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An overarching goal of neuroscience is to understand 
the relationship between cognition and underlying neu-
ral activity. In humans, much progress in this direction 
has been driven by task- based neuroimaging studies. 
However, it is salutary to note that a large proportion of 
variance in neural activity is off- task1,2. We use the term 
‘spontaneous’ to refer to intrinsic activities that are not a 
mere response to external events. We review past work 
and an emerging new paradigm for studying cognition 
in the spontaneous neural activity.

A dichotomy in human neuroscience
In cognitive neuroscience, a standard approach is to 
temporally align neural activity to specific task events 
(for example, presentation of a visual stimulus, such 
as a ‘house’), and to localize the corresponding neural 
response in the brain (Fig. 1a). In this way, neuroscientists 
have provided a rich characterization of cognition in the 
context of task- evoked processing.

A major difficulty in studying spontaneous neu-
ral activity, as compared with task- evoked activity, is 
that researchers do not have direct access to either the 
identity or the timing of putative states hypothesized to 
drive this neural activity (hence the term ‘spontaneous’). 
This makes attribution to a causal cognitive process less 
straightforward. Broadly speaking, we can conceptu-
alize two broad approaches, spanning two ends of a  
continuum (Fig. 1b).

On one hand, neuroscientists adopt a ‘data- driven’ 
approach (Fig. 1b, right). Here, instead of a concern 

with changes in neural activity ‘triggered’ by external 
events, the focus is on intrinsic physiological features, 
such as functional connectivity, power or phase coupling 
of frequency- specific oscillations (for example, alpha 
rhythm)3. The putative cognitive role of these features 
is sometimes inferred on the basis of their relationship 
to behavioural or psychological measures3,4, or by eval-
uating an anatomical overlap with task- evoked acti vity 
patterns reported in other studies5,6. This approach 
aims to find a correspondence between intrinsic and 
task- evoked neural patterns (sometimes termed the 
brain’s ‘functional architecture’)7. Nevertheless, such 
data- driven approaches are not as well positioned to pro-
vide a cognitive grounding because a direct relationship 
to task events cannot be assumed (unlike in task- evoked 
studies, where neural activity and task events can be 
temporally aligned).

At the other end of the spectrum, researchers have 
studied spontaneous activity using approaches that 
bear similarity to the analysis of task- evoked activity, 
which we term ‘intervention- based approaches’. These 
approaches introduce an external intervention known to 
evoke an associated event within an otherwise task- free 
session (Fig. 1b, left). Examples here include using tar-
geted memory reactivation8,9 in sleep studies10,11, track-
ing spontaneous neural activity during prestimulus 
time12 or presenting stimuli at the peak (strongest time) 
or trough (weakest time) of neural activity of interest 
(for example, dopaminergic midbrain)13. In this way, 
spontaneous activity can be analysed by alignment to 
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the onset of such events, with precise timing akin to 
task- evoked studies. Unlike a data- driven approach, 
this intervention- based approach enables direct infer-
ence with respect to the underlying cognitive process. 
This benefit, however, comes at the expense of inter-
rupting internal computations that are ‘spontaneous’ 
in nature, such as imagination or mind wandering —  
processes that are by definition not tied to immediate 
task demand14. Thus, cognitive neuroscientists were 
faced with a choice: to study unperturbed spontane-
ous neural activity, albeit with a restricted window to 
its functional relevance, or instead to have more explicit 
control of the cognitive process, but at the expense of 
disrupting spontaneity.

In recent years, an emerging approach has endeav-
oured to combine the best of both techniques outlined 
above. This approach relies on exploiting the representa-
tional content of neural activity and is predicated on an 
assumption that the same neural representations of task 
events (for example, ‘house’ or ‘apple’) are active both 
on- task and off- task. Such representations can first be 
derived from task- evoked neural activity and their reac-
tivations can subsequently be obtained through decoding. 
In essence, this approach probes the task- relevant con-
tent of intrinsic neural activity, going beyond a charac-
terization from the data- driven approach15. In so doing, 
it provides information regarding both what and when 
representation has been activated, absent from exter-
nal intervention. We refer to this line of research as 
‘representation- rich’.

Task- related representations can be obtained in mul-
tiple ways. One approach is to rely on the neural pattern 
similarity of task events between on- task and off- task 
period16 or different brain regions17. For example, to 
look for features of memory consolidation, Tambini and 
Davachi18 compared the pairwise multivoxel correlation 
structure between stimuli at encoding and post- encoding 
rest versus that at pre- encoding rest, and found increased 

hippocampal pattern similarity attributable to learning. 
This correlation- based approach has similarities to 
representational similarity analysis, which is widely used 
to study task- evoked neural activity19,20, and most often 
for localizing where (in the brain) a pattern emerges.

A representation- rich approach to spontaneous 
neural activity aims to uncover the temporal structure  
of task- related representations (for example, how their  
temporal dynamics unfold)21–25. This is typically imple-
mented using a decoding- based method, transforming 
spontaneous neural activity into a time series of task- 
related reactivations23–25. This line of research in human 
neuroimaging has an interesting parallel in animal work. 
For example, in the rodent hippocampus, researchers 
have identified pyramidal cells that encode spatial loca-
tions during active navigation, known as place cells26, 
and also observed these same cells fire spontaneously 
in an organized sequence during rest. This firing reca-
pitulates past or potential future trajectories and is 
referred to as ‘hippocampal replay’17,27–40. The ability 
to readout reactivation of specific locations during rest 
allows researchers to go beyond a mere characterization 
of neurophysiological features — for example, sharp 
wave ripples (SWRs)41 — enabling a probing of the 
representational content of neural activity, particularly 
with respect to task variables. This feature has allowed 
studies of hippocampal replay to forge a link between 
cognition and physiology42, and in so doing, shed light 
on a range of cognitive functions subserved by sponta-
neous neural activity, including memory, learning and 
decision- making36,43,44 (Box 1).

