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Abstract 

Decision-making is often studied in a static context, such as deciding which option to select 

from those currently available. However, in everyday life we often also need to decide when 

to select an option to maximise reward. One possibility is that people track the latent reward 

of an option, updating expected changes in its value over time, to achieve appropriate 

selection timing. Contrary to this hypothesis, our electroencephalographic pattern analyses 

revealed that option properties like starting value and growth rate were translated into an 

estimate of when an option would become most valuable, far in advance of selecting it. The 

option’s latent reward could not be decoded independently from neural activity. These results 

suggest that decisions to exploit individual options with lawful reward trajectories can be 

made by transforming reward information into an estimate of optimal timing, rather than 

actively monitoring an option’s changing reward prospect. 
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Introduction 

Neural research on decision-making has provided detailed accounts of how rewards are 

compared between options (A vs. B), to determine which option should be selected (e.g. 

Fouragnan et al., 2019; Hunt & Hayden, 2017; Murray & Rudebeck, 2018; Padoa-Schioppa, 

2011; Rich & Wallis, 2016). However, there is another dilemma in decision-making that has 

received less attention. There are many situations in which we already know which option to 

choose, but must decide when to choose it to maximize the outcome (Khalighinejad et al., 

2020a, 2020b). For example, we might know that we will visit a specific café, but want to 

time our visit so that it is not too busy. Such a decision can be challenging because the 

rewards associated with an option are rarely stationary and, as a result, the timing of selection 

is critical to achieve the desired outcome. 

How then do we select a specific option at the right time? Recent work suggests that 

the basal forebrain integrates recent experience with on-going sensory information about an 

option’s reward, to determine the selection timing (Khalighinejad et al., 2020a, 2020b). 

Sensory observations are also integrated in the dorsal anterior cingulate cortex (dACC) to 

compute latent reward trends denoting whether an option is becoming more or less rewarding 

over time, information that can be used to decide whether the option should be selected for 

continued exploitation at a specific time point (Wittmann et al., 2016). An issue that remains 

unclear from these recent discoveries is how we decide when to select an option in the 

absence of on-going sensory information to indicate its changing value. This is especially 

important because real world situations do not always offer direct information about an 

option’s value before it is selected. 

How then do we achieve appropriate selection timing, without sensory information to 

signal an option’s changing value? Recent work indicates that dACC encodes latent 

information about an option’s progress to a reward threshold (Stoll et al., 2016). This 

suggests that option selection could be timed using an internal representation that tracks an 

option’s latent reward over time. While this proposal holds theoretical appeal, there is still 

uncertainty about whether the brain uses active reward tracking to achieve optimal selection 

timing because this could also be achieved using inter-temporal simulation (e.g. Bulley et al., 

2016) and delay estimation (e.g. Coull et al., 2011; Hassall et al., 2020). A decision maker 

could circumvent the need to track latent reward by estimating when an option will become 

most valuable in the future and waiting until that time to initiate selection. 

We hypothesised that appropriate selection timing would be achieved through 

tracking an option’s latent reward over time and initiating selection when the reward meets a 
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threshold. We investigated this hypothesis using a new decision task. Human participants 

were shown an option that would provide a reward bonus when selected. With each trial, the 

reward for selecting the option increased towards a maximum, without any direct sensory 

changes. Despite being uncued, the latent reward for selection could be estimated over time, 

using learned starting value and growth rate information associated with the option. We then 

conducted a series of multivariate decoding analyses on electroencephalograms collected 

during task performance to examine the neural encoding of latent reward information in the 

lead-up to option selection.  

Contrary to our hypothesis, we did not find evidence that decisions to select an option 

were based on latent reward information. Instead, we uncovered a decision cascade in which 

an option’s properties (starting value and growth rate) were first encoded. We then observed 

a decision signal that indicated when the option would reach its maximum reward, followed 

by an action signal indicating how far in the future a selection response would be made. 

These findings suggest that reward-maximising choices about when to select an option can be 

made without tracking latent reward information. Instead, such decisions can be made by 

evaluating when an option will become most rewarding in advance and monitoring the 

temporal distance until selection is required. 
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Results 

To investigate whether decisions about when to select an option arise from neural tracking of 

latent reward information, 32 participants completed a wait-select task (Figure 1). On each 

trial run, participants were presented with one of 40 specific options, defined by a 

combination of one of eight possible starting values and one of five growth rates. These 

properties were signalled using a triangular wedge shown on screen, the size of which 

indicated the starting value and the colour of which indicated the growth rate. On each 

individual trial within a run, participants decided between waiting and selecting the option. 

When deciding to wait, the option’s reward increased based on its growth rate, towards a 

maximum of 500 points. Participants then moved to the next trial, making another wait-select 

decision. The unique starting value and growth rate combinations meant that different options 

reached the 500-point maximum after a different number of wait decisions. Once the reward 

maximum had been reached, continued wait decisions produced an exponential decline in the 

option’s reward value, forcing participants to carefully time each select decision to gain the 

maximum number of points. The timing for optimal selection could range from 3 to 16 trials 

into the run (mean=8, SD=3) and the run could last for a maximum of 16 trials. Critically, the 

visual appearance of the option on the screen remained the same throughout the trial run, 

despite changes in its underlying reward value following each wait decision. This meant that 

participants could not use sensory information to guide decision-making after the first trial, 

and instead needed to use latent information that had been computed internally, such as the 

option’s latent reward prospect. When deciding to select the option, participants earned its 

latent reward and the trial run ended. 

Participants had experience with options prior to starting the experiment, to learn the 

correspondence between growth rates and wedge colours. Each participant completed 240 

trial runs in the main task, averaging 1,660 individual wait-select decisions (SD=126). 61-

channel electroencephalograms recorded during decisions were used to conduct a series of 

cross-validated decoding and multi-stage representational similarity analyses (RSA), aiming 

to measure the neural encoding of latent reward information in the lead-up to option 

selection. The orthogonal manipulation of starting value and growth rate in the task made it 

possible to dissociate an option’s latent reward from potentially confounding variables in the 

neural analyses, such as how many trials had passed since the beginning of a run and how 

many trials remained until an option reached its maximum. 
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Decisions to select were influenced by starting value and growth rate 

 To assess participant choices, we ran a regression that tested whether the number of 

trials waited before selecting the option was influenced by starting value and growth rate 

(Figure 1C). The analysis revealed that select decisions showed significant sensitivity to both 

starting value (mean beta=-0.640, SD=0.101, p=8.164-27) and growth rate information (mean 

beta=-0.467, SD=0.127, p=8.655e-20). The direction of these relationships indicated higher 

starting values and growth rates predicted earlier decisions to select. Participants’ selection 

timing and optimal selection timing for each starting value-growth rate condition is visualised 

in Figures 1E-F. To summarise, our behavioural results indicate participant choices were 

influenced by the reward structure of the task. 

 

Decisions were biased towards early selection when options were slow to reach the 

maximum value 

Participants showed a bias to select options earlier than would be optimal for reward 

maximisation, especially in conditions which took longest to reach maximum value (Figures 

1G and 1H). To explore this effect, we ran a regression that examined whether the bias to 

select early grew as optimal selection times increased. This confirmed that participants 

tended to show larger bias to select early when an option required more trials to reach the 

maximum value of 500 points (mean beta=0.440, SD=0.193, Bonferroni-Holm (BH) 

corrected p=1.101e-13, correction applied for the two exploratory tests in this section). The 

bias to select early on slow trial runs resulted in a loss in points compared to the optimal 

selection timing. The reward loss could be predicted from the optimal selection times (mean 

beta=0.271, SD=0.131, BH corrected p=5.711e-13), indicating larger reward losses for items 

that were slower to reach the maximum value. 
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Figure 1. A-B: Task design. Participants were presented with an option that had a specific 

starting value (wedge size) and growth rate (colour). A: Participants could choose to let the 

option’s reward increase, by selecting the blank side of the screen during the response phase. 

The option reward was then updated by the growth rate and the participant performed another 

trial with the same item. Importantly, the same starting value and growth rate information 

were presented for each trial within a run, even though the underlying option reward was 

changing. B: Participants could choose to end the trial run by selecting the side of the screen 

with the option during the response phase. Participants then received the current option 

reward and started a new trial run, with a new option. Option rewards increased linearly up to 

their maximum value (500 points), after which value decayed exponentially if participants 

continued to make wait responses. Trial runs lasted up to a maximum of 16 trials. C: Option 

properties. Options could have one of eight starting values, ranging from 0-350 points. 

