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a b s t r a c t

The striatum and medial temporal lobe play important roles in implicit and explicit memory,
respectively. Furthermore, recent studies have linked striatal dopamine modulation to both implicit as
well as explicit sequence learning and suggested a potential role of the striatum in the emergence of
explicit memory during sequence learning. With respect to aging, previous findings indicated that
implicit memory is less impaired than explicit memory in older adults and that genetic effects on
cognition are magnified by aging. To understand the links between these findings, we investigated effects
of aging and genotypes relevant for striatal dopamine on the implicit and explicit components of
sequence learning. Reaction time (RT) and error data from 80 younger (20–30 years) and 70 older adults
(60–71 years) during a serial reaction time task showed that age differences in learning-related reduction
of RTs emerged gradually over the course of learning. Verbal recall and measures derived from the
process-dissociation procedure revealed that younger adults acquired more explicit memory about the
sequence than older adults, potentially causing age differences in RT gains in later stages of learning. Of
specific interest, polymorphisms of the dopamine- and cAMP-regulated neuronal phosphoprotein
(DARPP-32, rs907094) and dopamine transporter (DAT, VNTR) genes showed interactive effects on
overall RTs and verbal recall of the sequence in older but not in younger adults. Together our findings
show that variations in genotypes relevant for dopamine functions are associated more with aging-
related impairments in the explicit than the implicit component of sequence learning, providing support
for theories emphasizing the role of dopaminergic modulation in cognitive aging and the magnification
of genetic effects in human aging.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Convergent data from brain and behavioral levels underscore
that memory is a multifaceted function that involves multiple
brain circuitries and cognitive processes (Cohen & Squire, 1980;
Reber & Squire, 1994; Squire & Zola-Morgan, 1991; for reviews see
Squire, 2004, 2009). A prominent model proposed by Cohen and
Squire (1980) posits a basic distinction between declarative and
non-declarative memory, and similar views have proposed to
distinguish between explicit (verbally reportable) and implicit
(not verbally reportable) learning (e.g., Reber, 1989; for reviews

see Cleeremans, 1997; Frensch & Rünger, 2003). In this view,
declarative or explicit memory refers to memory contents and
episodes that can be consciously recalled and is primarily impli-
cated by the hippocampus and adjacent areas, which are com-
monly referred to as medial-temporal lobe (MTL). Non-declarative
or implicit memory, in contrast, subsumes a number of different
types of memory that are not dependent on the MTL and mostly
inaccessible by conscious recall. Motor skill acquisition is an
example of non-declarative/implicit memory and the striatum
has been found to be a key component of the neural network
underlying this ability (Doyon & Benali, 2005).

One of the commonly applied paradigms for studying motor skill
acquisition is the serial reaction time (SRT) task (Nissen & Bullemer,
1987), in which participants learn sequential regularities of succes-
sive stimulus locations and their corresponding motor responses.
Nissen and Bullemer showed that in this task participants acquired
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motor skills without being aware of what was learned or the
learning process itself, and further studies showed that this learning
co-occurred with activation in the striatum (Aizenstein et al., 2006;
Atallah, Lopez-Paniagua, Rudy, & O'Reilly, 2007; Rauch et al., 1997).
Relatedly, studies on the underlying neurochemical processes have
suggested that implicit learning is, in part, implicated by dopami-
nergic receptor mechanisms in the striatum (Karabanov et al., 2010)
and is modulated by the gene encoding the dopamine transporter
protein (DAT, Simon et al., 2011), which is active mostly in the
striatum (Heinz et al., 2000). At the same time, it has been reported
that motor skill acquisition is preserved in amnesic patients,
suggesting that is it hippocampus independent and dissociable from
declarative/explicit memory (Nissen & Bullemer, 1987; Reber &
Squire, 1994).