Recent technical advances for characterizing task- 
related reactivations in human neuroimaging have 
inspired a series of studies investigating ‘human replay’ 
(Fig. 2a). These address complex forms of non- spatial 
cognition23,25,45, especially those informed by rein-
forcement learning (RL) models46–48 (Box 2). They also 
provide a unique opportunity to link resting dynamics 

b  Intervention baseda  Task-evoked neural activity

RSN 2: default mode network

RSN 1: parietal alpha network

Onset Time

Data driven

Awake: form associations

Sleep: targeted reactivation

Onset Time

Spontaneous neural activity

Time

Se
ns

or
s/

vo
xe

ls

RSN 2RSN 1

Fig. 1 | A (relative) dichotomy in human neuroscience. a | Cognitive 
processes are typically studied by aligning neural activity to the onset of 
perturbing stimuli, with the aim of finding underlying neural correlates. For 
example, with use of functional MRI, evoked neural activity in response to 
different stimuli (or task demands) is mapped in the brain, here illustrated 
by responses to a house (blue), an apple (red) and a tree (green), respectively. 
b | Studies of spontaneous neural activity can be rendered more akin to 
task- evoked studies by introducing an external intervention. For example, 
in a targeted memory reactivation approach, a tone associated with a 
specific stimulus is used to evoke task- related processing during sleep  

(left; green indicates tree- related processing, elicited by its paired tone). 
Alternatively, a data- driven approach can be used to characterize the 
canonical functional connectivity patterns during rest (right). Two examples 
of resting- state networks (RSNs; parietal alpha network (red) and default 
mode network (yellow)). The colour reflects the broadband power, where a 
brighter colour indicates higher power. Although there may be task- related 
reactivations during rest (for example, transient synchronous activity bumps 
in between RSN 1 and RSN 2 epochs, shown in darker patch), their 
functional relevance is not accessible to methods used in standard resting 
state studies. Part b adapted with permission from reF.15, Elsevier.
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of whole- brain connectivity (for example, the default 
mode network (DMN)) to spontaneous task- related 
reactivation (for example, replay)15.

In this Review, we first discuss these technical 
advances and then consider studies that have exploited 
this approach. Our aim is to demonstrate the exciting 
prospects afforded by a representation- rich approach in 
bridging task- based and spontaneous brain activity.

Measuring spontaneous reactivations
Studies of neural dynamics in the human brain non- 
invasively typically involve monitoring by electroence-
phalography (EEG) or magnetoencephalography 
(MEG), performed over a several minutes or for up to 
hours. A ‘decoding- based’ approach to characterizing 
its task- related information involves two stages (Fig. 2b). 
The first identifies a mapping between neural activity 
and a task variable of interest. In the simplest example, 
these variables are discrete sensory stimuli (for exam-
ple, apple or house). The mapping can be obtained by 
training either a discriminative model or a generative 
model linking object labels to their associated neural 
responses (for example, multivoxel patterns in the case 
of functional MRI (fMRI) or multichannel patterns in 
the case of MEG or EEG)49. Typically, the training data 
are obtained from an incidental ‘localizer’ task, in which 
multiple examples of task events and associated evoked 
neural activity are collected. This stage is similar to  
multivoxel pattern analysis50–52 (Fig. 2b, left).

The second stage applies these trained models to neu-
ral activity obtained in other time periods of interest, 
which might constitute off- task rest or on- task epochs, 
and yields a time course of spontaneous task- related 

reactivations45,53 (Fig. 2b, right). In this way, researchers 
can access the representational content of such activity, 
thereby allowing comparison between the observed 
temporal structure of neural reactivations (for example, 
whether reactivation of ‘house’ reliably precedes that 
of ‘apple’) and patterns derived from a formal hypo-
thesis (for example, the transition matrix in an RL- based 
model)25.

Note, the primary difference between an analysis of 
task- evoked neural responses (for example, representa-
tional similarity analysis) and an approach that focuses on 
spontaneous neural activity is that the former tracks neu-
ral representations by reference to the explicit timing of  
task events. By contrast, the temporal characterization 
of task- related reactivations is itself a primary research 
question in the analysis of spontaneous neural activity, 
made tractable by an assumed overlap between evoked 
and reactivated task representations. This assumption 
raises several methodological considerations.

Methodological considerations. The first issue relates to 
the fact that spontaneous neural reactivation of a task 
event is likely to be less pronounced than its evoked 
response (not least because the very neural decoders 
used to identify reactivations in spontaneous activity 
are trained using evoked neural responses). This can be 
considered as providing an increased risk of false nega-
tives when one is quantifying spontaneous reactivations 
in off- task neural activity (type II error). A second con-
sideration is that without ‘ground truth’ information 
about the identity and timing of task- related reacti-
vations, the statistical inference procedure must also 
protect against false positives (that is, type I error), for 
example those arising due to nonspecific neural dynam-
ics, such as autocorrelations53,54. Recent methodological 
work suggests that linear modelling with careful control 
of confounding regressors (for example, reactivations of 
other states)53 and appropriate permutation- based sta-
tistical inference procedures are sufficient to deal with  
these concerns in human MEG or EEG, as well as rodent 
electrophysiology data53 (Fig. 2c).