Starting value was indicated by the size of a wedge shown on screen (with wedge size 

oriented randomly on each trial run). The option could have one of five growth rates, which 

determined the increase in an option’s latent reward per wait response. Growth rates included 

35, 40, 50, 60 and 80 points per wait trial, which were selected to maximise variability in the 

optimal select trial from a starting value of 0. Two colours were used per growth rate for each 

participant, with different colour mappings used for different participants. D: Regression 

coefficients showing the influence of starting value and growth rate on the timing of option 

selection (trial on which the option was selected within the trial run). The lower middle and 

upper horizontal bars within each plot indicate the 25th percentile, the median and the 75th 

percentile respectively. Coloured circles within each box show the mean across participants 

and vertical lines extending from these circles show the standard error of mean. Vertical 

whiskers extending from each box indicate the most extreme upper and lower values within 

1.5 times the interquartile range. Values outside this were deemed outliers and are indicated 

with a + symbol. *** above each condition indicates regression coefficients are significantly 

different from zero at p<0.001. E-F: Summary of selection timing for each starting value-

growth rate combination. E: The optimal trial on which to select each option to get the 

maximum number of points. F: The median trial on which participants selected each option. 

G: The trial on which participants selected the option (y-axis) as a function of the optimal 

trial to select the option in order to gain maximum reward (x-axis). The black diagonal 

provides a reference line for an optimal agent and the purple line shows mean participant 

data. Shading around the purple line shows the standard error of mean. E-F: Summary of 

performance biases for each starting value-growth rate combination. H: The difference 

between the optimal and empirical selection timing (the action bias). I: The difference 

between the median number of points earned and the maximum number that could be earned 

(the reward loss). 

 

Starting value and growth rate were encoded in neural activity patterns 

 Having established that participant choices were sensitive to the reward structure of 

the task, we performed a series of decoding analyses to test whether task information was 

encoded in patterns of neural activity. Unless otherwise specified, decoding was conducted 

on the first three trials in a run, where almost all starting-value/growth-rate combinations 

(39/40) had not yet resulted in a decision to select under the optimal timing. The analyses 

balanced the number of trials from each condition when training the decoder and used 

repeated subsampling to ensure stability of the results (see Methods). We first found that 
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information related to the starting value of the choice item (the wedge size) could be decoded 

during the decision phase (0-800ms following trial onset) during the first three trials within 

the trial run (Figure 2A). Starting value decoding was numerically highest on the first trial 

within a run (mean beta=0.018, SD=0.020, t(31)=5.107, BH corrected p=4.739e-5) and 

decreased on the second (mean beta=0.010, SD=0.013, t(31)=4.412, BH corrected p=2.998e-

4) and third trials with the run (beta mean=0.008, SD=0.019, t(31)=2.304, BH corrected 

p=0.028). Despite this numerical reduction, we did not detect significant differences in the 

decoding strength for starting value related information between trial positions 1 and 2 

(t(31)=1.685, BH corrected p=0.240), positions 1 and 3 (t(31)=1.809, BH corrected p=0.240 

or positions 2 and 3 (t(31)=0.727, BH corrected p=0.472). When visualising the full time 

course from 0-2000ms during the first trial (Figure 2B), where starting value decoding was 

numerically strongest, we detected starting value information across most of the trial, from 

early in the decision phase into the response phase (window tested=0-2000ms, first 

significant cluster window=148-1108ms, cluster corrected p=3e-04; second cluster 

window=1140-1364ms, cluster corrected p=0.042; third cluster window=1680-2000ms, 

cluster corrected p=0.035). It is important to note that because starting value is coupled to the 

wedge size, these decoding results could reflect a combination of starting value and 

perceptual factors like shape and contrast, particularly in the early stimulus-evoked period of 

the trial (~100ms). It is equally important to note that separating these factors is not critical 

for the present study, in which the main aim was to decode latent reward information over 

time, while dissociating latent reward information from other task factors. 

 Unlike starting value, which was coupled to the wedge size, each growth rate 

corresponded to two wedge colours per participant. This meant we could use cross-decoding 

to dissociate growth rate encoding from perceptually-evoked responses by training the 

decoder on one colour set and testing it on the second colour set. Neural encoding of abstract 

growth rate information, independent of stimulus colour, was present during the decision 

phase on the first trial within a run (Figure 2C) (mean beta=0.011, SD=0.016, t(31)=3.701, 

BH corrected p=0.003). Significant growth rate encoding was not detected on the second 

(mean beta=0.001, SD=0.019, t(31)=0.375, BH corrected p>0.99) or third trial within a run 

second (mean beta=0.001, SD=0.022, t(31)=0.284, BH corrected p>0.99). We observed a 

numerical reduction in decoding strength following trial position 1, reflecting a strong trend 

towards reduced growth rate decoding between trial positions 1 and 2 (t(31)=2.484, BH 

corrected p=0.056) and positions 1 and 3 (t(31)=2.382, BH corrected p=0.056). No 

significant difference in growth rate decoding was observed between positions 2 and 3 
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(t(31)=0.027, BH corrected p=0.979). Visualising the full time course from 0-2000ms during 

the first trial (Figure 2D), growth rate decoding was evident from midway through the 

decision phase to the beginning of the response phase (window tested=0-2000ms, cluster 

window=320-1096ms, cluster corrected p=9e-4). 

 To summarise, information related to an option’s starting value (the wedge size) and 

abstract information about its growth rate were encoded in patterns of neural activity as 

participants performed the task. In addition, these task variables were most prominent 

numerically on the first trial within each trial run. 

 

 

Figure 2. Neural decoding of presented and latent variables. A: Average decoding strength 

for starting value information (wedge size) during the decision phase (0-800ms), on the first 

three trials within a run. B: Time course for starting value decoding for the first trial within a 

run (0-2000ms from trial onset). C-D: Abstract growth rate decoding, independent of 

stimulus colour due to cross-decoding across colour sets. C: Average decoding strength for 

abstract growth rate information during the decision phase (0-800ms), on the first three trials 

within a run. D: Time course for abstract growth rate decoding on the first trial within a run 
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(0-2000ms from trial onset). E: Average decoding strength for latent reward, which is the 

starting value plus the product of growth rate × trials waited so far in the run. This is shown 

during the decision phase (0-800ms) on the second and third trials in a run. Latent reward is 

not shown on trial one because it would be equivalent to starting value. F: Time course for 

latent reward decoding on the second trial within a run (0-2000ms). G: Average decoding 

strength for distance to goal information (i.e. the number of trials from the current trial to the 

optimal selection trial) during the decision phase (0-800ms), for the first three trials within a 

run. H: Time course for distance to goal decoding on the second trial within a run (0-2000ms 

from trial onset).  I-L: Multi-stage representational similarity analysis (RSA) of latent task 

variables. The cross-validated decoding in figures A-H does not control for the influence of 

other task variables, which could drive the decoding results. The multi-stage RSA in I-L 

regresses out neural activity related to other task variables, before decoding the variable of 

interest. This provides a measure of latent variable decoding, independent from other task 

variables. The pattern alignment measure refers to how much the neural dissimilarity matrix 

can be predicted from a model dissimilarity matrix that contains expected condition 

differences. I-J: Pattern alignment for latent reward encoding after starting value (wedge 

size), growth rate (colour) and distance to goal have been regressed out of the neural 

dissimilarity matrix obtained from the EEG signal. I: Average pattern alignment for latent 

reward encoding during the decision phase (0-800ms) for the second and third trials within a 

trial run. J: Pattern alignment time course for latent reward encoding on the second trial 

within a run (0-2000ms). K-L: Pattern alignment for goal distance encoding when starting 

value, growth rate and latent reward have been regressed out of the EEG signal. K: Average 

pattern alignment for distance to goal during the decision phase (0-800ms), for the first three 

trials within a run. L: Pattern alignment time course for distance to goal encoding on the 

second trial within a run (0-2000ms). A,C,E,G,I,K: The lower middle and upper horizontal 

bars within each box indicate the 25th percentile, the median and the 75th percentile 

respectively. Coloured circles within each box show the mean across participants and vertical 

lines extending from these circle show the standard error of mean. Vertical whiskers 

extending from each box indicate the most extreme upper and lower values within 1.5 times 

the interquartile range. Values outside this were deemed outliers and are indicated with a + 

symbol. Asterisk symbols above each condition indicate decoding coefficients are 

significantly different from zero at ***p<0.001, **p<0.01, *p<0.05. Asterisk symbols above 

a bar that bridges two conditions indicate a significant difference between conditions at 

***p<0.001, **p<0.01, *p<0.05. Asterisk symbols are based on Bonferroni-Holm (BH) 

corrected p-values. B,D,F,H,J,L: Vertical lines show onset of the decision phase, delay and 

response phase respectively. Shading in the decoding time courses show the standard error of 

mean. Solid coloured lines under time courses indicate when significant decoding is observed 

(cluster corrected p-values <0.05). 

 

Latent reward information was initially decodable from neural activity patterns 

 So far we have verified that the main task variables were encoded on the first trial of 

each run. However, either variable on its own is insufficient for participants to solve the task. 

