms, resolution 2 × 2 × 2.26 mm) was obtained in order to
measure and later correct for geometric distortions due to
susceptibility-induced field inhomogeneities.

Anatomical data preprocessing
Results included in this manuscript come from preprocessing
performed using fMRIPrep 1.4.061, 62 (RRID:SCR_016216),
which is based on Nipype 1.2.063, 64 (RRID:SCR_002502).

A total of 2 T1-weighted (T1w) images were
found within the input BIDS dataset. All of
them were corrected for intensity non-uniformity
(INU) with N4BiasFieldCorrection65, distributed
with ANTs 2.2.066. The T1w-reference was then
skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh workflow (from ANTs),
using OASIS30ANTs as target template. Brain tissue seg-
mentation of cerebrospinal fluid (CSF), white-matter (WM)
and gray-matter (GM) was performed on the brain-extracted
T1w using fast67. A T1w-reference map was computed
after registration of 2 T1w images (after INU-correction)
using mri_robust_template68.

Brain surfaces were reconstructed using recon-all69,
and the brain mask estimated previously was refined
with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentations of

the cortical gray-matter of Mindboggle70. Volume-
based spatial normalization to one standard space
(MNI152NLin6Asym) was performed through nonlinear
registration with antsRegistration (ANTs 2.2.0), us-
ing brain-extracted versions of both T1w reference and the
T1w template. The following template was selected for
spatial normalization: FSL’s MNI ICBM 152 non-linear
6th Generation Asymmetric Average Brain Stereotaxic Reg-
istration Model71 [RRID:SCR_002823; TemplateFlow ID:
MNI152NLin6Asym].

Functional data preprocessing
For each of the 7 BOLD runs per subject (across all tasks
and sessions), the following preprocessing was performed.
First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. A
deformation field to correct for susceptibility distortions
was estimated based on a field map that was co-registered
to the BOLD reference, using a custom workflow of fM-
RIPrep derived from D. Greve’s epidewarp.fsl script
and further improvements of HCP Pipelines72. Based on
the estimated susceptibility distortion, an unwarped BOLD
reference was calculated for a more accurate co-registration
with the anatomical reference. The BOLD reference was
then co-registered to the T1w reference using bbregister
(FreeSurfer) which implements boundary-based registra-
tion73. Co-registration was configured with nine degrees
of freedom to account for distortions remaining in the BOLD
reference. Head-motion parameters with respect to the
BOLD reference (transformation matrices, and six corre-
sponding rotation and translation parameters) are estimated
before any spatiotemporal filtering using mcflirt74.

BOLD runs were slice-time corrected using 3dTshift
from AFNI 2019010575. The BOLD time-series (including
slice-timing correction when applied) were resampled onto
their original, native space by applying a single, compos-
ite transform to correct for head-motion and susceptibility
distortions. These resampled BOLD time-series will be re-
ferred to as preprocessed BOLD in original space, or just
preprocessed BOLD. The BOLD time-series were resampled
into standard space, generating a preprocessed BOLD run
in [‘MNI152NLin6Asym’] space. First, a reference volume
and its skull-stripped version were generated using a custom
methodology of fMRIPrep.

Additionally, several confounding time-series were calcu-
lated based on the preprocessed BOLD: framewise displace-
ment (FD), DVARS and three region-wise global signals.
FD and DVARS are calculated for each functional run, both
using their implementations in Nipype76. The three global
signals are extracted within the CSF, the WM, and the whole-
brain masks. Additionally, a set of physiological regressors
were extracted to allow for component-based noise correc-
tion CompCor77. Principal components are estimated after
high-pass filtering the preprocessed BOLD time-series (us-
ing a discrete cosine filter with 128s cut-off) for the two
CompCor variants: temporal (tCompCor) and anatomical
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(aCompCor). tCompCor components are then calculated
from the top 5% variable voxels within a mask covering the
subcortical regions. This subcortical mask is obtained by
heavily eroding the brain mask, which ensures it does not
include cortical GM regions. For aCompCor, components
are calculated within the intersection of the aforementioned
mask and the union of CSF and WM masks calculated in
T1w space, after their projection to the native space of each
functional run (using the inverse BOLD-to-T1w transforma-
tion). Components are also calculated separately within the
WM and CSF masks. For each CompCor decomposition, the
k components with the largest singular values are retained,
such that the retained components’ time series are sufficient
to explain 50 percent of variance across the nuisance mask
(CSF, WM, combined, or temporal). The remaining com-
ponents are dropped from consideration. The head-motion
estimates calculated in the correction step were also placed
within the corresponding confounds file. The confound time
series derived from head motion estimates and global signals
were expanded with the inclusion of temporal derivatives
and quadratic terms for each78.