1.1. Implicit motor skill acquisition and aging

The distinction between explicit and implicit memory has also
been a focus in the research on memory aging. A number of
studies have shown little or no implicit memory impairments in
older adults (Bo & Seidler, 2010; Fleischman, Wilson, Gabrieli,
Bienias, & Bennett 2004; Howard & Howard, 1989; Light & Singh,
1987; for a review, see Rieckmann & Bäckman, 2009). This finding
stands in contrast to the apparent age-related deficit in explicit
memory, but it is confined to less complex statistical regularities
(e.g. deterministic and lower order transitions between sequence
elements, Howard & Howard, 1997; Howard et al., 2004) and does
not apply to the use of chunks (Verwey, 2010; Verwey, Abrahamse,
Ruitenberg, Jiménez, & de Kleine, 2011), although in younger
adults implicit learning can capture higher order statistics of the
sequence structure (Schuck, Gaschler, & Frensch, 2012; Schuck,
Gaschler, Keisler, & Frensch, 2012). At the same time, aging is
associated with apparent declines in dopaminergic modulation in
various extrastriatal (e.g., Kaasinen et al., 2000) and striatal (e.g.,
Erixon-Lindroth et al., 2005) regions. Furthermore deficiencies of
dopaminergic modulation in these brain circuitries contribute to
various common cognitive impairments in old age (see Bäckman,
Nyberg, Lindenberger, Li, and Farde, 2006; Li, Lindenberger, and
Bäckman 2010, for an empirical review; see Li, Lindenberger, and
Sikström, 2001, for a theoretical integration) and have been linked
to deficiencies in striatal mechanisms underlying learning
(Eppinger, Schuck, Nystrom, & Cohen, 2013). Additionally, long-
itudinal (Raz et al., 2005) and cross-sectional (Walhovd et al.,
2011) research on changes in regional brain volumes has shown
that the extent of volume shrinkage in the striatum is comparable
to the decline in hippocampal volume.

In light of the above-mentioned relations between implicit
learning and striatal dopamine on the one hand and the partially
spared implicit learning abilities in older adults during sequence
learning on the other hand, we investigated the effects of aging
and dopamine-regulating factors on the implicit and explicit
aspects of sequence learning in the SRT task. Therefore our key
research question was whether genetic variations that influence
dopamine functioning in older adults influence their learning and
memory in the SRT task.

1.2. The DAT and DARPP-32 genes and motor skill acquisition

A recent receptor imaging study showed that sequence learn-
ing is modulated by striatal dopamine receptor density (Karabanov
et al., 2010). It is thus of specific interest to investigate genotype
effects of genes relevant for striatal dopamine function and how
the genotype effects interact with age. To study the impact of
dopamine-regulating factors, we took the candidate gene
approach (see Green et al., 2008). Specifically, we investigated
the impact of genetic variations in two genes known to be

associated with striatal dopamine signaling, the dopamine- and
cAMP-regulated neuronal phosphoprotein (DARPP-32, also known
as the protein phosphatase 1 regulatory subunit 1B, PPP1R1B;
location: 17q12) gene (Brené et al., 1994) and the dopamine
transporter (DAT, i.e. SLC6A3; location: 5p15) gene (Vandenbergh,
Persico, & Hawkins, 1992). The DARPP-32 gene is particularly
involved in integration of dopaminergic signal transmission in
striatal dopamine receptors (Svenningsson et al., 2004). The
DARPP-32 protein is highly expressed in striatal medium-sized
spiny neurons and has a broad spectrum of effects on D1 as well as
D2 receptors (Yger & Girault, 2011). Animal research has shown
that manipulations of DARPP-32 implicate motor behavior in
rodents (Bateup et al., 2010) as well as the occurrence of L-DOPA
induced involuntary movements in a rodent model of Parkinson's
Disease (Santini et al., 2007). In humans, it has been shown that a
common haplotype that also includes the single nucleotide poly-
morphism (SNP) rs907094 of this gene is associated with striatal
activation and volume (Meyer-Lindenberg et al., 2007) as well as
performance in a reinforcement learning task (Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007; Hämmerer et al., 2013).
Specifically, homozygotes of the DARPP-32 rs907094 A allele
(“A/A” carriers) performed better than carriers of the G allele (i.
e., A/G or G/G, henceforth “any G”). In addition to these effects, a
recent paper has shown that the DARPP-32 rs907094 polymorph-
ism is related to attentional regulation (Li, Passow et al., 2013).
Given the complexity of DARPP-32's effects on the dopamine
system, a recent summary also concluded that “the contribution
of DARPP-32 in human behavior remains poorly understood” (Yger
& Girault, 2011). The animal research that highlighted a role of
DARPP-32 in motor functions and its known role in DA function in
general indicate that there is a further need to study the effects of
DARPP-32 on human behavior. Moreover, research has shown that
the expression of DARPP-32 increases with advancing age
(Colantuoni et al., 2008), and hence DARPP-32 provides an inter-
esting candidate gene in the study of aging and motor skill
acquisition. Finally, DARPP-32 is often assumed to be an integrator
of neural dopaminergic signal transmission (Svenningsson et al.,
2004), and hence its interactions with other DA-relevant genes are
of particular interest.