Other considerations relate to data modality- specific 
features. For example, in fMRI, we rely on the blood oxy-
genation level- dependent (BOLD) signal, which has a 
temporal resolution on the order of seconds, one that 
is almost certainly too slow to capture complete neu-
ral reactivation patterns associated with neural replay  
(on the order of milliseconds). Nevertheless, recent work 
demonstrates that such fast sequences can be detected 
using an fMRI decoding approach that assumes reac-
tivation patterns cause systematic neural patterns of  
overlap in the delayed BOLD responses45 (Fig. 2d).

Spontaneous task- related reactivations
Investigation of spontaneous task- related reactivations 
in humans can be thought of as falling into two broad 
categories: (1) reactivation during rest (for example, 
off- task reactivation)15,23,25; (2) reactivation during task 
performance (for example, during intervals between 
sequential trials within a task)21,22,55–61. Spontaneous 
neural activity measured during off- task periods is not 
necessarily free from task- related influences. It is likely 

Box 1 | Neural sequences in rodents

Broadly speaking, there are two types of neural sequences that are the subject of 
intense investigations. one relates to sharp wave ripple (SWr) sequences, and the 
other relates to theta sequences104,147.

SWr sequences refer to sequences of hippocampal cell firing embedded within SWr 
epochs (~150- Hz local field potential oscillatory bursts). These events typically happen 
during rest27,31,33, but also happen during pauses in a behavioural task148. These are 
commonly referred to as ‘replay’. The direction of replay is normally defined with 
respect to actual experience: with forward replay, the order of the pattern activity occur 
in the same order as in the actual experience, and with backward replay the order is the 
reverse of that in the actual experience. Both forward and backward replay are reported 
in the rodent literature, and have been shown to be modulated by task demands148. 
Although the exact function of the replay direction is still unknown, forward replay has 
been more associated with planning78 (but see reF.149), and backward replay is more 
associated with learning — for example, propagating prediction error from the reward 
site30,37. Accumulating evidence suggests that SWr sequences (or replay) are important 
for mental functions as diverse as memory, learning and decision- making43,44.

Theta sequences are sequences of hippocampal place cells firing within a single theta 
cycle (~100–170-ms), generally proceeding from the location of the animal forward 
towards potential goals. Key here is the observation that during movement (for example, 
running through a linear track) and pausing (for example, at the decision point), place cell 
firing is organized within an oscillatory process reflected in a hippocampal theta rhythm 
(6–10 Hz). Theta sequences are dominantly forward although reverse theta sequences 
are also reported103. Neurophysiologically, theta sequences are typically associated with 
theta phase precession (see reF.150 for independent theta phase coding), in which the 
firings of a particular place cell are embedded within progressively earlier phase of  
the theta cycle (phase precession) as the animal traverses its place field151. Functionally, 
theta sequences may reflect planning process105,152,153, memory formation104,147 or multiple 
prospective futures in alteration153,154.

Multivoxel patterns
Neural activity profile of 
multiple voxels in the brain.

Transition matrix
A matrix that stores the 
probability of transition from 
state s to state s′.

Regressors
independent variables  
in a regression model.
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that reactivations in both time periods are subject to 
task- related modulation62. While ‘on- task’ reactivations 
(for example, those occur in inter- trial intervals) relate 
more directly to immediate task demands, we include 
these phenomena under the rubric of ‘spontaneous 
reactivations’ as the representational content in question 
relates to states that are not immediately determined by 
current sensory input. For example, mental simulations 
of future experiences or the recall of episodic memories 
may be detected ‘on- task’ (that is, during a inter- trial 
interval or after receipt of an outcome), yet ‘go beyond’ 
immediate task- evoked processing. Both categories of 
spontaneous activity can be studied in a similar man-
ner under a ‘representation- rich’ paradigm. We note 
that studies of human reactivations (both off- task and 
on- task) are sometimes referred to as ‘replay’ in the 
literature58,63. For consistency, in this Review, we use 
‘reactivation’ to refer to task representations obtained 
during learning and encoding time that are later rein-
stated in spontaneous neural activity64. We use the term 
‘replay’ to describe a sequential reactivation of these task 
representations.

Off-task spontaneous reactivation. Outside a 
‘representation-rich’ approach, studies probing the 
functional relevance of resting- state activity typically 
link physiological features (for example, functional con-
nectivity) to behavioural measures of task performance 
collected before, or after, a resting session. For example, 
using fMRI, Tambini et al.65 reported enhanced func-
tional connectivity between the hippocampus and the 
lateral occipital cortex during rest following an associ-
ative memory encoding task, which was related to later 
memory performance. This approach is analogous 
to linking electrophysiological signatures of reactiva-
tion (for example, SWRs) to memory consolidation in 
rodents42.