Frames that exceeded a threshold of 0.5 mm FD or 1.5
standardised DVARS were annotated as motion outliers. All
resamplings can be performed with a single interpolation
step by composing all the pertinent transformations (i.e. head-
motion transform matrices, susceptibility distortion correc-
tion when available, and co-registrations to anatomical and
output spaces). Gridded (volumetric) resamplings were per-
formed using antsApplyTransforms (ANTs), config-
ured with Lanczos interpolation to minimize the smoothing
effects of other kernels79. Non-gridded (surface) resamplings
were performed using mri_vol2surf (FreeSurfer).

fMRI data analysis
We implemented three types of event-related general linear
models (GLMs) in SPM 12 to analyze the fMRI data. All
GLMs included a button press regressor as a regressor of
no interest. All regressors were convolved with a canonical
haemodynamic response function. Because of the sensitiv-
ity of the blood oxygen level-dependent signal to motion
and physiological noise, all GLMs included frame-wise dis-
placement, six rigid-body motion parameters (three transla-
tions and three rotation), six anatomical component-based
noise correction components (aCompCorr) and four cosine
regressors estimated by fmriprep as confound regressors for
denoising. Each block was modeled separately within the
GLMs.

The first GLM contained separate onset regressors for
each of the twelve objects. By modeling each object sepa-
rately, we could account for any object-specific differences
in activity driving the main effects and focus on distance-
dependent modulations that ride on top of those object-
specific differences in activation. Each onset regressor was
accompanied by two parametric regressors. These corre-
sponded to the distance to the object presented immediately

before the current object according to the spatial kernel and
distance to the immediately preceding object according to the
temporal kernel. Both parametric regressors were zscored,
but not orthogonalized, so that any shared variance would
be discarded. Trials where the same object was repeated
were modeled separately and objects immediately following
a choice were excluded. Furthermore, the GLM contained an
onset regressor for the choice trials. This was accompanied
by two parametric regressors, reflecting chosen and an un-
chosen distance between the two objects and the preceding
object. Each of the three blocks were modeled separately.

The second and third GLM modeled events during the
choice task. Here, three onset regressors were included,
one indicating the choice period, the second one indicating
feedback times and the third one corresponding to button
presses. The duration of each event corresponded to the
actual duration during the experiment. The choice period
regressor was accompanied by two parametric modulators
reflecting chosen and unchosen values of the objects as esti-
mated by the winning model. Both were demeaned, but not
orthogonalized.

In the second GLM instead, the feedback regressor was
accompanied by a spatial weight updating signal. A trial-
by-trial estimate of the influence of the spatial map on the
choices was estimated, and the demeaned trial-by-trial dif-
ference was included as a parametric modulator.

In the third GLM, the feedback regressor was accompa-
nied by a parametric regressor reflecting a prediction error
difference signal. The reward prediction error was estimated
separately for the spatial and the temporal map, and the de-
meaned difference between the absolute prediction errors
was included as a parametric regressor.

The contrast images of all participants from the first level
were analysed as a second-level random effects analysis.
We report all our results in the hippocampal formation, as
this was our a priori ROI, at an uncorrected cluster-defining
threshold of p < 0.001, combined with peak-level family-
wise error (FWE) small-volume correction at p < 0.05. For
the SVC procedure, we used a mask comprising hippocam-
pus, entorhinal cortex and subiculum (Supplementary Figure
S5). Activations in other brain regions were only consid-
ered significant at a level of p < 0.001 uncorrected if they
survived whole-brain FWE correction at the cluster level
(p < 0.05). Results in the orbitofrontal cortex in 5h are
reported at a cluster-defining threshold of p < 0.01 uncor-
rected, combined with a whole-brain FWE-corrected signifi-
cance at the cluster level of p < 0.05. While we used masks
to correct for multiple comparisons in our ROI, all statistical
parametric maps presented in the manuscript are unmasked
and thresholded at p < 0.01 for visualization.