The second gene we investigated, DAT, is also implicated in
striatal dopaminergic neurotransmission and regulates the re-
uptake of dopamine from the synaptic cleft (Heinz et al., 2000).
It has been shown that the various number tandem repeat (VNTR)
in exon 15 affects gene expression (Fuke et al., 2001). The VNTR
9-repeat allele (“9-repeats”) is associated with lower protein
availability in vitro (Miller & Madras, 2002; VanNess, Owens, &
Kilts, 2005) and in vivo (Cheon, Ryu, Kim, & Cho, 2005; Heinz et al.,
2000; Jacobsen & Staley, 2000; van de Giessen et al., 2009). This
decreased availability of DAT likely leads to increased availability
of striatal dopamine in the synaptic cleft. In line with these
findings, evidence from behavioral genetic studies shows that
the DAT VNTR 9-repeat allele is associated with better working
memory (Brehmer et al., 2009) and episodic memory (Li,
Papenberg et al., 2013; Schott et al., 2006), although some studies
did not replicate such an association (Boonstra et al., 2008;
Rommelse et al., 2008). Of particular interest, Simon et al. (2011)
reported an association between implicit learning and the DAT
VNTR genotype, with 9-repeat carriers learning more than 10/10
homozygotes in an sequential triplet learning task.

In summary, we investigated two dopamine relevant genes.
One gene, DAT, has been shown to affect implicit learning in
younger adults. The second gene, DARPP-32, is not well studied in
humans, but is known to affect motor behavior in animals, is
increasingly expressed with advancing age and plays a particular
role in the integration of DA signaling processes. Hence DAT and
DARPP-32 are ideal candidate genes to investigate interactive
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effects of DA-relevant genes and age on motor skill acquisition.
Based on the above reviewed literature, we expected that the
investigated genes would influence implicit learning and motor
function in younger and older adults.

1.3. Age-related magnification of genetic effects and changes
in the organization of memory systems

There are, however, two additional and important considera-
tions about the above described links between dopamine-relevant
genes, aging and implicit learning in the SRT task. Firstly, the
previous studies have revealed that associations between genetic
variation and cognitive phenotypes are stronger in older as com-
pared to younger adults (Li et al., 2010; Li, Papenberg et al., 2013;
Nagel et al., 2008; Papenberg et al., 2013; Schuck et al., 2013). It
has been proposed that these findings reflect an nonlinear func-
tion relating brain resources and cognitive function (Lindenberger
et al., 2008). Such a nonlinear function is particularly evident in
the case of dopamine, where an inverted U-shape function relating
dopamine signaling in frontal cortex and memory has been
reported (Vijayraghavan, Wang, Birnbaum, Williams, & Arnsten,
2007; for reviews, see Arnsten, 1998; Seamans & Yang, 2004; for a
computational account, see Li & Sikström, 2002). Thus, we
expected a potential effect of dopamine-relevant genotypes on
learning and performance in the SRT task to be stronger in older as
compared to younger adults.

Secondly, for two reasons the link between striatal dopamine
and knowledge measures from the SRT might be not as clear as the
initially cited research suggests. The first reason is that the SRT
task is not process pure. It has been shown that participants may
also acquire partial explicit memory during the course of sequence
learning (e.g., Ferdinand, Rünger, Frensch, & Mecklinger, 2010;
Pascual-Leone, Grafman, & Hallett, 1994; Rünger & Frensch, 2008)
and hippocampal activity has been found during implicit learning
tasks (Gheysen, Van Opstal, Roggeman, Van Waelvelde, & Fias,
2010). Moreover, recent work by Rose, Haider, and Büchel (2010)
and Wessel, Haider, & Rose (2012) revealed that the transition
from implicit to explicit memory is preceded by increased activity
in the brain area that is linked to implicit learning, i.e. the striatum.
Accordingly, some authors have focused on the interactions of
implicit and explicit forms of memory instead of their dichoto-
mous distinction (Destrebecqz et al., 2005; Haider & Frensch,
2005; Perruchet, Bigand, & Benoit-Gonin, 1997; Song, Marks,
Howard, & Howard, 2009; Willingham & Goedert-Eschmann,
1999). A number of studies using incidental serial motor learning
have indeed shown that implicit and explicit components of
learning both develop and contribute to performance in incidental
learning tasks. The existence of explicit sequence knowledge in
some participants is most clearly shown by post-experimental
verbal recall questionnaires (Rünger & Frensch, 2010) or a process–
dissociation approach (PDP) based on post-experimental sequence
generation tasks (Destrebecqz & Cleeremans, 2001). In addition,
Ghilardi, Moisello, Silvestri, Ghez, and Krakauer (2009), Moisello
et al. (2009), and Moisello et al. (2011) have shown that different
aspects of behavior during task performance are related to implicit
and explicit components, where kinematic changes and anticipa-
tory movements were related specifically to the latter, but RT
decreases were also observed in subjects without declarative
knowledge. Hence, this research underpins the notion that implicit
and explicit components contribute to SRT performance (RTs), but
might be differentially reflected in different aspects of perfor-
mance and post-experimental questionnaires. Relatedly, a recent
study by Bornstein and Daw (2012) applied computational learn-
ing models to account for RT data from the SRT task and showed
that models that incorporated both a fast and slow learning
processes fitted the data best. Moreover, the faster learning

