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Editorial 

Current topics in Computational Cognitive Neuroscience 

1. Editorial 

Computational Cognitive Neuroscience is a discipline at the inter
section of psychology, neuroscience and artificial intelligence. At its 
core is the development and comparison of computational models that 
allow the prediction of behavior, cognition and brain activity, with the 
long-term goal of providing a neurophysiologically plausible charac
terization of the underlying brain structure or function (Ashby and 
Helie, 2011; Kriegeskorte and Douglas, 2018; Love, 2015; O’Reilly and 
Munakata, 2000). Fueled by recent developments with machine 
learning techniques that solve cognitive tasks such as object recognition, 
decision making, or language processing (Krizhevsky et al., 2012; 
Mikolov et al., 2013; Mnih et al., 2015), computational cognitive neu
roscientists have started to link these artificial intelligence approaches 
to neural processes (Huth et al., 2016; Stachenfeld et al., 2017; Yamins 
et al., 2014). This, in turn, has led to applications of computational 
modeling in neuroscience that have become increasingly sophisticated. 
Today, the field is moving fast, and hardly a year goes by without dis
coveries that seem like a true expansion of our horizon. These exciting 
developments motivated us to bring to life this Special Issue on 
Computational Cognitive Neuroscience. 

Rapid developments in research, however, do not come without 
challenges. Not only is building useful models hard, new models also 
require experimental designs well-suited for these models (Görgen et al., 
2018) and often warrant novel methods of data analysis. Apart from 
model development and experimental design, another challenge is how 
to connect the data produced by model simulations with the empirical 
data observed in experiments. One problem arises because model pre
dictions often don’t capture the details of the data-generating process. 
For example, it is unclear how a latent cognitive variable (e.g. prediction 
error) is exactly translated to measured magnetoencephalography re
cordings that offer high temporal but low spatial resolution, or func
tional MRI responses that offer high spatial but low temporal resolution. 
How can we relate model predictions and the different forms of 
measured data points? One approach to this challenge lies in finding 
new data analytical techniques that allow us to compare models and 
data on a more abstracted level. A prime example is model-based 
MEG-fMRI fusion based on representational similarity analysis (Hebart 
et al., 2018; Cichy; Oliva, 2020), which focuses on the predicted simi
larity between measurement modalities rather than the actual activation 
patterns, while being able to incorporate assumptions about latent 
model variables. 

This Special Issue mirrors these challenges and reflects recent ad
vances not only in model development, but also in the accompanying 
data analysis and experimentation tools. The articles included in this 

issue therefore highlight the progress in the development of advanced 
statistical analysis techniques and computational modeling approaches 
in the cognitive neurosciences. The reviews and original research arti
cles demonstrate how progress in methodology and theory has often 
interacted in a synergistic manner. Further, advances in the statistical 
analysis of neuroimaging data (e.g. multivariate decoding) have 
broadened the spectrum of testable experimental hypotheses, and 
conversely, pressing theoretical questions have led to important meth
odological developments. These developments include encoding models 
that allow inferring the presence of navigation-related directional tun
ing in neuronal populations (Nau et al., 2020), or MEG and fMRI tech
niques that investigate fast neural sequences called replay (Kurth-Nelson 
et al., 2016; Schuck; Niv, 2019), to name just a few. With a focus on this 
interrelation, this issue aims at bringing together articles that advance 
our understanding of analysis techniques of neuroimaging data and 
studies using theory-driven computational modeling to test specific 
hypotheses using neuroimaging and behavioral data. 

Two important families of models discussed in the field of Compu
tational Cognitive Neuroscience are (1) sequential sampling models that 
have been central to our understanding of the mechanisms of decision- 
making in brain and behavior, as well as (2) reinforcement learning 
models for understanding how previous interactions between agents and 
the environment affect future behavior. Miletic and colleagues (Miletić 
et al., 2020) review theoretical work and empirical evidence on how 
these model families can be combined effectively to better account for 
choice behavior, response times, and brain responses. Another inter
esting phenomenon in the field is that while many laboratories may 
work on somewhat related topics, this can lead to several models that 
account for behavior in different tasks, each offering a valid contribution 
that is difficult to link to other models. This, in turn, raises another 
question: what do all these models and tasks have in common, and how 
can their similarities be captured? Rusch and colleagues (Rusch et al., 
2020) ask this question for the field of Theory of Mind. Reviewing 
existing tasks and computational approaches, they propose that these 
can be viewed as characterized along two dimensions, interactivity and 
uncertainty. Rusch et al. further argue that the internal representation of 
others’ goals is strongest if a situation requires maximal interaction and 
is maximally uncertain, and relate their ontology of Theory of Mind 
processes to neuroimaging findings. 