To relate neural effects to behavioral parameters and to
each other, we defined the following ROIs: spatial hippocam-
pal map in session 3 from GLM 1, Figure 4a; hippocampal
spatial weight update from GLM 2, Figure 5f; change in
hippocampal map representation from session 2 to session
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3 with hippocampal spatial weight update as covariate from
GLM 1, Figure 5g; and OFC evidence integration signal
with hippocampal spatial weight update as covariate from
GLM 3 5h. All voxels exceeding a threshold of p < 0.001
were included in an ROI if the cluster survived correction for
multiple comparisons.

To estimate how much an effect co-varied with behav-
ioral effects, we included spatial and temporal weights, re-
spectively (Figure 4f), as well as the inference error (Figure
4g) as a covariate on the second level and tested for signifi-
cant effects. In Figure 5g and h, we included the parameter
estimate reflecting the size of the hippocampal spatial weight
update signal (Figure 5f) as a covariate.

Mediation analysis
We used the Mediation and Moderation Toolbox42, 43 to per-
form two single-level mediation analyses (Figures 4h and
5i). The total effect of the independent variable X on the
dependent variable Y is referred to as path c. That effect is
then partitioned into a combination of a direct effect of X on
Y (path c’), and an indirect effect of X on Y that is transmit-
ted through a mediator M (path ab). We also estimated the
relationship between X and M (path a) as well as between M
and Y (path b). This last path “b” is controlled for X, such
that paths “a” and “b” correspond to two separable processes
contributing to Y. We determined two-tailed uncorrected p
values from the bootstrap confidence intervals for the path
coefficients43.

To test whether the spatial weights mediate the effect of
hippocampal spatial map on the inference error, we defined X
as each individual’s parameter estimate from the hippocam-
pal ROI encoding the spatial map (ROI based on Figure 4a).
The mediator M corresponded to each participant’s spatial
weight as estimated by the model fit to the choice data. The
outcome variable Y was defined as a participant’s inference
error.

To test for a significant mediation linking the OFC evi-
dence integration signals (X) to the change in hippocampal
spatial map (Y), we extracted parameter estimates from an
orbitofrontal ROI tracking the evidence that an outcome is
predicted by either of the two maps (X, ROI based on Figure
5h) and related this to the change in spatial representation
in the left hippocampus (Y, ROI based on Figure 5g) via the
spatial updating signal in the right hippocampus (M, ROI
based on Figure 5f).

Data availability
Source data to reproduce the figures and unthresholded
group-level statistical brain maps from neuroimaging analy-
ses will be made openly available upon publication.

Code availability
Task, analysis and computational modeling code will be
made publicly available on github upon publication.

References
1. Shepard, R. N. Toward a universal law of generaliza-

tion for psychological science. Science 237, 1317–1323
(1987).

2. Gershman, S. J. & Daw, N. D. Reinforcement learning
and episodic memory in humans and animals: An inte-
grative framework. Annu. Rev. Psychol. 68, 101–128,
DOI: 10.1146/annurev-psych-122414-033625 (2017).

3. Guttman, N. & Kalish, H. I. Discriminability and stim-
ulus generalization. J. experimental psychology 51, 79
(1956).

4. Hanson, H. M. Effects of discrimination training on
stimulus generalization. J. experimental psychology 58,
321 (1959).

5. Kahnt, T. & Tobler, P. N. Dopamine regulates stimu-
lus generalization in the human hippocampus. Elife 5,
e12678 (2016).

6. Wu, C. M., Schulz, E., Garvert, M. M., Meder, B. &
Schuck, N. W. Similarities and differences in spatial
and non-spatial cognitive maps. PLoS computational
biology 16, e1008149 (2020).

7. Barron, H. C. et al. Neuronal computation underlying
inferential reasoning in humans and mice. Cell 183,
228–243 (2020).

8. Brogden, W. J. Sensory pre-conditioning. J. Exp. Psy-
chol. 25, 323 (1939).

9. Baram, A. B., Muller, T. H., Nili, H., Garvert, M. M.
& Behrens, T. E. J. Entorhinal and ventromedial pre-
frontal cortices abstract and generalize the structure of
reinforcement learning problems. Neuron 109, 713–723
(2021).