process correlated with striatal activity indicating habitual asso-
ciative responses, whereas the slow process correlated with
hippocampal activity reflecting episodic memory processes about
the structure of the sequence (model-based learning). While
knowledge in the SRT might initially be largely implicit, explicit
knowledge might gradually emerge with ongoing training
(Perruchet et al., 1997; Rose et al., 2010). Such evolving explicit
knowledge can be reflected in certain aspects of performance, such
as anticipatory key presses. Whether the additional striatal invol-
vement preceding the first signs of explicit knowledge that was
reported by Rose et al. (2010) is related to more implicit knowl-
edge that eventually leads to explicit knowledge or to the
emergence of explicit knowledge directly, however, is still unclear.

The second reason that complicates the link between striatal
dopamine and knowledge measures from the SRT is that aging
does not only impair the dopamine system, but might also
influence the differentiability of the neural bases of implicit and
explicit memory. Two recent imaging studies (Dennis & Cabeza,
2011; Rieckmann, Fischer, & Bäckman, 2010) have found that in
older adults the MTL plays a role in implicit learning in addition to
the striatum and the striatum plays a role in explicit memory in
addition to the MTL. In contrast, younger adults in these studies
showed mainly striatum activation during implicit learning and
MTL activity during explicit learning. Hence, the division of labors
between the MTL and the striatum for explicit and implicit
learning may become less distinct with aging, a phenomenon that
is consistent with predictions by theoretical accounts of dopamine
aging (Li, Lindenberger, & Frensch, 2000; Li et al., 2001; Li &
Sikström, 2002) and further evidence from older adults and
patients with striatal damage (Moody, Bookheimer, Vanek, &
Knowlton, 2004; Papenberg et al., 2011). Consequently, we
expected that the dopamine-relevant genetic factors also influence
the explicit component of sequence learning, particular in older
adults. In the present study we investigated these expectations by
employing methods to disentangle implicit and explicit memory
that develops during the SRT task.

1.4. Hypotheses and aim of study

In summary, the present study investigated the effects of
human aging and polymorphisms of the DAT gene (VNTR) and
the DARPP-32 gene (the SNP rs907094) on implicit and explicit
knowledge development during the SRT task. The previous studies
have shown that older adults are less impaired in implicit than in
explicit memory, but age differences in the detailed dynamics of
the development of explicit knowledge as well as in the effects of
dopaminergic genotypes on the different memory components are
unknown. Moreover, previous research has indicated that the
striatum might not only be implicated in implicit but also explicit
memory and the dopaminergic neuromodulation account of cog-
nitive aging (Li et al., 2000, 2001; Li, Naveh-Benjamin, &
Lindenberger, 2005; Li & Sikström, 2002) predicts that with
advanced age, a stronger link between striatal dopaminergic
functions and explicit memory might occur. Additionally, the
resource modulation hypothesis predicts that any genetic effects
should be stronger in older as compared to younger adults. In line
with these theories and data, we expect (a) larger age differences
in the development of explicit as compared to implicit memory
during the SRT task, (b) effects of dopamine-relevant genotypes on
implicit and explicit components, (c) larger genetic effects in older
adults in general and (d) larger genotype effects on the explicit
component in older as compared to younger adults.

To test these predictions, we assessed participants' memory
performance in the SRT task in terms of learning-related RT reduc-
tions and error rates, as well as post-learning measures of explicit
and implicit sequence memory derived from the process-dissociation
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procedure (PDP) and explicit verbal recall. We expected better
performance for younger adults with respect to learning-related
reductions in RTs and error rates after extended practice. The above-
mentioned research by Bornstein and Daw (2012) suggested that
learning that reflects the structure of the sequence (model-based
learning) is slower, thus may only be observed later in the process.
Furthermore, findings from the studies by Ghilardi et al. (2009)and
Moisello et al. (2011) showed that participants without explicit
knowledge developed less RT improvements and show less antici-
patory movements. Hence, more explicit memory in younger adults
might also be reflected in larger RT gains in the later part of training
and more errors in trials where the stimuli did not follow the learned
sequence. Moreover, in line with the evidence reviewed above, we
predicted age-differences in post-experiment sequence memory for
explicit (verbal recall and explicit PDP score) but not for implicit
memory (implicit PDP score). Concerning dopamine genotypes, we
anticipated effects on motor aspects of learning (e.g., RT reduction)
and implicit memory. We also anticipate these effects to be magni-
fied in older adults. Lastly, based on neuroimaging results showing a
dedifferentiation of the striatal and MTL memory systems and
research showing that the transition from implicit to explicit
memory implicates the striatum, we also anticipate an effect of
dopamine-relevant genotypes on the explicit component of
sequence learning, and that if such effects exist, they would be
larger in older adults.