Implementing a representation- rich paradigm, other 
studies have endeavoured to probe cognitive process 
within resting- state activity14. For example, comparison 
of stimulus- encoding patterns in the hippocampus for 
the pre- encoding rest period versus the postencoding 
rest period has revealed a stronger memory reacti vation 
during post- encoding rest that relates to enhanced 
memory performance18. In a decoding analysis of EEG 
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Fig. 2 | ‘Representation-rich’ paradigm of spontaneous neural activity. 
a | Neural replay in rodents and humans. Rodent replay (left). Different 
colours indicate firing fields of place cells in the rodent hippocampus. 
During rest, those place cells are reactivated in a consistent order, termed 
replay. Rodent replays are time compressed, and are typically associated 
with sharp wave ripples — the fast oscillations depicted in the figure. 
Human replay (right). Human replays (of visual stimuli) are also time 
compressed and are associated with fast oscillations. The brain activation 
figure shows an initialization of replay events that arises in the hippocampus 
(pseuodocoloured region, where red indicates lower activation and yellow 
indicates higher activation). b | Decoding- based approach, comprising  
two stages. Stage 1 — indexing neural representations of different task 
objects. This can be achieved by training a decoding model and finding  
a multivariate decision boundary in the data pertaining to each object. 
Examples of three task objects — tree (green), apple (red) and house (blue) 
— are shown here, with dots indicating samples and lines denoting decision 

boundaries (left). Stage 2 — applying these trained decoding models to the 
spontaneous neural activity of interest enables us to ascertain what has 
been reactivated and when. Transient bumps in the spontaneous neural 
activity can then be identified as task- related reactivations for tree (green), 
apple (red) and house (blue) (right). c | Temporally delayed linear modelling 
approach. It asks whether the averaged statistical likelihood of some 
transitions (for example, ‘apple’→‘house’) happening is greater than that of 
others (for example, ‘tree’→‘house’). Dashed lines indicate the time- 
shifted (by Δt) copies. d | A functional MRI (fMRI)- based sequence analysis 
approach. Fast sequences of events will cause systematic patterns of 
overlap in delayed responses that can be inferred45. Differently coloured 
lines indicate the time course of different decoded events. The inset shows 
an ordering of their reactivation strength for a given time slice. Part a is 
adapted from reF.23, CC BY 4.0 (https://creativecommons.org/licenses/by/ 
4.0/). Part c is adapted from reF.53, CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/).
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signals, previously learnt information was found to be 
reactivated during sleep at the category level66. With 
use of fMRI data acquired during sleep, reactivation 
of past memory was found at both the category level67 
and at the level of individual stimuli68. More recently, 
Schapiro et al.63 showed that prioritized reactivation of 
weakly encoded memories in the hippocampus during 
awake rest benefits later memory performance. Together, 
these studies provide evidence that offline hippocampal 
reactivation plays an important role in human memory  
consolidation69. This research trend towards use of 
a representation- rich approach enables fine- grained 
tracking of the representational content and dynamics 
of reactivations, mirroring the tracking of spontaneous 
place cell activity in the rodent hippocampus during rest.

Sequential reactivation (or replay) in humans con-
cerns the ordering of reactivated task states at the 
representation level. The sequential quality of such 
reactivation renders it a suitable testbed to assess the 
neural representation of cognitive map, where only a 
limited number of transitions are valid (for example, 
A→B and B→C are valid sequences, but C→A is not, 
in a linear structure of A→B→C). Schuck and Niv25 
took fMRI- based decoding a step further to provide 
evidence for sequential reactivation of task states in 
the human hippocampus during rest. Here, a focus on 
representational content enabled them to make claims 
about the regularity and consistency of the same expe-
riences between rest and task, enabling them to connect 

hippocampal replay to the neural representation of a 
mental model in the orbitofrontal cortex70. Specifically, 
they suggested that human replay might participate in 
building or maintaining a mental representation of the 
task structure during rest. Relatedly, using MEG at milli-
second temporal resolution, Liu et al.23 demonstrated 
that organized experiences are sequentially replayed 
during rest on a fast timescale (40- ms state- to- state 
transition). Such replays were not mere ‘echoes’ of past 
experience35, but instead were ordered in a manner con-
sistent with a learnt task structure, again suggestive of 
replay building or maintaining a cognitive map off- task.

Of particular note is that the spontaneous sequences 
of cortical events, detected in a non- spatial context in 
humans using MEG23, show striking parallels to the 
characteristics of hippocampal replay in rodents during 
SWR epochs in spatial tasks27,31,36. Like rodent replays, 
human replays (1) appear spontaneously during rest,  
(2) compress time from seconds to tens of milliseconds28, 
(3) reverse in direction following receipt of a reward37, 
(4) involve a coordination between the hippocampus 
and the sensory cortex32 and (5) are associated with a 
power increase in ripple frequency (120–150 Hz), which 
can be source localized to the hippocampus.

On- task spontaneous reactivation. A rich literature has 
characterized the representational content of spontane-
ous neural activity on- task, ranging from perception12 
to action71. An interesting finding is that reactivation 
of objects in mind can bias subsequent perception, and 
in an extreme case leads to hallucination. For example, 
Pajani et al.12 showed that the representational content 
of prestimulus activity in the early visual cortex is linked 
to subsequent perception: if there is a bias towards the 
expected grating stimuli, it could predispose to per-
ceptual hallucination. Similarly, Hahamy et al.72 found 
spontaneous fluctuations in the early visual cortex might 
activate the visual hierarchy, and drive hallucination in 
participants with Charles Bonnet syndrome.