10. Wimmer, G. E., Daw, N. D. & Shohamy, D. Generaliza-
tion of value in reinforcement learning by humans. Eur.
J. Neurosci. 35, 1092–1104 (2012).

11. Morgan, L. K., MacEvoy, S. P., Aguirre, G. K. & Ep-
stein, R. A. Distances between real-world locations are
represented in the human hippocampus. J. Neurosci. 31,
1238–1245, DOI: 10.1523/JNEUROSCI.4667-10.2011
(2011). https://www.jneurosci.org/content/31/4/1238.
full.pdf.

12. O’keefe, J. & Nadel, L. The hippocampus as a cognitive
map (Oxford: Clarendon Press, 1978).

13. Tolman, E. C. Cognitive maps in rats and men. Psychol.
review 55, 189 (1948).

14. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E.
Organizing conceptual knowledge in humans with a
gridlike code. Science 352, 1464–1468 (2016).

15. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-
spatial dimension by the hippocampal–entorhinal cir-
cuit. Nature 543, 719–722, DOI: 10.1038/nature21692
(2017).

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.10.22.465012doi: bioRxiv preprint 

10.1146/annurev-psych-122414-033625
10.1523/JNEUROSCI.4667-10.2011
https://www.jneurosci.org/content/31/4/1238.full.pdf
https://www.jneurosci.org/content/31/4/1238.full.pdf
10.1038/nature21692
https://doi.org/10.1101/2021.10.22.465012
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. Nau, M., Navarro Schröder, T., Bellmund, J. L. S. &
Doeller, C. F. Hexadirectional coding of visual space in
human entorhinal cortex. Nat. Neurosci. 21, 188–190,
DOI: 10.1038/s41593-017-0050-8 (2018).

17. Theves, S., Fernández, G. & Doeller, C. F. The hip-
pocampus maps concept space, not feature space. J.
Neurosci. 40, 7318–7325, DOI: 10.1523/JNEUROSCI.
0494-20.2020 (2020). https://www.jneurosci.org/
content/40/38/7318.full.pdf.

18. Theves, S., Fernandez, G. & Doeller, C. F. The hip-
pocampus encodes distances in multidimensional fea-
ture space. Curr. Biol. 29, 1226–1231.e3, DOI: https:
//doi.org/10.1016/j.cub.2019.02.035 (2019).

19. Vigano, S. & Piazza, M. Distance and direction
codes underlie navigation of a novel semantic space
in the human brain. J. Neurosci. 40, 2727–2736,
DOI: 10.1523/JNEUROSCI.1849-19.2020 (2020). https:
//www.jneurosci.org/content/40/13/2727.full.pdf.

20. Deuker, L., Bellmund, J., Schröder, T. N. & Doeller,
C. An event map of memory space in the hippocampus.
eLife 5, DOI: 10.7554/eLife.16534 (2016).

21. Bellmund, J. L. S., Polti, I. & Doeller, C. F. Sequence
memory in the hippocampal–entorhinal region. J. Cogn.
Neurosci. 32, 2056–2070, DOI: 10.1162/jocn_a_01592
(2020).

22. Eichenbaum, H. Time cells in the hippocampus: a new
dimension for mapping memories. Nat. Rev. Neurosci.
15, 732–744, DOI: 10.1038/nrn3827 (2014).

23. Garvert, M. M., Dolan, R. J. & Behrens, T. E. A
map of abstract relational knowledge in the human
hippocampal–entorhinal cortex. Elife 6, e17086 (2017).

24. Schuck, N., Cai, M., Wilson, R. & Niv, Y. Human Or-
bitofrontal Cortex Represents a Cognitive Map of State
Space. Neuron 91, 1402–1412, DOI: 10.1016/j.neuron.
2016.08.019 (2016).

25. Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-
Browne, N. B. & Botvinick, M. M. Neural represen-
tations of events arise from temporal community struc-
ture. Nat. Neurosci. 16, 486–492, DOI: 10.1038/nn.3331
(2013).

26. Schapiro, A., Kustner, L. & Turk-Browne, N. Shaping
of object representations in the human medial tempo-
ral lobe based on temporal regularities. Curr. Biol. 22,
1622–1627, DOI: 10.1016/j.cub.2012.06.056 (2021).