2. Material and methods

2.1. Participants

One hundred fifty-seven subjects of Caucasian origin participated in the study.
The following participants were excluded from analysis: one older adult whose
mean error rate exceeded 3.3 SDs from the age-group mean (423% errors), one
younger participant whose genotyping failed and 5 participants (2 older and
3 younger) who had a rare DAT genotype (1 DAT VNTR 8/10 and 4 DAT VNTR 10/11).
The effective sample was composed of 70 older (mean age: 65.8 years, range: 60–
71, 35 female) and 80 younger (mean age: 25.1 years, range: 20–30, 38 female)
adults, see Table 1. All participants were screened for neurologic, psychiatric, and
other medical conditions using a questionnaire. The local ethics committee at the
Max Planck Institute for Human Development approved the study. All participants
gave written consent to the procedures and the collection of saliva samples and
received 27 Euro as compensation for participation. In addition to the experimental
task described below, the participants reported their years of education and we
obtained information on two marker tests of fluid (perceptual speed) and crystal-
lized (verbal fluency) intelligence. The age groups did not differ with respect to
years of education (t(113)¼1.10, p¼ .2738). Similar to the previous results based on
representative population samples (Li et al., 2004), older adults performed worse
than younger adults in the perceptual speed measure (identical pictures),
t(147.1)¼�20.11, po .0001, but better than younger adults in the crystallized
intelligence test (spot-a-word test), t(146)¼4.65, po .0001. Data from performance
in a virtual spatial navigation task of this sample is reported elsewhere (Schuck
et al., 2013). Table 1 summarizes the sample characteristics.

2.2. Genotyping

Saliva samples were collected using Oragene OG-250 collection kits (DNA
Genotek, Ontario, Canada), and DNA extraction was conducted using standard
procedures.

Genotyping of DARPP-32 SNP rs907094 was carried out in a 384-well microtiter
plate format using a commercially available 5′-exonuclease allelic discriminiation

assays (based on “TaqMan” chemistry, Applied Biosystems [Foster City, CA, USA]).
TaqMan oligonucleotide probes for genotyping were designed and synthesized by
the manufacturer (assay ID: C___7452370_1_) and experimental conditions fol-
lowed the manufacturer's instructions. In short, genotyping was performed on 384-
well microtiter plates in 5 ml reaction volumes. For each reaction we combined
10 ng DNA template, 5� TaqMan genotyping assay and 5� TaqMan Genotyping
Master Mix. Thermal cycling was done on a PTC-240 PCR instrument using the
following cycling conditions: pre-amplification phase at 50 1C (2 min), initial
denaturation at 95 1C (10 min), followed by 45 cycles of denaturation at 95 1C
(15 s), annealing and extension at 60 1C (60 s). For the DAT VNTR, we genotyped the
40-base-pair VNTR in the 3′ untranslated region following previously published
procedures (Lim et al., 2006). Product amplification was achieved by polymerase
chain reaction (PCR) on 96-well microtiter plates in 10 ml reaction volumes. For
each reaction we combined 1.5 mM of each primer, 50 ng/ml of DNA template,
0.25 mM dNTPs, 0.25U Taq polymerase and Q solution (QIAGEN Ltd; Hilden,
Germany). Thermal cycling was done on an MJ Research Thermo Cycler PTC-240
using the following cycling conditions: initial denaturation at 94 1C (3 min),
followed by 35 cycles of denaturation at 94 1C (45 s), annealing at 70 1C (90 s),
and extension at 72 1C (35 s), followed by a final extension step at 72 1C (6 min).
Genotypes were called after visualization of amplification products on a Shimadzu
MCE-202 MultiNA instrument (Shimadzu Corporation, Kyoto, Japan) using the DNA
500 kit following the manufacturer's protocol. In this assay, the 9-repeat allele ran
at approximately 430 bp, while the 10-repeat allele ran at approximately 470 bp.

Concerning the DARPP-32 SNP rs907094, participants were grouped into “A/A”
and “any G” carriers (Frank, Doll, Oas-Terpstra, & Moreno, 2009). The frequencies of
the genotypes among the older adults were 56.3%, 35.2% and 8.5% for the A/A, A/G
and G/G alleles and 57.5%, 33.8% and 8.8% among the younger adults. The DAT VNTR
genotypes were grouped into “any 9” and “10/10” carriers (cf. Li et al., 2012). The
frequencies of older adults carrying the different alleles were 49.3% for 10/10, 43.7%
for 9/10, and 7% for 9/9. The distribution of genotypes among the younger adults
was 50%, 41.3% and 8.8% for 10/10, 9/10 and 9/9 repeats, respectively. The observed
counts genotypes did not differ from that expected according to Hardy–Weinberg
equilibrium; all χ2so1.3; all ps40.05 (Rodriguez, Gaunt, & Day, 2009).