Over the past 5 years, there has been a upsurge in 
representation- rich research on memory and decision- 
making in the context of RL73, especially model- based 
RL74. In RL terms, a ‘model’ details the relationships 
between current and future states. This has a similar 
meaning to the notion of ‘cognitive map’. A commonality 
among these is that a model allows us to infer things we 
have not experienced directly or explicitly75, enabling, for 
instance, multistep planning22 or inferential learning24.  
If ‘off- task’ reactivation relates to building or maintaining 
a mental model of the world, then ‘on- task’ reactivation 
might be a means to study how such a model is used for 
adaptive behaviour. The study of model- based reasoning 
de facto concerns probing internal processes that are not 
tied to a current sensation, a line of investigation that fits 
well with ‘representation- rich’ approach.

One important field here is that of memory- based 
research73, which typically focuses on the cued retrieval 
of associative memories76. Studies of associative memory 
entail an encoding phase (for example, a house → tree 
association, where the house is the cue, and the tree is 
the associated event) followed by a cued retrieval phase 
(for example, house → ?). A pairwise association can be 

Box 2 | RL in human neuroscience

reinforcement learning (rl) is concerned with a specific family of questions: how  
to make decisions to maximize the expected future (discounted) cumulative reward  
(or avoidance of punishment) and how to update or adjust behaviour on the basis of  
a discrepancy between expectation and experienced outcome (that is, prediction 
error)46. in neuroscience, rl is widely linked to specific neural mechanisms, particularly 
phasic dopamine signalling in mesolimbic circuits reflecting reward prediction errors155.

on the basis of whether rl relies on a mental representation of the task space  
(that is, relational structures among task states), rl is conventionally divided into model- 
free and model- based processes74,156,157. model- free rl proceeds via trial- and- error 
learning and relies on consolidating stimulus–response mappings. The best known 
model is the rescorla–Wagner model158, which was developed in the context of classical 
conditioning159. Although the rescorla–Wagner model explains many psychological 
phenomena, and continues to provide remarkable insights into human learning and 
decision- making160, it does not readily address more flexible forms of cognition, such  
as those concerned with sequential decision- making or computations that go beyond 
directly experienced stimulus–response associations (for example, planning detours or 
considering counterfactuals), both of which necessitate reliance on an internal ‘model’ 
of the task (that is, model based. Note, model- free method is possible to solve these 
tasks but is much more inefficient and inflexible).

The ‘two- step’ task is a classical paradigm developed to study model- based rl156,161–163. 
In its original formulation by Daw et al.162, this involved two- stage sequential decision- 
making steps, where only the second- stage choice results in a monetary outcome.  
The state transition structure between the first stage and the second stage is designed 
to yield different patterns of choice behaviour in a model- free versus model- based 
agent (where the former has no internal ‘model’ of the transition structure and  
makes choices based on cached stimulus–action values). Such tasks may be used to 
characterize the extent of model- based computation in decision- making, according  
to the degree to which they make use of an internal model of the task. When combined 
with the ‘representation- rich’ approach, tasks of this nature yield new insights into the 
intrinsic neural mechanisms supporting model- based cognition24,55. Note that in these 
neuroimaging studies, the transition structure can also be deterministic55, or can even 
be simplified to a one- step decision24, to ease the use of decoding techniques.

Charles Bonnet syndrome
A condition where visual 
hallucinations occur as a result 
of vision loss.
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conceived as a simple relational structure, with a cued 
retrieval framed as memory- based decision- making73. 
For example, using intracranial EEG, Norman et al.77 
found successful memory recall was preceded by an 
increased probability of hippocampal SWRs, during 
which there was also a transient re- emergence of acti-
vation patterns in higher visual cortical areas. Relatedly, 
Vaz et al.76 found bursts of spikes in the human tem-
poral lobe that were organized into sequences during 
memory encoding, and these same sequences were 
‘replayed’ during successful memory retrieval. Using 
fMRI, Wimmer and Shohamy60 found monetary rewards 
led to automatic reactivation of a past associative mem-
ory within the hippocampus, with these reactivations 
biasing later value- based decision- making. This effect 
was sub sequently replicated in a MEG- based version 
of the same task, using a decoding based technique57. 
More recently, Wimmer et al.59 studied memory retrieval 
of more extended episodes consisting of multiple ele-
ments, and found a differentiation among retrieval pat-
terns involving clustered representations compared with 
sequential reactivation of individual episode elements, 
with more strongly encoded memories retrieved via a 
clustered reactivation and weaker memories retrieved 
by sequential reactivation59.

Other ‘on- task’ research has focused on activity 
during decision time or following outcome feedback 
in value-based decision- making tasks21,22,55,56,58,61. In 
rodents, this is typically studied in a spatial navigation 
setting37,78. In humans, we are able to probe more flex-
ible cognitive processes in an abstract task space using 
the approach outlined. Here a common experimental 
design involves model- based RL tasks where partic-
ipants update the value of each action (in each state) 
on the basis of experienced or inferred (model- based) 
rewards, and then make a choice based on these values. 
For example, when a two- step task was performed in 
fMRI (Box 2), prospective reactivation of the task goal 
was found to support model- based choice55, on- task 
reactivation of counterfactual value signals reflected 
the non- chosen option79 and spontaneous reactivation 
following reward receipt was modulated by predic-
tion error58. In the model-based inference, an impor-
tant role of hippocampal–orbitofrontal interactions is 
highlighted80. Other decision- making studies report 
spontaneous reorganization of task strategies reflected 
in neural representations, even before a strategy change 
is evident in behaviour81.