27. Nieh, E. H. et al. Geometry of abstract learned knowl-
edge in the hippocampus. Nature 595, 80–84, DOI:
10.1038/s41586-021-03652-7 (2021).

28. Shahar, N. et al. Credit assignment to state-independent
task representations and its relationship with model-
based decision making. Proc. Natl. Acad. Sci. 116,
15871–15876, DOI: 10.1073/pnas.1821647116 (2019).
https://www.pnas.org/content/116/32/15871.full.pdf.

29. Niv, Y. Learning task-state representa-
tions. Nat. Neurosci. 22, 1544–1553, DOI:
10.1038/s41593-019-0470-8 (2019).

30. Wikenheiser, A. M. & Schoenbaum, G. Over the river,
through the woods: cognitive maps in the hippocam-
pus and orbitofrontal cortex. Nat. Rev. Neurosci. 17,
513–523, DOI: 10.1038/nrn.2016.56 (2016).

31. Schuck, N. W. & Niv, Y. Sequential replay of nonspatial
task states in the human hippocampus. Science 364,
eaaw5181, DOI: 10.1126/science.aaw5181 (2019).

32. Wittkuhn, L., Chien, S., Hall-McMaster, S. & Schuck,
N. W. Replay in minds and machines. Neurosci. &
Biobehav. Rev. 129, 367–388, DOI: https://doi.org/10.
1016/j.neubiorev.2021.08.002 (2021).

33. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J.
The hippocampus as a predictive map. Nat. neuroscience
20, 1643 (2017).

34. Kondor, R. I. & Lafferty, J. Diffusion kernels on graphs
and other discrete structures (2002).

35. Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J. &
Zoubin, G. Structure discovery in nonparametric re-
gression through compositional kernel search. In Inter-
national Conference on Machine Learning, 1166–1174
(PMLR, 2013).

36. Saanum, T., Schulz, E. & Speekenbrink, M. Composi-
tional generalization in multi-armed bandits. PsyArXiv
(2021).

37. Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speeken-
brink, M. & Gershman, S. J. Compositional inductive
biases in function learning. Cogn. psychology 99, 44–79
(2017).

38. Gershman, S. J. Uncertainty and exploration. Decision
6, 277 (2019).

39. Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau,
J. Bayesian model selection for group studies—revisited.
Neuroimage 84, 971–985 (2014).

40. Barron, H. C., Garvert, M. M. & Behrens, T. E. Rep-
etition suppression: a means to index neural represen-
tations using bold? Philos. Transactions Royal Soc. B:
Biol. Sci. 371, 20150355 (2016).

41. Grill-Spector, K. Selectivity of adaptation in single units:
implications for fmri experiments. Neuron 49, 170–171
(2006).

42. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist,
M. A. & Ochsner, K. N. Prefrontal-subcortical pathways
mediating successful emotion regulation. Neuron 59,
1037–1050, DOI: https://doi.org/10.1016/j.neuron.2008.
09.006 (2008).

43. Atlas, L. Y., Bolger, N., Lindquist, M. A. & Wager,
T. D. Brain mediators of predictive cue effects on
perceived pain. J. Neurosci. 30, 12964–12977, DOI:

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.10.22.465012doi: bioRxiv preprint 

10.1038/s41593-017-0050-8
10.1523/JNEUROSCI.0494-20.2020
10.1523/JNEUROSCI.0494-20.2020
https://www.jneurosci.org/content/40/38/7318.full.pdf
https://www.jneurosci.org/content/40/38/7318.full.pdf
https://doi.org/10.1016/j.cub.2019.02.035
https://doi.org/10.1016/j.cub.2019.02.035
10.1523/JNEUROSCI.1849-19.2020
https://www.jneurosci.org/content/40/13/2727.full.pdf
https://www.jneurosci.org/content/40/13/2727.full.pdf
10.7554/eLife.16534
10.1162/jocn_a_01592
10.1038/nrn3827
10.1016/j.neuron.2016.08.019
10.1016/j.neuron.2016.08.019
10.1038/nn.3331
10.1016/j.cub.2012.06.056
10.1038/s41586-021-03652-7
10.1073/pnas.1821647116
https://www.pnas.org/content/116/32/15871.full.pdf
10.1038/s41593-019-0470-8
10.1038/nrn.2016.56
10.1126/science.aaw5181
https://doi.org/10.1016/j.neubiorev.2021.08.002
https://doi.org/10.1016/j.neubiorev.2021.08.002
https://doi.org/10.1016/j.neuron.2008.09.006
https://doi.org/10.1016/j.neuron.2008.09.006
https://doi.org/10.1101/2021.10.22.465012
http://creativecommons.org/licenses/by-nc-nd/4.0/


10.1523/JNEUROSCI.0057-10.2010 (2010). https://
www.jneurosci.org/content/30/39/12964.full.pdf.