2.3. Procedure

2.3.1. Serial reaction time task
Implicit and explicit learning was assessed with a modified SRT task (Nissen &

Bullemer, 1987) that was followed by a processes-dissociation procedure
(Destrebecqz & Cleeremans, 2001) and a verbal recall questionnaire. To ensure an
incidental learning situation, the words “memory” or “learning” were not used in
the experiment description and participants were only informed that the aim of the
study was motoric coordination. During the SRT task, participants sat in front of a
screen where circles arranged on a horizontal line indicated four possible stimulus
locations. Four reaction buttons were arranged roughly below these four locations
(we used the F3, F4, F9 and F10 keys on a turned-around keyboard). The
participants were asked to use the middle and index fingers of the left and right
hands and keep their fingers rested on the buttons during the entire experiment.
For each trial, a circle was filled at one of the four possible locations and the
participants were asked to press the spatially corresponding key on the keyboard.
Participants were instructed to respond to each target as quickly as possible. Errors
were indicated by a red exclamation mark appearing in the center of the screen.
The response–stimulus interval was 250 ms. The entire experiment consisted of 30
blocks, each containing 8 repetitions of the 12 element sequence, totaling to 2880
trials. After each block participants could take a short break and received feedback
about their performance. To avoid potential age differences in error rates we used
differential feedback between blocks (cf. Bennett, Howard, & Howard, 2007).
Depending on a participant's mean accuracy in the last block, a statement
prompted either to “speed up the responses a little in the next block” (496%
correct), to “slow down the responses a little in the next block” (o90% correct) or
to “continue as before” (if the error rate was between 4% and 10%).

Unbeknownst to the participants, consecutive stimuli locations followed one of
two deterministic 12-element second order sequences as used previously
(342312143241 or 341243142132, Destrebecqz & Cleeremans, 2001; Reed &
Johnson, 1994). These sequences are balanced for stimulus locations and transition
frequency while second order conditional probabilities (subsequences of three
elements) differ. Except in block 26 (see below), one sequence was repeated 7 times

Table 1
Sample statistics.

Age group Age Education (years) DAT VNTR
(nany 9/n1010)

DARPP-32
(nAA/nany G)

Spot-a-wordn Identical
picturesn

Older (n¼70) 65.8 13.9 36/35 40/31 25.23 (5.3) 22.20 (3.3)
Younger (n¼80) 25.1 14.6 40/40 46/34 20.67 (6.7) 34.22 (4.0)

Note: table shows basic statistics about the current sample, including distributional information of genotypes and markers of perceptual speed (identical picture) and
crystalline intelligence (spot-a-word). * indicate significant differences between age groups. Details see text.
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within a block (frequent condition) and the other sequence was shown once
(infrequent condition). The difference in RTs between the infrequent and the
frequent condition reflects the amount of knowledge about the frequent sequence.
In this manner, we obtained a continuous estimate of learning-driven RT and error
changes. In order to compare our results to a more traditional SRTT design where
one block with random sequences is often used to assess learning (e.g., Howard &
Howard, 1992), the frequency relations were reversed in block 26. Accordingly, the
infrequent sequence was repeated seven times and the frequent condition only
once in this block.

2.3.2. Process-dissociation procedure
Following the main task, we conducted a process-dissociation procedure (PDP;

Jacoby, 1991) that was adapted for the SRT task (Destrebecqz & Cleeremans, 2001; see
also: Destrebecqz et al., 2005; Gaillard, Destrebecqz, Michiels, & Cleeremans, 2009).
Using the PDP-procedure to asses implicit and explicit knowledge has been
considered as an improvement over recall measures because it is a forced choice
test that does not suffer from the reduced sensitivity that has been criticized of recall
measures (Shanks & St. John, 1994). Specifically, participants were informed that
consecutive stimulus locations followed a repeated sequence. They were then told
that in the following task they did not have to react to the stimuli any more. Instead, a
button press by the participants caused the corresponding circle to be filled. The
participants were now asked to type in sequences under two conditions: In the
exclusion condition, the task of the participants was to avoid typing the sequence that
was repeated during the main task. In the inclusion condition, participants were asked
to type the sequence that was repeated before. In both conditions, the task lasted for
48 reactions and participants were told to avoid repetitions. The RSI was 250 ms. We
analyzed the generation performance in both conditions separately to study the
extent of control that participants have over their sequence memory. In line with
Jacoby's instantiation of the PDP (Jacoby, 1991), we assumed that performance in the
inclusion condition reflects a combination of implicit and explicit knowledge,
whereas the inability to suppress knowledge in the exclusion condition is a reflection
of familiarity or implicit memory (see Destrebecqz and Cleeremans (2001) and
Gaillard et al. (2009) for similar approaches with the SRT task).