Using a sequentially structured RL task in combina-
tion with MEG, Liu et al.24 identified reverse sequen-
tial reactivation (reverse replay) of non- local (that is, 
inferred) experiences following reward receipt, with 
a 160- ms state- to- state lag, akin to a putative neural 
mechanism for model- based RL. This replay was more 
pronounced for experiences of greater utility for future 
behaviour, consistent with RL theory48. Although this 
study focused on outcome time, other studies have 
probed the mental planning process at choice time. In a  
non- spatial sequential planning task, Kurth- Nelson 
et al.22 found fast reverse sequences during planning, 
these sequences did not reflect the path to be taken, 
but instead represented equally all valid transitions.  

This is suggestive of a process involving mental rehearsal 
of sequences, possibly to maintain a representation of 
task structure. Subsequently, Eldar et al.56 varied both 
problem complexity and temporal constraints in a deci-
sion task, showing that people differ substantially in 
terms of their decision strategies. Using a different task, 
Eldar et al.21 further demonstrated that on- task (during 
planning) and off- task (during rest) replay supported 
planning in distinctive ways, dependent on actual deci-
sion strategies. Such model- based planning has also 
been found recently in the aversive domain61, akin to 
findings in the rodent literature40.

Bridging cognition and physiology
Having considered how a ‘representation- rich’ approach 
might advance our understanding of human cognition, 
we now discuss potential insights this approach can 
bring to studies of resting states, and in particular to 
psychiatry research, where there has long been a strong 
emphasis on spontaneous neural activity2,82,83.

A predominant focus of resting- state studies is 
the intrinsic physiological features of brain activity  
(for example, the covariance of activity between brain 
regions, termed ‘functional connectivity’). One common 
approach is to characterize the functional connectivity 
patterns relating different regions in terms of whole- 
brain resting- state networks (RSNs)5,84,85. Among such 
RSNs, the DMN85,86 is of particular interest87.

The DMN is a characteristic pattern of intercon-
nected brain regions (which includes the medial pre-
frontal cortex, posterior cingulate cortex and medial 
temporal lobes) that show high co- activation off- task87–89. 
Initially, the DMN was thought to be ‘task negative’,  
as it is typically deactivated during task execution (for 
example, working memory)90,91. Later, brain regions that 
constitute the DMN were found to be related to inter-
nally oriented cognitive states16, such as imagination92, 
mind wandering93, memory recall94, planning95 or con-
solidating social information96. In recent studies focus-
ing on the neural codes underpinning mental models 
(for example, conceptual spaces97, social spaces98 or nar-
rative schemas99), the distribution of such neural profiles 
bears a remarkable overlap with DMN, leading to a sug-
gestion that this functional network might be encoding 
the cognitive map of task space75. These interpretations, 
however, derive in large part from an anatomical over-
lap with brain regions reported in task- based cognitive 
studies.

Ideally, we want to link functional connectivity pat-
terns (for example, the DMN) to concurrent spontaneous 
cognition within the same data set. In a representation- 
rich approach, this can be achieved by studying the rela-
tionship between DMN activations and task state- related 
reactivations. Combining two recent methodological 
advances in MEG analysis — measurement of sequen-
tial replay during rest23,53 and tracking of DMN activa-
tion dynamics with millisecond temporal resolution100 
— Higgins et al.15 established a connection between  
spontaneous human replay and DMN activation in 
the same resting- state session. More specifically, they 
showed that human replay exhibits a highly organ-
ized temporal structure, where replay events did not 

Resting states
The states when an explicit 
task is not being performed.
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occur randomly but were instead packaged into tran-
sient bursts. The latter coincided with a concentration  
within epochs of DMN activation (Fig. 3a) charac-
terized by large synchrony in the delta band and/or  
theta band. Moreover, the DMN was unique among all  
RSNs in its association with transient increases in 
higher-frequency power (including the frequency 
band associated with ripple), which source localized to 
the temporal lobe. This work suggests that a coupling 
between temporal-lobe SWR and the DMN might  
provide a physiological basis for how human replay  
supports memory consolidation.

A coupling between temporal- lobe SWR and the cor-
tical DMN during rest15 is reminiscent of prior in vivo 
work in non- human primates. For example, using simul-
taneous whole- brain fMRI as well as hippocampal elec-
trophysiology recordings, Kaplan et al.101 found a selective 
increase in the DMN following hippocampal ripples, but 
not other RSNs or hippocampal electrophysiological 

events (Fig. 3b). Similarly, using simultaneous recordings 
of hippocampal electrophysiology during wide- field 
calcium imaging of cortical activity in the mouse brain, 
Liu et al.102 found cortical–hippocampal coordination 
involving hippocampal SWR and medial parietal cortex 
(part of the DMN) activation (Fig. 3c). This set of results 
suggests a plausible cross- species function for the DMN 
during rest in supporting off- task memory consolida-
tion (or map building), potentially through replay in  
coordination with SWRs.

Contrary to findings in relation to off- task replay, 
studies of human on- task replay have not shown an 
association with high- frequency power increases59. One 
intriguing hypothesis is that on- task replay in humans 
(for example, the slower replay with 160- ms state- to- state 
time lag)24 might relate to the theta sequence seen in 
rodents103–105 (Box 1) and might reflect a more ‘conscious’ 
on- task computation, a rich topic for future work.