44. Schoenbaum, G., Roesch, M. R., Stalnaker, T. A. &
Takahashi, Y. K. A new perspective on the role of the
orbitofrontal cortex in adaptive behaviour. Nat. Rev.
Neurosci. 10, 885–892, DOI: 10.1038/nrn2753 (2009).

45. Howard, L. R. et al. The hippocampus and entorhinal
cortex encode the path and euclidean distances to goals
during navigation. Curr. Biol. 24, 1331–1340, DOI:
10.1016/j.cub.2014.05.001 (2014).

46. Chadwick, M., Jolly, A., Amos, D., Hassabis, D. &
Spiers, H. A goal direction signal in the human en-
torhinal/subicular region. Curr. Biol. 25, 87–92, DOI:
https://doi.org/10.1016/j.cub.2014.11.001 (2015).

47. Segaert, K., Weber, K., de Lange, F. P., Petersson, K. M.
& Hagoort, P. The suppression of repetition enhance-
ment: A review of fmri studies. Neuropsychologia 51,
59–66, DOI: https://doi.org/10.1016/j.neuropsychologia.
2012.11.006 (2013).

48. Schuck, N. W., Wilson, R. & Niv, Y. Chapter 12 - a state
representation for reinforcement learning and decision-
making in the orbitofrontal cortex. In Morris, R., Born-
stein, A. & Shenhav, A. (eds.) Goal-Directed Deci-
sion Making, 259–278, DOI: https://doi.org/10.1016/
B978-0-12-812098-9.00012-7 (Academic Press, 2018).

49. Doeller, C. F., King, J. A. & Burgess, N. Parallel stri-
atal and hippocampal systems for landmarks and bound-
aries in spatial memory. Proc. Natl. Acad. Sci. 105,
5915–5920, DOI: 10.1073/pnas.0801489105 (2008).
https://www.pnas.org/content/105/15/5915.full.pdf.

50. Gallagher, M., McMahan, R. W. & Schoenbaum, G. Or-
bitofrontal cortex and representation of incentive value
in associative learning. J. Neurosci. 19, 6610–6614,
DOI: 10.1523/JNEUROSCI.19-15-06610.1999 (1999).
https://www.jneurosci.org/content/19/15/6610.full.pdf.

51. Wikenheiser, A. M., Marrero-Garcia, Y. & Schoenbaum,
G. Suppression of ventral hippocampal output impairs
integrated orbitofrontal encoding of task structure. Neu-
ron 95, 1197–1207.e3, DOI: https://doi.org/10.1016/j.
neuron.2017.08.003 (2017).

52. Boorman, E., Rajendran, V., O’Reilly, J. & Behrens, T.
Two anatomically and computationally distinct learning
signals predict changes to stimulus-outcome associa-
tions in hippocampus. Neuron 89, 1343–1354, DOI:
https://doi.org/10.1016/j.neuron.2016.02.014 (2016).

53. Zhou, J. et al. Evolving schema representations in or-
bitofrontal ensembles during learning. Nature 590, 606–
611, DOI: 10.1038/s41586-020-03061-2 (2021).

54. Russek, E. M., Momennejad, I., Botvinick, M. M., Ger-
shman, S. J. & Daw, N. D. Predictive representations can
link model-based reinforcement learning to model-free

mechanisms. PLoS computational biology 13, e1005768
(2017).

55. Schulz, E., Franklin, N. T. & Gershman, S. J. Finding
structure in multi-armed bandits. Cogn. psychology 119,
101261 (2020).

56. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fit-
ting linear mixed-effects models using lme4. J. Stat.
Software, Articles 67, 1–48, DOI: 10.18637/jss.v067.i01
(2015).

57. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran,
R. J. & Friston, K. J. Bayesian model selection for
group studies. Neuroimage 46, 1004–1017 (2009).

58. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. &
Dolan, R. J. Model-based influences on humans’ choices
and striatal prediction errors. Neuron 69, 1204–1215
(2011).

59. Feinberg, D. et al. Multiplexed echo planar imaging for
sub-second whole brain fmri and fast diffusion imaging.
PloS one 5, e15710 (2010).

60. Moeller, S. et al. Multiband multislice ge-epi at 7 tesla,
with 16-fold acceleration using partial parallel imaging
with application to high spatial and temporal whole-
brain fmri. Magn Reson. Med 63, 1144–1153 (2010).

61. Esteban, O. et al. fMRIPrep: a robust preprocess-
ing pipeline for functional MRI. Nat. Methods DOI:
10.1038/s41592-018-0235-4 (2018).

62. Esteban, O. et al. fmriprep. Software DOI: 10.5281/
zenodo.852659 (2018).

63. Gorgolewski, K. et al. Nipype: a flexible, lightweight
and extensible neuroimaging data processing frame-
work in python. Front. Neuroinformatics 5, 13, DOI:
10.3389/fninf.2011.00013 (2011).

64. Gorgolewski, K. J. et al. Nipype. Software DOI:
10.5281/zenodo.596855 (2018).

65. Tustison, N. J. et al. N4itk: Improved n3 bias correction.
IEEE Transactions on Med. Imaging 29, 1310–1320,
DOI: 10.1109/TMI.2010.2046908 (2010).

66. Avants, B., Epstein, C., Grossman, M. & Gee, J. Sym-
metric diffeomorphic image registration with cross-
correlation: Evaluating automated labeling of elderly
and neurodegenerative brain. Med. Image Analysis 12,
26–41, DOI: 10.1016/j.media.2007.06.004 (2008).

67. Zhang, Y., Brady, M. & Smith, S. Segmentation of
brain MR images through a hidden markov random
field model and the expectation-maximization algorithm.
IEEE Transactions on Med. Imaging 20, 45–57, DOI:
10.1109/42.906424 (2001).

68. Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate
inverse consistent registration: A robust approach. Neu-
roImage 53, 1181–1196, DOI: 10.1016/j.neuroimage.
2010.07.020 (2010).

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.10.22.465012doi: bioRxiv preprint 

10.1523/JNEUROSCI.0057-10.2010
https://www.jneurosci.org/content/30/39/12964.full.pdf
https://www.jneurosci.org/content/30/39/12964.full.pdf
10.1038/nrn2753
10.1016/j.cub.2014.05.001
https://doi.org/10.1016/j.cub.2014.11.001
https://doi.org/10.1016/j.neuropsychologia.2012.11.006
https://doi.org/10.1016/j.neuropsychologia.2012.11.006
https://doi.org/10.1016/B978-0-12-812098-9.00012-7
https://doi.org/10.1016/B978-0-12-812098-9.00012-7
10.1073/pnas.0801489105
https://www.pnas.org/content/105/15/5915.full.pdf
10.1523/JNEUROSCI.19-15-06610.1999
https://www.jneurosci.org/content/19/15/6610.full.pdf
https://doi.org/10.1016/j.neuron.2017.08.003
https://doi.org/10.1016/j.neuron.2017.08.003
https://doi.org/10.1016/j.neuron.2016.02.014
10.1038/s41586-020-03061-2
10.18637/jss.v067.i01
10.1038/s41592-018-0235-4
10.5281/zenodo.852659
10.5281/zenodo.852659
10.3389/fninf.2011.00013
10.5281/zenodo.596855
10.1109/TMI.2010.2046908
10.1016/j.media.2007.06.004
10.1109/42.906424
10.1016/j.neuroimage.2010.07.020
10.1016/j.neuroimage.2010.07.020
https://doi.org/10.1101/2021.10.22.465012
http://creativecommons.org/licenses/by-nc-nd/4.0/


69. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-
based analysis: I. segmentation and surface reconstruc-
tion. NeuroImage 9, 179–194, DOI: 10.1006/nimg.1998.
0395 (1999).

70. Klein, A. et al. Mindboggling morphometry of hu-
man brains. PLOS Comput. Biol. 13, e1005350, DOI:
10.1371/journal.pcbi.1005350 (2017).