2.3.3. Verbal recall questionnaire
After completing the computer-based part, a questionnaire was given to the

participants. They were asked to write down a 12-element sequence that repeated
during the main experiment. If participants felt that they did not have any memory
of the sequence, they were asked to guess based on their intuition.

2.4. Data analyses

The data was analyzed using R (R Development Core Team, 2011) and SAS (SAS
Institute, Cary, USA). Unless otherwise noted, we used mixed-effect ANOVAs (SAS
PROC MIXED) in combination with Kenward–Rodger degrees of freedom (Kenward
& Roger, 1997). ANOVAs contained combinations of the between subject factors of
age group and DA score (or DARPP-32 (rs907094) and DAT VNTR, see below) and
the within subject factors of condition (frequent vs. infrequent/exclusion vs. inclu-
sion) and acquisition phase as appropriate. Post-hoc t-tests were conducted within
PROC MIXED and Bonferroni adjusted as appropriate. Exact p-values up to a level of
p¼ .0001 are reported. For the analyses involving reaction times, we used
individual medians in each factor cell (Luce, 1991).

To estimate the amount of explicit and implicit knowledge reflected in the PDP
and verbal recall questionnaire data, we computed a knowledge score for each
participant based on the probability of the match between the reported and the
correct sequence given chance (see Rünger and Frensch (2008) for a similar
approach). To this end, we first simulated 105 sequences that had approximately
the same statistical constraints as the empirical data.1 From these sequences we
derived the baseline distributions for the numbers of correct triplets and the length of
the longest correct subsequence. Next, we computed the overlap of each participant's
sequences with the correct sequence separately for the recall and PDP tests. Since the
PDP test contained 48 responses, we divided the responses in 4 sequences of 12
elements each and consider only the 12 elements with the best match. This overlap
was transformed into knowledge scores by taking the probability of this overlap as
determined by the above-mentioned simulation. Finally, the probabilities were
linearized according to common practices by taking their negative logarithm (e.g.,
Bortz, 1999). The resulting scores lie between 0 and 1, where 1 reflects the highest
amount of knowledge, i.e. getting all 12 items correct (the probability of this event to
occur by chance is 0.00001, and the log-score is accordingly � log10^5(0.00001)¼1).
The most likely event to occur by chance (getting 2 triplets correct), had a log-score of
0.11. Analyses of the training RT and error data involved five factors (age group,
acquisition phase, condition, DARPP-32 rs907094 and DAT VNTR, see below). To
reduce model complexity and because our hypothesis concerned main effects and
first level interactions (especially regarding gene-gene and age group by gene

interactions), we used a stepwise inclusion approach for higher-level interactions.
Specifically, if first level interactions were significant we included the second level
interactions involving these lower-level interactions. If these were significant, we
included the higher-level interactions involving the significant lower level interac-
tions. Because perceptual speed might have a large influence on the SRTT, which is
not of interest in the current study, the identical pictures score was used as a covariate
in all analyses of reaction times and errors. For the ANCOVAs dealing with the training
data reported below, the time course of the data was binned into the first and the
second acquisition phase of learning (i.e., blocks 1–12 and blocks 13–25). In order to
avoid any effects of the reversal in block 26, we consider only blocks 1–25. Block 26
will be considered in a separate analysis.

3. Results

3.1. General SRT performance

As expected, younger adults had shorter reaction times (main
effect age group: F(1, 136)¼29.61, po .0001) and made more errors
(3.2% and 4.6% for older and younger participants, respectively, F(1,
147)¼5.43, p¼ .0212) than older adults. General performance
improvements across practice were reflected in decreasing RTs and
errors across acquisition phases, i.e., we found main effects of
acquisition phase for both measures, F(1, 73.5)¼157.14, po .0001,
and F(1, 119)¼11.87, p¼ .0008. The main effects of DARPP-32 rs907094
and DAT VNTR on RT level were not or only marginally significant, F(1,
152)¼2.64, p¼ .1096 and F(1, 161)¼2.74, p¼ .0999 and the corre-
sponding effects on the error level failed to reach significance, ps
4.16. However, carrying non-beneficial alleles on both genes resulted
in generally slower RTs, as reflected in the 2-way interaction DARPP-
32�DAT, F(1, 153)¼4.27, p¼ .0404. No corresponding effect was
found for errors, F(1, 184)¼0.02, p¼ .8796. Regarding RTs, there were
trends for interactions between the genotypes and the age group.
Specifically, the effect of DARPP-32 tended to be larger in older adults,
reflected in the marginal age group�DARPP-32 interaction, F(1,
158)¼2.98, p¼ .0861. Furthermore, the gene–gene interaction
between DARPP-32 and DAT also tended to be larger among older
adults, as reflected in the marginal three-way age group�DARPP-
32�DAT interaction, F(1, 154)¼3.37, p¼ .0683. No corresponding
effect was found for errors, ps4 .3582. Hence, the two dopamine-
associated polymorphisms influenced the RT speed in older but not
younger adults. Fig. 1A depicts the interaction effect of genotypes on
RT level separately for the two age groups.