Starting value and growth rate need to be integrated in order to determine when an option has 

reached its peak reward. We therefore investigated whether latent decision variables – which 

were purely internal and could be used to guide selection timing - were encoded in neural 

activity. One such variable is the option’s latent reward value, which changed from trial to 
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trial, and could be internally tracked towards its maximum using starting value and growth 

rate information (and elapsed time). On the first trial in the run, the latent reward was 

equivalent to starting value. We therefore focused on trials two and three, separating trials 

into 50-point latent reward bins for cross-validated decoding (see Latent Variables in 

Methods). Latent reward information was detected on the second trial within the run (Figure 

2E, mean beta=0.009, SD=0.015, t(31)=3.551, BH corrected p=0.003). Latent reward showed 

a significant decrease in decoding strength between trials two and three (t(31)=2.111, 

p=0.043), with no significant latent reward information detected on trial three (mean 

beta=6.560e-6, SD=0.016, t(31)=0.002, BH corrected p=0.998). When examining the full 

time course during trial two, where latent reward decoding was strongest, we observed a 

significant cluster at the start of the decision phase (Figure 2F, window tested=0-2000ms, 

first cluster window=296-548ms, cluster corrected p=0.0232; second cluster window=684-

932, cluster corrected p=0.031; third cluster window=1284-1648ms, cluster corrected 

p=0.009). To summarise, we found initial evidence that latent reward information could be 

decoded as early as the second trial.  

 

Distance to goal information was initially decodable from neural activity patterns 

Another latent variable that could be used to guide selection behaviour is the number 

of trials until the maximum number of points is reached, a variable we call the distance to 

goal. Distance to goal information could not be detected on the first trial in the run (Figure 

2G. mean beta=7.586e-4, SD=0.020, t(31)=0.213, BH corrected p=0.833). Following trial 

one, we observed a significant increase in distance to goal encoding (t(31)=-3.524, BH 

corrected p=0.004), with significant distance to goal information overall on trial two (mean 

beta=0.014, SD=0.020, t(31)=3.829, BH corrected p=0.002). This distance to goal 

information was encoded transiently, as indicated by a significant decrease between trials two 

and three within the run (t(31)=2.389, BH corrected p=0.046), with no detectable distance to 

goal information on trial three (mean beta=0.003, SD=0.019, t(31)=0.967, BH corrected 

p=0.682). No significant difference between trials one and three was detected (t(31)=-0.502, 

BH corrected p=0.619). When examining the full time course during the second trial (Figure 

2H), where distance to goal coding was present, distance to goal information was represented 

during most of the trial, from the decision phase into the response phase (window tested=0-

2000ms, cluster window=292-1728ms, cluster corrected p=1e-4). To summarise, we found 

that information about when to select the option for maximum reward could be initially 
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decoded on the second trial within a run, after information about the starting value and 

growth rate had been encoded on trial one. 

 

Latent reward could not be decoded when controlling for other task variables 

While latent reward and distance to goal information could be decoded in the separate 

analyses above, these variables were correlated because higher latent rewards meant 

participants were closer to the optimal trial to select (mean Spearman’s Rho=-0.851 for 

behavioural data on trial position 2). This means that the decoding analyses above could be 

sensitive to the same underlying information. To dissociate latent reward and distance to goal 

information, we performed multi-stage RSA. The logic behind this analysis was to first 

regress out multivariate activity related to extraneous task variables and then test whether 

information about a variable of interest could still be decoded from the neural signal (see 

Methods). This approach has the benefit of being able to use exact latent reward values rather 

than bins, using pairwise differences between condition labels as regressors in a multivariate 

regression. The correlation between latent reward and distance to goal information used in the 

analysis was reduced in the RSA setup (mean Spearman’s Rho=0.546 on trial 2). When 

controlling for the possible influence of starting value, growth rate and distance to goal using 

multi-stage RSA, latent reward information could not be detected on trial two (Figure 2I, 

mean beta=-0.001, SD=0.006, t(31)=-1.239, BH corrected p=0.449) or trial three (mean 

beta=4.170e-4, SD=0.014, t(31)=0.175, BH corrected p=0.862). There was no significant 

difference in latent reward decoding between trials two and three (t(31)=-0.584, p=0.563). 

When examining the full time course on trial two (Figure 2J), this control analysis did not 

detect any significant decoding clusters (window tested=0-2000ms, strongest candidate 

cluster=660-716ms, cluster corrected p=0.2381). To summarise, we found that when 

accounting for other task variables, latent reward information could no longer be decoded on 

trial 2 within the run. 

 

Distance to goal could be decoded when controlling for other task variables 

By contrast, when controlling for the possible influence of starting value, growth rate 

and latent reward, the multi-stage RSA did replicate the cross-validated decoding of distance 

to goal (Figure 2K). As with the decoding analysis, no distance to goal information was 

detected during the decision phase on the first trial within the run (mean beta=-0.010, 

SD=0.034, t(31)=-1.683, BH corrected p=0.205). On the second trial, however, distance to 

goal information that was independent from starting value, growth rate and latent reward, 
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could be detected (mean beta=0.013, SD=0.025, t(31)=2.919, BH corrected p=0.019). This 

information was transient, with no significant distance to goal information detected on trial 

three (mean beta=-8.393e-4, SD=0.032, t(31)=-0.151, BH corrected p=0.881). The distance 

to goal encoding seen on trial two was significantly higher than on trial one (t(31)=-3.290, 

BH corrected p=0.008), but no significant differences were detected between trials one and 

three (t(31)=-1.180, BH corrected p=0.247) or trials two and three (t(31)=1.752, BH 

corrected p=0.179). When examining the full time course on trial two (Figure 2L), we 

detected significant distance to goal coding that began in the decision phase and extended 

into the delay phase (window tested=0-2000ms, candidate cluster window=388-900ms, 

cluster corrected p=0.012). To summarise, distance to goal information, unlike latent reward, 

was encoded in neural activity even when information about other task variables was 

removed from the signal.   

 

Information about empirical selection timing was encoded in patterns of neural activity 

 So far we have shown that, early within the trial run, participants encoded information 

about when an option ought to be selected in the future. This distance to goal signal was 

encoded transiently on trial 2 but could not be decoded on the following trial. We speculated 

that this could arise if the neural response to a given condition starts out as a faithful 

reflection of the optimal distance to reach the maximum number of points. But since 

participants’ actual choices were suboptimal (Fig 1G-I), their selection plan might 

progressively reflect their actual selection timing rather than optimal selection timing, 

especially on trial runs that involve longer optimal wait times. In this scenario, decoding the 

actual selection behaviour might still be possible on later trials leading up to the choice. We 

therefore tested whether participants monitored the number of trials until their actual 

selection response, a variable we call the distance to select. This is distinct from the distance 

to goal because it represents when people made their actual selection response, rather than the 

optimal response for a given condition, and therefore accounts for suboptimal choice 

behaviour. To maximise power, these cross-validated decoding analyses pooled data from 

trial positions 3-6, using balanced trial numbers from each, and tested whether participants 

were 1, 2 or 3 trials away from making a select response. 

Distance to select information was encoded across trial positions 3-6 (Figure 3A), 

with a time course that gradually ramped up from the decision phase to the response phase 

(window tested=0-2000ms, cluster window=472-2000, cluster corrected p<1e-4). This effect 

was not due to differences in average reaction times (RTs) between the selection distances. 
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No significant differences in RT were detected between conditions used to train the decoder. 

This included RTs for selection distances of one (mean=487ms, SD=102) and two 

(mean=486ms, SD=102; t(31)=1.021, BH corrected p=0.532), one and three 

(mean=485,SD=104; t(31)=1.763, BH corrected p=0.263), as well as two and three 

(t(31)=1.133, BH corrected p=0.532). This effect was also not due to differences in the 

number of left and right button presses between conditions. A control analysis that 

additionally matched the number of left and right responses showed the same results (window 

tested=0-2000ms, cluster window=476-2000ms, cluster corrected p<1e-4). To test whether 

the effect could be driven by the trial before the select response being distinct from all other 

trials, we repeated the analysis, but only included trials with a distance to select of two or 

three. This confirmed that distance to select information was encoded prior to the trial before 

option selection (window tested=0-2000ms, first cluster window=212-456, cluster corrected 

p=0.040, second cluster window=1216-1452ms, cluster corrected p=0.040, third cluster 

window=1616-2000ms, cluster corrected p=0.012).  

These results suggest that participants performed a mental countdown to time their 

selection response. However, an alternative explanation could be that participants were 

counting down the number of points until the reward maximum was reached. This alternative 

would be consistent with latent reward tracking. To test this possibility, we ran a decoding 

analysis that examined whether participants were representing the difference in current 

reward and reward they would get upon selecting the option (the reward to select). The 

reward to select values were divided into 50-point bins starting from 0 and reward to select 

bins of 1-3 were used for the analysis (0-150 points away from the select response). We did 

not detect significant reward to select information during trial positions 3-6 (Figure 3B, 

window tested=0-2000ms, strongest candidate cluster=44-64ms, cluster corrected p=0.597). 

Having shown participants encoded the trials until their select response, we examined 

whether decisions to select were neurally distinct from decisions to wait (distance to select 0 

vs. 1). This revealed a strong select signal that began in the decision phase and became more 

distinct during the response phase (window tested=0-2000ms, cluster window=192-2000ms, 

cluster corrected p<1e-4).  