71. Evans, A., Janke, A., Collins, D. & Baillet, S. Brain
templates and atlases. NeuroImage 62, 911–922, DOI:
10.1016/j.neuroimage.2012.01.024 (2012).

72. Glasser, M. F. et al. The minimal preprocessing
pipelines for the human connectome project. NeuroIm-
age 80, 105–124, DOI: 10.1016/j.neuroimage.2013.04.
127 (2013).

73. Greve, D. N. & Fischl, B. Accurate and robust brain im-
age alignment using boundary-based registration. Neu-
roImage 48, 63–72, DOI: 10.1016/j.neuroimage.2009.
06.060 (2009).

74. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Im-
proved optimization for the robust and accurate linear
registration and motion correction of brain images. Neu-
roImage 17, 825–841, DOI: 10.1006/nimg.2002.1132
(2002).

75. Cox, R. W. & Hyde, J. S. Software tools for analysis
and visualization of fmri data. NMR Biomed. 10, 171–
178, DOI: 10.1002/(SICI)1099-1492(199706/08)10:4/
5<171::AID-NBM453>3.0.CO;2-L (1997).

76. Power, J. D. et al. Methods to detect, characterize, and
remove motion artifact in resting state fmri. NeuroImage
84, 320–341, DOI: 10.1016/j.neuroimage.2013.08.048
(2014).

77. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A com-
ponent based noise correction method (CompCor) for
BOLD and perfusion based fmri. NeuroImage 37, 90–
101, DOI: 10.1016/j.neuroimage.2007.04.042 (2007).

78. Satterthwaite, T. D. et al. An improved framework
for confound regression and filtering for control of mo-
tion artifact in the preprocessing of resting-state func-

tional connectivity data. NeuroImage 64, 240–256, DOI:
10.1016/j.neuroimage.2012.08.052 (2013).

79. Lanczos, C. Evaluation of noisy data. J. Soc. for Ind.
Appl. Math. Ser. B Numer. Analysis 1, 76–85, DOI:
10.1137/0701007 (1964).

Acknowledgements
We would like to thank Jacob Bellmund for helpful com-
ments on the manuscript, Joshua Julian for providing ex-
ample code for the VR experiment and Kerstin Träger and
Nicolas Filler for help with data collection. We thank the
University of Minnesota Center for Magnetic Resonance
Research for the provision of the multiband EPI sequence
software.

This work is supported by the Max Planck Society. TS
and ES are supported via the Mini Graduate School on “Com-
positionality in Minds and Machines” from the Deutsche
Forschungsgemeinschaft under Germany’s Excellence Strat-
egy–EXC2064/1–390727645. ES is further supported by
an Independent Max Planck Research Group grant awarded
by the Max Planck Society. NWS is supported by an Inde-
pendent Max Planck Research Group grant awarded by the
Max Planck Society and a Starting Grant from the European
Union (ERC-2019-StG REPLAY-852669). CFD is supported
by the Max Planck Society, the European Research Council
(ERC-CoG GEOCOG 724836), the Kavli Foundation, the
Jebsen Foundation, the Centre of Excellence scheme of the
Research Council of Norway – Centre for Neural Computa-
tion (223262/F50), The Egil and Pauline Braathen and Fred
Kavli Centre for Cortical Microcircuits, and the National
Infrastructure scheme of the Research Council of Norway –
NORBRAIN (197467/F50).

Author contributions statement
M.M.G., N.W.S. and C.F.D. conceived the experiment,
M.M.G. developed the tasks and acquired the data, all au-
thors planned the analyses, M.M.G. and T.S. analyzed the
data, T.S. and E.S. performed the computational modeling,
all authors discussed the results, M.M.G. and T.S. wrote the
manuscript with input from all authors.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.10.22.465012doi: bioRxiv preprint 

10.1006/nimg.1998.0395
10.1006/nimg.1998.0395
10.1371/journal.pcbi.1005350
10.1016/j.neuroimage.2012.01.024
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2009.06.060
10.1016/j.neuroimage.2009.06.060
10.1006/nimg.2002.1132
10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
10.1016/j.neuroimage.2013.08.048
10.1016/j.neuroimage.2007.04.042
10.1016/j.neuroimage.2012.08.052
10.1137/0701007
https://doi.org/10.1101/2021.10.22.465012
http://creativecommons.org/licenses/by-nc-nd/4.0/