Implications for psychiatry research
Finally, there are compelling reasons to believe a 
representation- rich approach can yield novel insights 
into the neurobiology of psychiatric disorders. Over 
the last two decades, extensive fMRI, MEG and EEG 
investigations have reported widespread alterations 
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Fig. 3 | Coordination between hippocampal SWRs and 
large-scale cortical activity across species. a | In humans, 
the top part shows an example (60 s in a 5- min resting state) 
of raster plots (top right) of three replay sequences (top left). 
The lower part shows the time course of 12 different 
resting- state network (RSN) reactivations (bottom right, 
each RSN is indicated by a colour from brown through to 
yellow). The y axis indicates the reactivation probability  
of RSNs, where a higher value indicates stronger activation. 
The blue dots indicate the different regions of interest from 
where spectral information (for example, the phase) is 
extracted. The power (yellow) and phase locking (red) 
profile of the default mode network (DMN) in the human 
brain, where brighter yellow and darker red indicate higher 
power and higher phase locking, respectively. The DMN 
(brown) shows the strongest activation at the time of  
sharp wave ripples (SWR) replay bursts (bottom left).  
b | In monkeys, hippocampal SWRs have also been shown 
to be coupled with the DMN (left, red area, measured  
with functional MRI). This coupling is specific to the  
DMN (among other RSNs) and ripple frequency (among 
other frequency bands). c | In mice, widespread cortical 
activation is associated with the onset of hippocampal 
SWRs. Dashed lines indicate identified cortical regions 
based on the Allen Brain Atlas (1, secondary motor cortex; 
2, primary motor cortex; 3, primary somatosensory  
cortex; 4, secondary somatosensory cortex; 5, posterior 
parietal cortex; 6, auditory cortex; 7 , retrosplenial cortex; 
8, visual cortex). This cortical activity (including the 
retrosplenial cortex, a part of the DMN) rise occurs 
immediately before the onset of hippocampal SWRs. ΔF/F 
measures the change in fluorescence intensity relative  
to its resting level; a higher value indicates higher 
activation. a.u., arbitrary units; BOLD, blood oxygenation 
level dependent; VSN, ventral somatomotor network.  
Part a adapted with permission from reF.15, Elsevier.  
Part b is adapted from reF.101, CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/). Part c adapted 
from reF.102, Springer Nature Limited.
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in RSN characteristics in patients with neuropsychi-
atric disorders compared with healthy volunteers82,83. 
However, in these studies, linkages to clinical variables 
and cognitive functions are generally inferred indirectly 
— for example, by relating brain activations to clinical 
questionnaires106. In view of the relationship between 
spontaneous neural activity and model- based cogni-
tion, we consider the ‘representation- rich’ perspective is 
uniquely placed for bridging a conceptual gap between 
brain activity, cognition and clinical symptoms in  
psychiatric disorders.

With this in mind, a condition of particular interest 
is schizophrenia, a neuropsychiatric disease charac-
terized by symptoms such as delusions, hallucinations 
and ‘thought disorder’107. Genetic mouse models of 
schizophrenia have identified signatures of abnormal 
hippocampal reactivations during rest (for example, 
augmented SWR power and temporal disorganization of 
place cell reactivations), suggesting that abnormal replay 
plays a central role in this debilitating condition108–110. 
Patients with a diagnosis of schizophrenia (PScz) 
exhibit impairments in inferring indirect associations 
(for example, if A > B and B > C, what is the relationship 
between A and C)111,112, which can be interpreted as a 
deficit in leveraging cognitive map. Recently, using an 
MEG decoding approach, Nour et al.113 examined neural 
replay in PScz (versus carefully matched control partic-
ipants) during rest following a similar relational infer-
ence task as in Liu et al.23. They found that spontaneous 
neural replays of learnt task structure, as evident in con-
trol participants akin to the findings of Liu et al.23, were 
reduced in PScz. Intriguingly, PScz were characterized 
by augmented SWR power during replay, and a distorted 
neural representation of cognitive map, consistent with 
the genetic mouse model108. The sequential replay deficit 
in PScz related to behavioural impairment in inferring 
correct sequential relationships between task states, a 
process likely to require abstracted representation of task 
structure. These results raise a tentative suggestion that 
previous reports of DMN deficits in schizophrenia114 
might relate to a compromised maintenance of a correct 
cognitive map during rest.

This early study of spontaneous neural replay in a 
clinical population provides motivation for future studies  
across a range of psychiatric disorders — for example, 
testing computational hypotheses pertaining to sequen-
tial planning deficits (for example, maladaptive pruning) 
and recurrent intrusive thoughts (for example, obses-
sions and ruminations) in disorders such as anxiety and 
depression115–117.

Future directions
A central goal of neuroscience is to understand how 
neural activity supports cognition and thereby adaptive 
behaviour74,75. We suggest a relative neglect of cognition 
in the context of spontaneous neural activity (for exam-
ple, resting state) can now be redressed by reference to 
a ‘representation- rich’ approach, and where emerging 
data indicate it can also inform the study of model- based 
cognition. We envisage three broad directions where a 
representation- rich paradigm will advance understanding 
of cognition in humans and animals alike.

Sleep and cognition. An exciting direction now open to 
investigation is decoding the representational content 
of sleep. This has broad relevance for understanding 
both the functional relevance of sleep and its transla-
tional implications118, given its deficits are shown in most  
psychiatric disorders.