To summarise, we found evidence indicating that participants tracked the number of 

trials until their upcoming select response and that this result was not explained through latent 

reward monitoring. 
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Figure 3. Neural decoding of empirical selection timing. A: Decoding time course for the 

number of wait trials until a select response is made (the distance to select). B: Decoding 

time course for the difference between the options current latent reward and its latent reward 

when selected (the reward to select. C: Decoding time course for the decision to select versus 

the decision to wait on the previous trial. A,B,C: Vertical lines show onset of the decision 

phase, delay and response phase respectively. Shading around the principal line in the 

decoding time courses show the standard error of mean. Solid coloured lines under time 

courses indicate when significant decoding is observed (cluster corrected p-values <0.05). 

 

Relationship between neural activity and the timing of option selection 

 So far our neural decoding results point towards a time-oriented task strategy, in 

which participants evaluated when an option would become most valuable in the future and 

represented the number of time steps until their upcoming select decision. To understand the 

relationship between the neural coding results and the timing of option selection, we therefore 

sought to understand more about the strong bias to select options earlier than would be 

optimal, when options were slow to reach their maximum value (Figures 1G and 1H). We 

reasoned that this action bias could emerge for two distinct reasons. One reason would be that 

the participants discounted an option’s maximum reward based on the number of trials that 

would need to be waited. This would result in earlier selection because the lower subjective 

maximum would be reached sooner than the true maximum. A second reason would be that 

an option’s starting value or growth rate was misrepresented as being higher than its actual 

value. This would result in earlier selection because the latent reward estimate would become 

systematically higher than its true value with longer trial runs. When comparing the cross-

validated performance between models that could potentially account for the action bias (see 

Methods), we found that the model discounting an option’s maximum reward with a waiting 

cost made more accurate predictions about selection timing than models including a biased 

representation of the starting value (average difference in mean squared error (MSE)=-2.011; 

CIs=[-2.687 -1.483], BF10=6.131e4), a biased representation of the growth rate (average 
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difference in MSE=-0.164, CIs=[-0.277 -0.079], BF10=12.854) or both (average difference in 

MSE=-0.1341, CIs=[-2.498e5 -2.430e5], BF10=5.740). We also found the cost of waiting 

model did not reliably make more accurate predictions when additional free parameters were 

added to it, including a bias in the starting value (average difference in MSE=0.015, CIs=[-

0.039 0.068], BF10=0.215), a bias in the growth rate (average difference in MSE=-0.007, 

CIs=[-0.047 0.038], BF10=0.197) or both (average difference in MSE=0.030, CIs=[-269.353 -

259.400], BF10=0.242). 

 The cost of waiting model contained a single free parameter that reflected how much 

participants discounted an option’s reward prospect for the time that would need to be waited. 

A larger cost of waiting parameter meant that participants showed a stronger bias to select 

options early on slow trial runs. When comparing participants’ best fitting wait cost 

parameter with their neural data, we found a significant positive relationship between 

distance to goal encoding over the decision phase (0-800ms) in the second trial in the run and 

the cost of waiting parameter (Spearman’s Rho=0.526, BH corrected p=0.014), indicating 

that better distance to goal encoding was associated with a larger bias to switch early on slow 

trials. No correlations were detected between the cost of waiting parameter and the neural 

encoding of other task variables, including the starting value on trial 1 (Spearman’s Rho=-

0.200, BH corrected p=0.624), growth rate on trial 1 (Spearman’s Rho=-0.110, BH corrected 

p=0.549), latent reward on trial 2 (Spearman’s Rho=0.341, BH corrected p=0.227), distance 

to select across trials 3-6 (Spearman’s Rho=-0.228, BH corrected p=0.624) and select versus 

wait responses across trials 3-6 (Spearman’s Rho=-0.368, BH corrected p=0.194). To validate 

these correlation results in a model-free manner, we examined the relationship between the 

action bias (the behavioural bias to select earlier than the optimal selection trial) and neural 

encoding of distance to goal. Consistent with the results above, we found a significant 

relationship between the action bias and distance to goal encoding (Spearman’s Rho=0.471, 

BH corrected p=0.039) but not the remaining neural variables (max. Spearman’s Rho=0.373, 

min. BH corrected p=0.177). 
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Figure 4. A-C: Top three performing models of selection timing. A: A cost of waiting model, 

which includes a reward cost proportional to number of steps waited. B: A model that 

includes a cost of waiting as well as biased representations of the starting value and growth 

rate. C: A model that includes a cost of waiting and a biased representation of the growth 

rate. A-C: Each plot shows the number of trials participants waited before selecting the 

option (purple line) as a function of the optimal number of trials to wait before selecting the 

option. The black diagonal provides a reference line for an optimal agent. The remaining 

coloured line shows the cross-validated performance of the model fit to participant data. 

Shading around each coloured line shows the standard error of the mean. D: The difference in 

mean squared error (MSE) between a given model and the cost of waiting model. More 

negative values indicate worse model performance, relative to the cost of waiting model. The 

y-axis shows each model being compared to the costs of waiting model. The x-axis shows the 

difference in MSE. Mean differences across the sample are shown with dots enclosed in a 

black circle and 95% confidence intervals are shown with black lines extending from the 

sample means. MSE differences for individual participants are shown for the top competitor 

models as coloured dots and the remaining competitor models as grey dots. E: Correlation 

between the average distance to goal coding during the decision phase (0-800ms) and the cost 

of waiting parameter estimates. Black lines indicate linear fits to the data and grey lines 

indicate 95% confidence intervals of the fits. 
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Discussion 

The present study examined how people decide when to select a specific option as its 

reward changed over time, in the absence of direct sensory cues to indicate its changing 

value. We hypothesized that an option’s starting value and growth rate could be used to track 

the option’s latent reward over time, allowing the option to be selected when its reward 

reached a certain threshold. While starting value and growth rate were strong predictors of 

when an option would be selected, we did not find neural evidence consistent with latent 

reward tracking. Instead, we found neural evidence that people encoded option properties and 

used this information to evaluate when an option would reach its maximum value, far in 

advance of selecting it. This distance to goal information was present in the data even when 

controlling for the option’s latent reward but not vice versa. Following the distance to goal 

signal encoded early in a trial run (on trial 2), we observed patterns of neural activity 

indicating how many steps into the future the option would actually be selected (on trials 3-

6). These results provide evidence that people decided when to select the option in advance 

and monitored the time until their selection response, as opposed to actively tracking the 

option’s changing reward prospect. Computational modelling showed that selection 

behaviour could be captured with a model that discounted an option’s maximum reward 

based on the time needed for its maximum to be reached. The core parameter in this model 

showed a positive correlation with the neural encoding of distance to goal information. 

The present results add to recent studies examining when a specific option should be 

selected (Khalighinejad et al., 2020a, 2020b; Stoll et al., 2016). Research by Khalinghinejad 

and colleagues (2020a, 2020b) showed that recent task history is integrated with on-going 

sensory evidence about an option’s reward, to determine when it will be selected. Our results 

suggest that when on-going sensory evidence is unavailable and reward increases at a 

predictable rate, temporal predictions about when an option will become most valuable can 

be used to determine selection timing, circumventing the need to integrate changing reward 

information. The present results also build on findings from Stoll and colleagues (2016), who 

found a transient signal in the cingulate cortex encoding latent information about an option’s 

progress to a reward threshold. While Stoll et al.’s (2016) results raise the possibility that an 

option’s latent reward could be tracked over time to guide select decisions, we did not find 

evidence for latent reward tracking. There could be at least three explanations for this 

difference. First, while Stoll et al. (2016) used options with different growth rates, allowing 

latent reward progress and distance to goal to be the dissociated in principle, the analysis did 

not explicitly dissociate the two factors. The transient signal observed in Stoll et al. (2016) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437719doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437719
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

could therefore reflect distance to goal information, signaling how soon an option would 

reach the reward threshold. Second, while we used a multi-stage RSA procedure to dissociate 

the two factors, the variables were still closely related. This could have meant that latent 

reward was encoded in the neural signal but could not be detected after a large amount of 

correlated variance, which could also be captured with distance to goal, was removed. Third, 

different environmental constraints could promote different cognitive strategies. In Stoll et al. 

(2016), macaques did not know how long it would take for the option to reach the reward 

threshold when beginning a trial run and could check the option during the run to gain 

information. In our study, participants had all the information needed to determine when an 

option would become most valuable at the start of a run, which could have encouraged the 

use of distance to goal as a proxy for changing reward values. Future work could investigate 

whether latent reward tracking might be favoured when changes in reward are less reliable. 

For example, options that change growth rate at unpredictable times during a trial run could 

make it more difficult to use distance to goal information, which would need to be 

recomputed after each change in the growth rate.   