Not only are models important in Computational Cognitive Neuro
science, the methods used to derive these models are also of consider
able importance. Important methodological goals of Computational 
Cognitive Neuroscience are therefore (1) to make inferences about latent 
variables, (2) to reveal how they relate to each other, and (3) to 
demonstrate how they lead to observed responses in brain and behavior. 
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One approach, reviewed by Cai and colleagues (Cai et al., 2020), is the 
use of probabilistic graphical models. These models make explicit the 
assumptions of how latent variables are related to each other. They 
model different sources of noise explicitly and allow the incorporation of 
prior knowledge, making them a powerful and often interpretable tool 
with a wide range of possible applications. While Bayesian models have 
been used widely in cognitive psychology (Etz and Vandekerckhove, 
2018; Kruschke, 2010; Ma, 2012), their use has recently been growing in 
popularity in the cognitive neurosciences. In this Special Issue, Cai and 
colleagues (Cai et al., 2020) showcase the benefits and limitations of 
probabilistic graphical models for fMRI data, focusing on several recent 
empirical examples. 

But how can we be sure the methods we use produce the expected 
results? A nice example of how simulations can inform common meth
odology in Computational Cognitive Neuroscience is provided by 
Ramírez and colleagues (Ramírez et al., 2020). The authors tested to 
what degree fine-scale brain response patterns can be compared across 
subjects by means of anatomical alignment and leave-one-subject-out 
cross-validation. To this end, they used a shallow neural network to 
simulate brain responses as would be measured with fMRI. The results 
demonstrate that seemingly arbitrary analysis choices such as 
demeaning can drastically alter the pattern of brain responses and that 
using anatomical alignment biases the results towards the total signal. 
The authors propose hyperalignment as an alternative to pattern simi
larity analysis because hyperalignment is less sensitive to these issues 
when the strength of the signal for each condition is estimated. 

What, then, are possible applications of computational modeling to 
cognitive neuroscience research? Koch and colleagues (Koch et al., 
2020) show how Cognitive Computational Neuroscience can be useful in 
the study of cognitive aging. Applying multivariate decoding techniques 
to brain imaging data acquired during a spatial navigation task, they 
asked whether the decline of spatial abilities is reflected in changed 
neural representations of walking direction. Drawing from models of 
neural population coding (Pouget et al., 2000), they tested specifically if 
evidence for a flattened tuning curve of direction signals in older adults 
can be found, rather than just reduced decoding performance. Their 
analyses reveal that the shape of tuning functions appears broader in 
older adults’ visual cortex, while no such differences could be found in 
retrosplenial complex, where direction encoding is less stimulus-bound. 
In a related fashion, Glenn and colleagues (Glenn et al., 2020) demon
strate in their article how representational similarity analysis can be 
used for the study of development and disease. Studying high and low 
trait anxiety children, Glenn and colleagues first conducted a threat 
conditioning and extinction test. Three weeks later, they studied brain 
responses when children were presented with blends of the threat and 
safe stimuli. Their core question was whether neural responses reflected 
children’s threat generalization, and if such a neural generalization ef
fect differs between the low versus high anxiety groups. This was indeed 
the case in vmPFC. 

Finally, Momennejad and colleagues (2020) highlight another facet 
of Computational Cognitive Neuroscience: the formulation of normative 
models. In their paper the authors ask how humans can efficiently 
pursue multiple goals by keeping a future task in mind while doing 
something else (using prospective memory). The model proposed by 
Momennejad and colleagues shows how humans can turn noisy obser
vations into optimal actions under such conditions, even when their 
capacity for holding information in working and long-term memory are 
limited. A comparison of model predictions against a set of canonical 
observations in prospective memory tasks shows that their account of a 
boundedly rational use of memory captures human behavior well. In 
addition, the authors lay out how their model could be applied to the 
study of psychiatric disorders. 

Together, we believe this Special Issue provides an intriguing over
view of current research trends in Computational Cognitive Neurosci
ence research, showcasing a variety of recent computational 
approaches, highlighting their advantages, but also exposing their 

limitations. We are certain that the field of cognitive neuroscience as a 
whole can benefit from a wider adoption of computational methods, and 
in turn the field of computational modeling can find important inspi
ration from cognitive neuroscience research. 
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