It has long been hypothesized that memory consoli-
dation, or new memory formation, happens during SWR 
events in slow wave sleep119–121. Early studies of rodent 
sleep replay showed that a time compression feature27,122 
of neural reactivation supports Hebbian learning by 
reactivating memory traces within a time window that is 
amenable to spike timing- dependent plasticity36,123. Most 
recently, evidence of theta sequence expression during 
rapid eye movement (REM) sleep has been reported in 
rats after they completed a spatial learning task, suggest-
ing a role for REM- associated theta sequences in memory  
function as well124. In addition, there are interesting dif-
ferences in replay dynamics during awake rest versus 
sleep125,126. For example, replays in rodents have been 
found to represent Brownian diffusive spatial trajectories 
during sleep127, while resembling more superdiffusive 
dynamics during awake rest126, hypothesized to serve 
different computational goals125.

In humans, although sleep is a topic of intense inves-
tigation, sleep replay has rarely been studied (however, 
see66–68 for studies of memory reactivation during sleep). 
A significant barrier here is the considerable difference 
in neural signals between sleep and awake128 states, such 
that decoding models trained during an awake state may 
generalize poorly to sleep time129. A promising direc-
tion is to explore a family of generative models. Thus, 
instead of treating the mapping between a task variable 
and multivariate neural activity as a black box (as is the 
case in discriminative models), this class of model spec-
ifies the generative process of neural activity in relation 
to task variables, a priori. This class of model can, in 
principle, generalize better from the awake state to sleep 
if the underlying assumptions are reasonably met49,130. 
These approaches may also allow an exploration of links 
between sleep replay and dreaming in humans.

Integrating human and animal neuroscience. A unique 
advantage of the ‘representation- rich’ paradigm is 
its ability to integrate findings across species. This  
is because neural signals (either from electrophysiology in 
rodents or from neuroimaging in humans) can be trans-
formed into task- related representations. This focus on 
the representational level renders possible a comparison  
of human and animal neuroscience findings.

Previous work on the spatial organization of neural 
codes for visual objects in the brain, for example, found 
the inferior temporal cortex supports a common neu-
ral representation profile for animate versus inanimate 
objects across humans and monkeys131. Recent work on 
the temporal profile of spontaneous neural reactivations 
(for example, replay) suggests that human replay bears a 
strong resemblance to that seen in rodents23. This leads 
to an expectation of greater crosstalk and assimilation 
of findings across species under a representation- rich 
paradigm132, especially with use of domain- general 
methods (such as temporally delayed linear modelling)53.

Brownian diffusive spatial 
trajectories
Trajectories whose movement 
is random in space.

Superdiffusive dynamics
random movement but with 
sudden jumps.
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In a recent example of this integrative approach, 
Barron et al.133 probed inferential decision-making in 
both humans (with fMRI) and mice (with electrophysio-
logy) with a similar associative inference task, and 
revealed hippocampal involvement in both species. In 
this study, hippocampal replay in rodents represented 
inferred relationships during rest, whereas the human 
hippocampus was found to use a prospective code to 
forecast learnt associations. It is also possible that when 
solving the same task, distinct species use different 
cognitive maps, with implications for performance 
efficiency134,135.

More complex forms of cognition. Humans possess a 
remarkable mental ability that extends well beyond spa-
tial cognition, including an ability to reason, to flexibly 
deploy language and to generalize experience to novel 
contexts136,137. Understanding the neural code of these 
highly flexible forms of human cognition is of great inter-
est in many related fields, including both neuro science 
and artificial intelligence75. Under a ‘representation-rich’ 
approach, it is now possible to probe the internal compu-
tations of those complex cognitive process. For example, 
using MEG- based decoding, Al Roumi et al.138. studied 
how sequences, and operations on sequences, are repre-
sented in the brain, finding evidence for an abstract, 
language- like code for flexible sequence representation. 
Similarly, Liu et al.23 demonstrated a ‘factorized repre-
sentation’ (with independent representation of abstract 
structural knowledge and concrete sensory information) 
in human replay, which is likely to be useful for inference 
and generalization in novel contexts75,139,140. Undoubtedly 
there are other organization principles of neural informa-
tion for supporting flexible behaviour75,141. For example, 

the dynamics of semantic representations during a visual 
understanding task might reflect a unique human ability 
to reason about arbitrary novel problems142.

Finally, in the study of abstract psychological pro-
cesses, it may turn out that there is no apparent decodable 
content. While decoding mental states, such as emotional 
states, is possible in principle143,144, other, more tractable, 
approaches, including experience sampling145,146, have 
been used. To gain a complete understanding of the rich 
dynamics of spontaneous neural activity, it is important 
that we develop new methods that are suited to probe 
these abstract cognitive processes in the future.

Conclusion
Recent advances in decoding cognition from sponta-
neous neural activity provides a basis for grounding 
human cognitive studies that are beyond immediate task 
demand. We suggest a ‘representation- rich’ approach, 
which relies on the cognitive map of task space, can 
advance our understanding of a wide range of cogni-
tive processes extending beyond task- evoked response. 
These processes include memory retrieval, planning and 
inference, which lie at the heart of sophisticated model- 
based reasoning. In considering both off- task and 
on-task neural reactivation, we have outlined how this 
approach can help bridge a divide between studies of 
resting states and those that focus on task- evoked acti-
vity. Finally, we consider that linking physiological  
features of neural activity to its representational con-
tent will have profound implications for future research  
in psychiatry, particularly in light of recent findings in 
schizophrenia.
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