One interesting aspect of the results was that distance to goal information was 

detected transiently, appearing on trial 2 but not on trials 1 or 3. One speculative reason for 

this could be that most participants computed distance to goal information on trial 1 but at 

variable times across trial runs and across participants, making the decoding noisier. On trial 

3, distance to goal could have become more difficult to decode due to increasing variability in 

the encoding, as participants switched from thinking about the optimal selection timing to 

when they would actually select the option. While the distance to select decoding seen on 

trials 3-6 provides some evidence towards this, the reason distance to goal coding was so 

transient remains elusive. For example, it could also be that decoding became more difficult 

on trial 3 due to a general increase in signal noise further into a trial run, as participants 

became more distracted. A second interesting aspect was the strong bias to select early, when 

options were slow to reach their maximum reward. While unanticipated, this result is 

consistent with findings showing humans and macaques do not wait for options to reach their 

full expected value before selecting them (Khalighinejad et al., 2020a, 2020b), and that the 

probability of making a select response in general increases over trials in sequential tasks 

(Baumann et al., 2020). Our computational modelling results suggest that the bias could be 

explained by a temporal discounting process, in which an option’s subjective value was 

reduced with increasing wait times (see van den Bos & McClure, 2013). One aspect the 

modelling results do not clearly delineate is whether such discounting occurred at the start of 
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a trial run, when an option was first being evaluated, or whether it built up during the run, due 

to a declining ratio between the maximum reward and the cognitive effort involved in waiting 

longer (see Frömer et al., 2021; Kool & Botvinick, 2018; Shenhav et al. 2013; Westbrook et 

al., 2020; Yee & Braver, 2018). A final interesting aspect was that participants with stronger 

distance to goal encoding tended to show a stronger action bias, suggesting that those with 

more accurate predictions about peak reward timing selected slow options earlier. One 

speculative reason could be that while this has no benefit in a task with a fixed number of 

trials, it does have a benefit in open-ended environments, where decisions to select a slow 

option prematurely would give decision makers more time to encounter and exploit more 

valuable options. This proposal is consistent with findings that human choices to abandon 

options are sensitive to opportunity costs (Constantino & Daw, 2015) and that people show 

reduced cognitive control performance when opportunity costs are high (Otto & Daw, 2019).  

To conclude, we found that when option rewards followed reliable trajectories and 

there were no direct sensory changes to indicate changes in reward, people encoded the time 

when options would become most valuable in the future and monitored the number of actions 

until the point of selection. In contrast, we did not find evidence for independent neural 

coding of an option’s latent reward over time. These results suggest that, in structured 

environments where timing provides a useful proxy for changing reward, the human brain 

uses time-oriented encoding to make decisions about when to select an option. 
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Methods 

Participants 

 We set a target sample size of 32 participants based on previous M/EEG studies in our 

group (e.g. Hall-McMaster et al., 2019; Tankelevitch et al., 2020; Wolff et al., 2020). Five 

participants were excluded from the initial sample. One participant was excluded based on 

low behavioural performance, which fell more than three standard deviations below the mean 

percentage of points gained on the task (89.29%). Four participants were excluded based on 

excessive EEG artefacts, which lead to the rejection of more than 400 trials during pre-

processing (> 21.27-27.47% of trials depending on the participant). To meet the 32 

participant target, we therefore collected data from five additional participants. The final 

sample were between 18 and 35 (mean age=25, 19 female). All participants reported normal 

or corrected-to-normal vision (including normal colour vision) and no history of neurological 

or psychiatric illness. Participants received £10 per hour or course credit for taking part and 

could earn up to £20 extra for task performance. The study was approved by the Central 

University Research Ethics Committee at the University of Oxford (R58489/RE001) and all 

participants signed informed consent before taking part. 

Materials 

Stimuli were presented on a 24-inch screen with a spatial resolution of 1920 x 1080 

and refresh rate of 100Hz. Stimulus presentation was controlled using Psychophysics 

Toolbox-3 (RRID: SCR_002881) in MATLAB (RRID: SCR_001622, version R2015b). F 

and J keys on a standard QWERTY keyboard were used to record left and right hand 

responses. EEG data were recorded with 61 Ag/AgCl sintered electrodes (EasyCap, 

Herrsching, Germany), a NeuroScan SynAmps RT amplifier, and Curry 7 acquisition 

software (RRID: SCR_009546). Electrode impedance was reduced to <10 kΩ before 

recording. EEG data were pre-processed in EEGLAB (RRID: SCR_007292, version 14.1.1b) 

(Delorme & Makeig, 2004). Data were analysed in MATLAB (RRID: SCR_001622, version 

R2020a). Bonferroni-Holm corrections were implemented using David Groppe’s MATLAB 

toolbox (shorturl.at/mpqvV). Bayesian paired t-tested were implemented using Bart 

Krekelberg’s MATLAB toolbox (https://klabhub.github.io/bayesFactor/). Bonus items used 

to incentivise performance were created by icon developers Smashicons, Freepik, Flat Icons, 

Goodware, Pixel Buddha, Kiranshastry, Dimitry Miroliubov, Surang and accessed at 

www.freepik.com.  
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Experimental Design 

Participants performed a sequential decision-making task that required deciding when 

to select an option on screen, as its reward changed from trial to trial (Figure 1). There were 

two critical aspects to the task. First, each option had a starting value and a growth rate (the 

increase in reward per trial). These properties were varied independently, resulting in unique 

options that reached a 500-point reward maximum after a different number of trials. After 

reaching the 500-point maximum, the option reward began to decline, encouraging 

participants to select the option on the single trial when it was at maximum reward. Second, 

the visual appearance of the option remained the same from trial to trial, despite changes in 

its reward value. 

A single option was presented in each trial run. The option was a circle stimulus with 

an approximate visual angle of 3.79° (150x150 pixels), calculated based on an approximate 

viewing distance of 60cm. The option contained a coloured wedge, the size of which 

indicated its starting value and the colour of which indicated its growth rate. On each trial in 

the run, participants decided between waiting and selecting the option. The run continued 

until participants decided to select, up to a maximum of 16 trials. Each trial had three phases: 

a decision phase, where participants were instructed to decide whether to wait (allowing the 

option’s latent reward to update) or select the option (to gain the latent reward); a response 

phase, where participants made a manual response to indicate their choice; and a feedback 

phase. In the decision phase, the option was presented for 800ms on the left or right of the 

screen, with the centre of the option being presented at an approximate visual angle 3.16° 

(125 pixels) above and 3.16° to the left or right of the screen’s centre. The decision phase was 

followed by a 250ms blank delay. The response phase began with the presentation of a 

central fixation cross, with the option appearing randomly on the left or right of the screen. 

Participants were instructed to press the button on the side where the option was presented to 

select it (e.g. left button if the option was presented on the left) and to press the button on the 

opposite side to wait (e.g. left button if the option was presented on the right). Since the 

option appeared randomly on the left or right of the screen, independent of where it had been 

presented in the decision phase, participants were prevented from preparing a motor response 

prior to the response phase, allowing us to decouple decision and response information in the 

neural analyses. In the feedback phase, participants received 1 point for a wait response and 

the option’s latent reward for a select response (0-500 points). Feedback presentation lasted 

500ms. Each trial was followed by an inter-trial interval (ITI). Durations for each ITI in a run 
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were taken from a shuffled ITI vector. The vector contained 8 durations from 500-1200ms, 

which were spaced 100ms apart. The vector contained two repetitions of each duration. 

The reward associated with each option could grow to a maximum of 500 points. The 

reward was computed with the following linear function: 𝑟 = 𝑠 + 𝑔 (𝑡 − 1), where r is the 

reward, s is the starting value, g is the growth rate and t is the trial number within the run. 

Eight different starting values were used in the study (0, 50, 100, 150, 200, 250, 300, 350). 

On trial runs where the starting value was 0, a coloured wedge corresponding to 7.5 points 

was used so that participants could see the coloured wedge and determine the growth rate. 

Five different growth rates were used in the study (35, 40, 50, 60, 80). These were selected to 

maximize behavioural variability, producing an even spacing in optimal trial on which to 

selection the option (16, 14, 12, 10, 8 trial steps), when the option started from a value of 0 

points. Two colours were used per growth rate so that abstract growth rate information, 

independent of option colour, could be decoded from neural recordings. The mapping 

between colours and growth rates was also balanced across participants; participants were 

pseudo-randomly assigned to one of four colour-growth rate mappings, with approximately 

equal numbers of participants for each mapping. On trials where the updated option value 

exceeded 500 points, the option value was rounded down to the 500 maximum. The 

maximum amount that the 500 points would have been exceeded by a condition without 

rounding down was 70 points. If participants did not select the option on the trial where it 

reached its maximum, the reward associated with the option would begin an exponential 

decay given by the equation: 𝑟 = m(𝑒−𝛌𝑡) , where r is the reward, m is the maximum value 

of 500 points, e is Euler’s number, 𝛌 is a decay constant set at 0.5 and t is the number of trials 

elapsed since the option reached the 500-point maximum. This equation meant that each 

option had just one trial at maximum reward in a run. It was designed to be both distinct from 

the linear growth function above and the uniform across all conditions, so that participants 

could not gain information about an option through over-waiting and there would be a strong 

incentive for participants to end the run once the maximum was reached. To motivate 

participants to earn as many points as possible, every five percent of the maximum task 

points earned resulted in a bonus item being unlocked (such as a rocket ship, balloons or an 

electric guitar), each of which corresponded to additional £1 bonus payment. 

Participants completed a training sequence of 40 trial runs prior to the main 

experiment. If a participant scored below 70% or wished to do more practice, they completed 

an additional 40-80 trial runs. Eight participants completed 40 practice runs, twenty-one 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437719doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437719
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

participants completed 80 practice runs and one participant completed 120 practice runs. The 

main purpose of the practice was to learn the correspondence between the 10 colours and the 

five growth rates. To facilitate this, participants were presented with an on-screen colour 

legend during task practice, which indicated the colours for each growth rate. The colour 

legend was not presented during the main task. Before beginning the main experiment, 

participants performed a colour ranking task, in which they had to rank the colours on the 

basis of their growth rates (from 1=lowest growth rate to 5=highest growth rate). If any 

ranking was incorrect, the task practice was repeated; participants needed to score 100% on 

the ranking task before starting the main experiment. During EEG recording, participants 

performed 240 trial runs, with equal numbers of runs for each starting value/growth-rate 

combination. Equal number of runs were also performed using the two colours for each 

growth rate. As participants decided when to select the option during each trial run, different 

numbers of individual trials were recorded per participant. On average, we recorded 1660 

trials for each participant (min=1412, max=1898). 

EEG Pre-processing 

EEG data were down-sampled from 1000 to 250Hz and filtered using 40Hz low-pass 

and 0.01Hz high-pass filters. For each participant, channels with excessive noise were 

identified by visual inspection and replaced via interpolation, using a weighted average of the 

surrounding electrodes. Data were then re-referenced by subtracting the mean activation 

across all electrodes from each individual electrode at each time point. Data were divided into 

epochs from -1 to +5 seconds from the first option onset of each trial. Epochs containing 

artefacts (such as muscle activity) were rejected based on visual inspection. Data were then 

subjected to an Independent Component Analysis. Structured noise components, such as eye 

blinks, were removed, resulting in the data set used for subsequent analyses.  

Behavioural Analyses 

 To test whether selection timing was sensitive to task variables, we used linear 

regression. We first tested whether starting value and growth rate could be used to trial on 

which the option was selected within the run. This used the following equation to estimate 

one beta per predictor for each participant: 𝑡 = 𝛽0 + 𝛽1𝑠 + 𝛽2
1

𝑔
+  𝜀, in which t is the trial 

where the option is selected, 𝛽0 is a constant, s is the starting value, g is the growth rate and 𝜀 

is the residual error. The 
1

𝑔
 in this expression arises from the fact that the reward, 𝑟 = 𝑠 +

 𝑔(𝑡 − 1).  This in turn means that the trial on which an option reaches maximum reward, 
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𝑟𝑚𝑎𝑥, can be calculated as: 𝑡 =
𝑟𝑚𝑎𝑥−𝑠

𝑔
+ 1. While appropriate due to the reward dynamics in 

this task,  
1

𝑔
 has the effect of inverting growth rate values in the regression. This means that 

higher growth rates are represented with lower numbers. We therefore multiplied the 

subsequent 𝛽2 estimates by -1, to correctly interpret the direction of the effect. Once one beta 

had been estimated per predictor for each participant, the 32 participant betas for starting 

value and the 32 participant betas for growth rate were tested against zero in separate two-

tailed t-tests. In further exploratory analyses, we found that participants tended to select 

options earlier than would be optimal for the slowest trial runs (i.e. those that took the most 

trials to reach maximum reward). We use the term action bias to refer to this tendency to 

select earlier than would be optimal for reward maximisation. The action bias was computed 

by subtracting the optimal trial to select the option within the run from the empirical trial on 

which the option was selected. The vector was then multiplied by -1 to convert the action bias 

to a positive scale. The following regression equation was used for the action bias analysis: 

𝑏 = 𝛽0 + 𝛽1𝑡 + 𝜀, where b is the action bias, 𝛽0 is a constant, t is the optimal to trial on 

which to select the option to gain maximum points and 𝜀 is the residual error. The resulting 

32 participant 𝛽1 estimates were tested against zero using a two-tailed t-test. Using a similar 

approach, we explored whether the amount of reward lost on each trial run could be predicted 

from the optimal number of trials to wait for each condition. The reward loss was computed 

by subtracting the amount of reward earned on each run from the total reward possible on that 

run. The total reward possible was the 500-point maximum plus one point for each wait 

decision needed to reach the optimal selection time. The reward loss vector was then 

multiplied by -1 to convert it to a positive scale. The following regression equation was used 

for the reward loss analysis: 𝑙 = 𝛽0 + 𝛽1𝑡 + 𝜀, where l is the reward loss, 𝛽0 is a constant, t is 

the optimal to trial on which to select the option to gain maximum points and 𝜀 is the residual 

error. The resulting 32 participant 𝛽1 estimates were tested against zero using a two tailed t-

test. Trial runs in which a select response was not made within 16 trials were excluded from 

all behavioural analyses. Dependent and independent variables were z-scored prior to running 

all regressions. Exploratory analyses were corrected for multiple comparisons using the 

Bonferroni-Holm correction (Holm, 1979). The correction was applied within each analysis. 

For the one exploratory comparison between starting value and growth rate regressors, the 

alpha threshold was unchanged. For the action bias and reward loss exploratory analyses 

(which both used the optimal trials to wait as a predictor), the alpha threshold was corrected 

for two exploratory tests.  
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EEG Analyses 

We conducted a series of multivariate EEG analyses to understand the neural 

processes underpinning task performance. The analyses aimed to identify EEG signals that 

tracked three sets of task variables: (1) externally presented variables (starting value and 

growth rate), (2) internally represented variables (distance to goal and latent reward) and (3) 

action variables (distance to select, latent reward to select and select versus wait response). 

We predicted that participants would track an option’s latent reward and use this information 

to decide when to select the option, a strategy that would be reflected as strong latent reward 

encoding. 

Cross-validated neural decoding 

To test the encoding of each task variable, we used a cross-validated decoding 

approach. We will describe the approach in general terms first and provide details about the 

specific analyses in subsections below. To decode a specific task variable, we selected data 

from the relevant trial (e.g. trial 1 within the run). Trials that involved a select response or no 

response were excluded. Data were baselined from 250ms to 50ms before trial onset and 

channel demeaned prior to all analyses. The analysis then ran through a series of train and 

test folds. In each fold, a maximum of one trial per condition was held out as test data. As an 

example, the test trials for one starting value fold could contain a total of 8 trials with one 

trial for each starting value. The remaining trials were used as the training data for that fold. 

The number of trials for each condition was balanced in the training fold by selecting a 

random subsample of non-test trials for each condition. The number of trials in each random 

subsample was one trial less than the lowest number of trials across the conditions, for trial 

positions 1-3. Analyses primarily focused on trial positions 1-3 because these were trials in 

which the majority of conditions (39/40) had not yet resulted in a decision to select, under the 

optimal selection timing. Balancing the trial numbers across conditions and trial positions 

meant the decoder would not be biased towards a particular condition and that decoding 

results could be compared between trial positions.  

Once the training data and test data were organised for a fold, the training trials were 

averaged for each condition. This produced a channels x time matrix that reflected the mean 

scalp topography for each condition. Each held out test trial was then compared to the 

average topographies. To make this comparison, Mahalanobis distances (MDs) were 

calculated at each time point between the test trial (a vector of 61 channel values) and each 

condition mean (each a vector of 61 channel values). We selected the MD to measure 

decoding because it explicitly accounts for covariance structure in the data. This makes it 
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well suited to EEG data, where channel values tend to be highly correlated. The MD between 

the test vector (pattern A) and a condition vector (pattern B) was computed as: 𝑀𝐷𝐴𝐵 =

√(𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐴 − 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐵)𝑇 × 𝐶𝑜𝑣−1(𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐴 − 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐵), where Pattern A-Pattern 

B is the difference between topographies, T is the transpose and Cov-1 is the inverse of the 

channel covariance matrix. The channel covariance matrix was estimated using within-

condition error, meaning that trials were condition demeaned prior to estimating the 

covariance (Walther et al., 2016). The channel covariance estimate also included a shrinkage 

estimator (Ledoit & Wolf, 2004), which downweights noisy covariance estimates. 

 Once MDs had been computed between each test trial in a fold and the condition 

averages, the MDs for each trial were then entered into a regression. The MDs were used as 

the dependent variable and a vector of predicted condition distances were used as the 

independent variable. The predicted distance vector assumed a linear increase in MD for 

more dissimilar conditions. For example, a test trial with a starting value of 0 would have a 

distance vector of [0,1,2,3,4,5,6,7], indicating there is no expected difference between the test 

trial and the condition mean for a starting value of 0, but a maximal difference between the 

test trial and the condition mean for a starting value of 350. Both dependent and independent 

variables were z-scored prior to running the regression, which was performed at each time 

point. Once this regression procedure had been completed for each test trial in the fold, the 

next analysis fold began, using a new set of test trials. This process continued until all trials 

had been used as a test trial once, resulting in a trials x time matrix of regression coefficients 

(betas). To ensure the beta estimates were robust, the entire analysis procedure was repeated 

50 times, with eligible data being randomly assigned to different folds on different 

repetitions. The betas were then averaged over these repetitions and over trials, providing a 

time course of beta that we interpret as neural coding of a given task variable. Once this 

process was completed for trial position 1 data, it was applied to data from trial positions 2 

and 3. 

To assess significant decoding of a task variable, beta estimates for each trial position 

were averaged over the decision phase, from trial onset (0s) to the offset of the option 

stimulus (800ms) and tested against 0 using two-tailed t-tests, with Bonferroni-Holm (BH) 

adjusted alpha thresholds to correct for the three trial positions (Holm, 1979). To test 

differences in decoding between trial positions, the beta averages were compared for each 

pair of trial positions (i.e. 1 vs 2, 1 vs 3, 2 vs 3) using two-tailed t-tests, with adjusted alpha 

thresholds to correct for three between-position tests (Holm, 1979). When examining the 
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decoding time course for a task variable, trial numbers were matched across conditions 

during the analysis but not across trial positions to increase power. Time courses were 

smoothed with a 20ms Gaussian kernel prior to non-parametric cluster-based permutation 

testing, which was used to correct for multiple comparisons (Maris & Oostenveld, 2007; 

Sassenhagen & Draschkow, 2019). 

 Presented variables. 

Starting value. When decoding information related to the starting value of the choice 

item (i.e. the arc length), there were 8 possible starting value conditions (0, 50, 100, 150, 200, 

250, 300 and 350). For time-averaged analyses, where trial numbers were balanced across the 

conditions and trial positions, the average number of trials per condition across participants 

was 19.5 with a standard deviation of 2.94. When examining the time course at trial position 

1, where starting value coding was strongest, matching trial numbers at trial position resulted 

in a mean of 25.7 trials per condition and a standard deviation of 2.46. 

Growth rate. When decoding abstract growth rate information, the analysis was 

adjusted to leverage the fact that there were two colours per growth rate. This allowed us to 

decode abstract growth rate information that could not be attributed to the colour of the 

option. Trials using the first colour set were assigned to data split A and trials using the 

second colour set were assigned to data split B. We then maintained a strict separation 

between data splits A and B in our decoding analyses. Data split A was only used as training 

data and data split B was only used as test data (and vice versa). There were 5 possible 

growth rate conditions (35, 40, 50, 60, 80). The regression for each test trial therefore used a 

vector of predicted condition differences that had 5 values as the independent variable. For 

time-averaged analyses, where trial numbers were balanced across conditions, trial positions 

and colour set, the average number of trials per condition across participants was 17.4 with a 

standard deviation of 1.29. When examining the time course at trial position 1, where growth 

rate coding was strongest, matching trial numbers for each growth rate resulted in a mean of 

19.9 trials per condition and a standard deviation of 2.05. 

 Latent variables. 

Latent reward. For latent reward decoding, data were separated into 50-point bins, 

starting from 0 points (bin 1=0-49 points, bin 2=50-99 points, bin 3=100-149 points, bin 

4=150-199 points, bin 5=200-249 points, bin 6=250-299 points, bin 7=300-349 points, bin 

8=350-399 points, bin 9=400-449, bin 10=450-500 points). To make the analysis comparable 

with our analysis of distance to goal (described next), we used a sliding range of 6 latent 

reward bins (bins 4-9 at trial position 2 and 5-10 at trial position 3) that corresponded 
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approximately to the goal distances used in distance to goal decoding. Note that at trial 

position 1, the reward value of the choice item is the starting value. The item’s latent reward 

value only differs from starting value after trial 1, which is why this analysis only considers 

trials 2 and 3. Statistical tests were accordingly corrected for two comparisons (Holm, 1979). 

For time-averaged analyses, where trial numbers were balanced across bins and trial 

positions, the average trials per condition was 21.4, with a standard deviation of 1.77. The 

vector of predicted conditions differences used in the regression was based on the difference 

in reward bin number. When examining the time course at trial position two, the average 

number of trials per condition was 21.9, with a standard deviation of 1.73. 

Distance to goal. This task variable refers to how many trials away the participant is 

from the optimal trial to select the option. When decoding distance to goal information, trials 

were therefore sorted by the difference between the current trial and the optimal trial to select 

the option. The analysis used a sliding range of distance to goal conditions at each trial 

position (trial position 1 = goal distances 3-8, trial position 2 = goal distances 2-7, trial 

position 3 = goal distances 1-6). The sliding range aimed to maintain the same future 

selection trials in the analysis at each trial position. At trial position 1, the optimal trials to 

select spanned from trial 4 to trial 9 within the run. Sliding the goal distances meant this was 

also true at trial positions 2 and 3. This ensured that differences in decoding between trial 

positions were not due to differences in starting value, growth rate or the optimal trial to 

select, because these factors were consistent across positions. The choice of which goal 

distances to use aimed to balance a trade-off between data quality, in which behaviour was 

increasingly suboptimal further into a trial run (Figure 1G), and power for the regressions 

between each test trial’s Mahalanobis distances and the vector of expected condition 

distances. Using more goal distances would increase the number of points for these 

regressions but it would also include more trial runs in which selection behaviour was 

increasingly suboptimal. While we aimed to balance this trade-off, the choice of goal 

distances was still somewhat arbitrary. This made it important to replicate the distance to goal 

coding results in the more carefully controlled RSA analyses (described below). When 

balancing all trial numbers across the conditions and trial positions, the average number of 

trials per condition across participants was 11.3488 with a standard deviation of 3.1172. 

When examining the time course at trial position 2, where distance to goal coding was 

strongest, matching trial numbers across distance to goal conditions resulted in a mean of 

16.7188 trials per condition and a standard deviation of 1.0234. 
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Action variables. The previous analyses were performed separately at each trial 

position. When decoding action variables, trials were pooled across trial positions 3-6 and 

entered into a single analysis to boost power. The increased trial numbers allowed us to do 

10-fold cross-validation, as opposed to the more cumbersome process of holding out 1 trial 

per condition for each test set in the analyses above. The trials in non-test folds were used as 

training data. The number of trials from each condition and each trial position were balanced 

in the training set by taking random subsamples from the non-test folds. To avoid potential 

RT differences between conditions affecting the decoding results, RTs for each condition in 

the training set were statistically compared using paired two-tail t-tests. The alpha threshold 

was adjusted to correct for multiple comparisons using the Bonferroni-Holm correction 

(Holm, 1979). If two conditions had significantly different RTs, a new random subsample 

was selected from the available training trials until no significant differences between 

condition RTs were detected. Only then was the analysis permitted to proceed with 

calculating multivariate distances between training and test trials. As with previous analyses, 

we repeated the analysis 50 times and averaged the outputs to ensure stability of the decoding 

results. 

Distance to select. The distance to select refers to the number of trials between the 

current trial and the trial where a select response is made. For this analysis, select distances of 

1-3 were used as conditions. To control for the possibility that the trial immediately before 

the decision to select was distinct from all other trials prior to the decision to select, we ran a 

control analysis that only included select distances of 2 and 3. To control for the possibility 

that our decoding results were driven by different numbers of left and right handed responses, 

we ran a second control analysis for select distances 1-3, in which we additionally balanced 

the number of left/right button presses.  

Reward to select. The reward to select refers to the difference in latent reward on the 

current trial and the latent reward when the select response is made. We calculated this 

difference for each trial in each run. The reward to select values were then separated into 50-

point bins (bin 1=0-49 points, bin 2=50-99 points, bin 3=100-149 points). Reward to select 

bins of 1-3 were used as conditions in the analysis.  

Wait vs select. This was same as the distance to select procedure, decoding select 

trials vs the previous wait trial (i.e. distance to select 0 vs. distance to select 1). 

Representational Similarity Analysis 

We used RSA (Kriegeskorte et al., 2008) to control for the possible influence of 

extraneous task variables when decoding distance to goal and latent reward. The logic of this 
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approach was to regress out neural coding of starting value, growth rate and latent reward 

information, before testing for distance to goal coding. In a similar manner, we wished to 

regress out neural coding starting value, growth rate and distance to goal, before testing for 

latent reward coding. If decoding is still significant for the variable of interest after removing 

the influence of other task variables, this confirms that our earlier cross-validated decoding 

result is not being driven by correlations between task variables. If decoding for a variable of 

interest is no longer significant, it indicates that our earlier cross-validated decoding result 

could have been driven by another task variable.   

We first focused on the analysis of data from trial position 1. We iterated through 

each starting value-growth rate-colour set combination, yielding 80 conditions in total (8 

starting values × 5 growth rates × 2 colour sets). The 80 conditions were repeated 3 times 

each in the experiment. However, a condition could have less than 3 trials available for 

analysis at a given trial position due to trials being rejected during pre-processing or due to 

trials containing a select response. To ensure balanced trial numbers in the RSA, we included 

conditions with all 3 available trials at a given trial position. This resulted in 15/80 conditions 

being excluded on average at trial position 2, where latent reward and distance to goal were 

detected in earlier decoding analyses. No significant differences were found between the 

excluded and included conditions on trial 2, based on mean starting value (t(31)=-0.508, 

p=0.615) or mean growth rate (t(31)=-1.015, p=0.318). For each eligible condition, we 

averaged over trials to get the mean scalp topography at each time point. MDs between each 

pair of conditions were computed at each time point, resulting in a participant-specific 

representational dissimilarity matrix (RDM) for each time point. Next, we constructed a set 

of model dissimilarity matrices to reflect the expected dissimilarity structure based on 

different task variables. Model matrices were calculated by computing the difference between 

each condition pair of a given task variable (starting value, growth rate, distance to goal, 

latent reward, colour set used to indicate the growth rate). Note that unlike the decoding 

analyses, here the latent reward model was not based on the difference in reward bins but the 

exact difference in latent reward between conditions.  

The first stage regression aimed to remove information that was extraneous to the 

variable of interest from the data RDMs at each time point. When examining latent reward as 

a variable of interest, model RDMs for the extraneous variables (starting value, growth rate 

distance to goal, number of trials used to compute the condition average, growth rate colour 

set), and the data RDM were transformed into vectors and z-scored. For each time point, the 

data RDM was used as the dependent variable and model RDMs for the extraneous variables 
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above were used as independent variables in a multiple regression, which included a constant 

regressor. In a second stage regression, the residual variance from the first stage was used as 

the dependent variable latent reward RDM (transformed into a vector and z-scored) was used 

as the independent variable. This resulted in a time course of regression coefficients (betas) 

for latent reward coding that did not reflect a linear influence of the extraneous variables 

above. The analysis procedure was repeated for trial positions 2 and 3. The procedure was the 

same when distance to goal was the variable of interest, except that the distance to goal 

model RDM was used as the independent variable during the second stage regression and the 

latent reward model RDM was included as an extraneous variable in the first stage 

regression. Like the cross-validated decoding analysis, latent reward coding was only tested 

for trial positions 2 and 3 because latent reward and starting value were indistinguishable for 

trial position 1. Statistical assessment of the decoding strength was tested in the same way as 

cross-validated decoding analyses. Beta coefficients for the variable of interest were averaged 

over the decision phase (0-800ms).  

Relationships between task performance and neural coding 

 Models of selection timing. To provide broad insights about the cognitive strategy 

used to guide selection behaviour, we performed an exploratory cross-validated model fitting 

analysis. The aim of this analysis was to arbitrate between high-level explanations for 

participants’ bias to select early on long trial runs. We reasoned that early selection could 

arise for two broad reasons. First, participants could assign subjective cost to the number of 

steps waited, which would reduce the maximum reward that could be gained on a trial run. 

This lower subjective maximum would be reached sooner than the true maximum and 

thereby result in earlier selection. Second, participants could have a biased representation of 

the starting value or growth rate, either of which would result in an inaccurate estimate of the 

latent reward on each trial. Such a bias would have a compounding effect on the latent reward 

estimate, resulting in more inaccurate reward estimates as more trials are waited. This in turn 

would result in an increasing bias to select early as the optimal selection time increased.  

 To test these broad accounts, we created a series of different models. Each model was 

based on the fact that the task’s reward dynamics followed the equation: 𝑟 = 𝑠 + 𝑔(𝑡 − 1), 

where r is the reward, g is the growth rate and t is the current trial within the run. This meant 

that the optimal trial on which to select the option, 𝑡∗, could be expressed as: 𝑡∗ =
𝑟𝑚𝑎𝑥− 𝑠

𝑔
 + 

1, where 𝑟𝑚𝑎𝑥 is 500 points. To create the cost of waiting model, we added a hyperbolic delay 

discounting factor to the maximum reward (see van den Bos & McClure, 2013) resulting 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437719doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437719
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

in: 
𝑟𝑚𝑎𝑥

[1+𝑤(𝑡∗−1)]
= 𝑠 + 𝑔(𝑡∗ − 1), where w is a free parameter for the cost of waiting. This 

equation can in turn be rearranged into the form: 𝑔𝑤𝑛2 + (𝑔 + 𝑠𝑤)𝑛 + (𝑠 − 𝑟𝑚𝑎𝑥) = 0, 

where n = 𝑡∗- 1. The equation can then be solved for n using the quadratic formula: 𝑛 =

−(𝑔+𝑠𝑤) ± √(𝑔+𝑠𝑤)2−4𝑔𝑤(𝑠−𝑟𝑚𝑎𝑥)

2𝑔𝑤
, after which 𝑡∗ is calculated as 𝑡∗= n + 1. The biased starting 

value model was formulated as: 𝑡∗ =
𝑟𝑚𝑎𝑥− 𝑠𝑏

𝑔
 + 1, where b is a free parameter for the starting 

value bias. The biased growth rate bias model was formulated as: 𝑡∗ =
𝑟𝑚𝑎𝑥− 𝑠

𝑔𝑏
 + 1, where b is 

a free parameter for the growth rate bias. An exponential bias was used in these models, as 

opposed to a multiplicative or additive bias, to account for the non-linear bias observed in 

empirical selection times (Figure 1G). We also created models with each pairwise 

combination of the free parameters (wait cost, starting bias, growth bias) and one model with 

all three free parameters. 

 The performance of each model was evaluated in a cross-validation procedure. For 

each participant, data were randomly divided into 10 folds. On each iteration of the analysis, 

one fold was held out as test data and the remaining folds were used as training data. The best 

fitting values of the free parameter/s in a model were selected by minimising the sum of the 

squared error. The minimum and maximum possible parameter values for the waiting cost 

parameter were constrained to 0 and +30. For the starting value and growth rate bias 

parameters, these were 0 and +5. The best fitting parameter values were then used in each 

model equation, to predict the trials waited until a selection response was made in each of the 

held out test runs. The model predictions were rounded up to the nearest integer to account 

for trials being discrete units. The model was then scored for that test fold by calculating the 

mean squared error (MSE) between the predicted trials waited and the actual trials waited. 

This process was repeated until each model had a MSE score for each test fold. The 

procedure was repeated 50 times with random subsamples of trials in each fold to ensure 

stable results. Within each subsample, the different models were trained and tested on the 

same trials to provide a fair comparison of performance. Scores were then averaged across 

the test folds and the subsamples. For each participant, we next calculated the difference in 

MSE between each model and the cost of waiting model. Once we had an MSE difference 

score for each model for each participant, we calculated bootstrapped 95% confidence 

intervals for the mean difference in MSE. The differences in MSE were assessed using 

Bayesian paired t-tests, to quantify the strength of evidence that the wait cost model had 

lower error than the other models. When examining the predictions of the three best models 
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against the optimal selection model (Figure 4A-C), we added 1 to both the predicted number 

of trials waited and the actual number of trials waited, thereby examining the model and 

participant data in terms of the trial on which the option was selected. 

 Relationship between neural coding and model parameters. The model parameters 

for the cost of waiting model were averaged over the test folds. These values were then 

entered into a series of Spearman correlations with the decoding strength of different task 

variables, taken from the cross-validated decoding analyses described above. These task 

variables included the decoding strength, averaged over the decision phase (0-800ms), for the 

starting value on trial 1, growth rate on trial 1, distance to goal on trial 2 and latent reward on 

trial 2. The task variables also included the decoding strength, averaged over the response 

phase (1050-2000ms), for the distance to select and wait versus select decoding. The alpha 

threshold was adjusted for 6 exploratory tests using the Bonferroni-Holm correction (Holm, 

1979). Correlations between these model parameters and the neural data could potentially 

provide converging evidence for a cost of waiting account. Specifically, we reasoned that if 

the cost of waiting parameters reflected a subjective waiting cost, they should correlate with a 

decision variable needed to evaluate when a select response should be made, such as distance 

to goal information. To validate the correlation results in a model-free manner, we repeated 

the correlations but substituted the cost of waiting parameter for each participant with their 

average action bias (the average number of trials earlier participants selected the option than 

the optimal linear model).  
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Diversity Statement 

Here we report the predicted gender and ethnicity of authors in our reference list (Ambekar et 

al., 2009; Bertolero et al., 2020; Dworkin et al., 2020; Sood et al., 2018; Zhou et al., 2020). 

First, we obtained the predicted gender of the first and last author of each reference by using 

databases that store the probability of a first name being carried by a woman. By this measure 

(and excluding self-citations to the first and last authors of our current paper), our references 

contain 3.45% woman(first)/woman(last), 3.45% man/woman, 24.14% woman/man, and 

68.97% man/man. This method is limited in that a) names, pronouns, and social media 

profiles used to construct the databases may not, in every case, be indicative of gender 

identity and b) it cannot account for intersex, non-binary, or transgender people. Second, we 
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obtained the predicted ethnicity of the first and last author of each reference by databases that 

store the probability of a first and last name being carried by an author of colour. By this 

measure (and excluding self-citations), our references contain 2.95% author of 

colour(first)/author of colour(last), 13.02% white author/author of colour, 21.45% author of 

colour/white author, and 62.58% white author/white author. This method is limited in that a) 

names and Florida Voter Data to make the predictions may not be indicative of ethnicity, and 

b) it cannot account for Indigenous and mixed-race authors, or those who may face 

differential biases due to the ambiguous ethnicisation of their names.  
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