To further explore the interaction of DARPP-32 and DAT, we
combined the two dopamine (DA) genotypes into a gene score,
henceforth DA score (Bertolino, Blasi, Latorre, Rubino, Rampino, &
Sinibaldi, 2006; Papenberg et al., 2013). The gene score contrasts
participants with either one or two beneficial genotypes (i.e.,
DARPP-32 rs907094 AA and/or DAT VNTR 9/9; n¼118, 53 older,
65 younger, henceforth DAþ) with participants without any
beneficial genotype (n¼33, 18 older, 15 younger, henceforth
DA�). We used this grouping because carriers of no beneficial
dopamine genotypes might be particularly susceptible to age-
associated cognitive decline (Bäckman et al., 2006). In this analysis
we found a main effect of gene score on RTs, F(1,78)¼7.59,
p¼ .0073, whereby carriers of at least one beneficial DA genotype
(i.e. the DAþ group) yielded shorter reaction times than carriers of
no beneficial genotypes (i.e., the DA� group). Furthermore, the
magnitude of this gene score effect was larger in older compared
to younger adults, as indicated by the age group� gene score
interaction, F(1,81.3)¼6.94, p¼ .0101. Post-hoc t-tests showed that
the effect of DA score on RTs was evident for older adults, t(50.7)¼
3.11, p¼ .0062, but not for younger adults, t(40.3)¼0.06, p¼ .9509.
No corresponding effects were found for errors, ps 4 .6865. Fig. 1B
shows the RTs as a function of condition, DA score, block and
age group.

1 Number of repetitions: 13.8% vs. 14.7% in the empirical and the generated
sequences, respectively, t(173.09), p¼ .7808; mean frequencies of single buttons
(mean maximum frequency of button): 3.68 vs. 3.68, t(176.07)¼0.06, p¼ .9511.
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3.2. Learning in the SRT

Memory of the sequence structure was reflected by shorter RTs
for the frequent than the infrequent condition, i.e. a main effect of
condition, F(1, 93.4)¼393.28, po .0001.

Similarly, participants made fewer errors in the frequent as
compared to the infrequent condition, F(1, 127)¼184.79, po .0001.
Moreover, increasing sequence knowledge was reflected by the
fact that the RT difference between conditions increased over time
(condition�phase, F(1, 118)¼156.21, po .0001), which was also
the case for errors, F(1, 174)¼38.01, po .0001.

3.2.1. Effects of age on learning in the SRT task
Analysis of the effect of age group revealed that learning-related

RT gains of younger adults became larger in the second acquisition
phase as compared to older adults' gains, i.e. we found a significant
3-way age group� condition� acquisition phase interaction, F(1,
118)¼9.31, p¼ .0028, see Fig. 2A. Hence, with continuing training
younger adults showed more learning in terms of RT benefits. This
was also supported by the analysis of the RT increase in Block 26
which indicated a main effect of age group, F(1, 107)¼3.96, p¼ .0492.

Similar to the results for the RT analysis, there was also a triple
interaction of age group, condition and acquisition phase for
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Fig. 2. Effect of age group on learning-related RT and error differences. The shown data illustrates the three way interactions between age group, condition and acquisition
phase on (A) RTs and (B) errors. Bars indicate standard errors of the mean.
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errors, F(1, 174)¼33.91, po .0001, as well as the corresponding
lower level interactions, i.e. age group interacted with condition, F
(1, 127)¼40.8, po .0001, and with acquisition phase F(1, 116)¼
12.88, p¼ .0005. This triple interaction reflects that younger adults
had higher error rates in the infrequent as compared to the
frequent condition (8.6% vs. 3.9%, po .0001) and that this different
grew larger with training (3.1% vs. 6.2% difference in the early and
late acquisition phase, po .0001), but no such pattern can be
observed in older adults, albeit their overall higher error rates, see
Fig. 2B. Hence, for younger adults we found higher error rates in
the infrequent as compared to the frequent condition and an
additional increase in this difference over time. This pattern likely
reflects younger adults' greater knowledge about the sequence
that leads to increased errors in the infrequent sequence, as would
be expected based on the above reviewed evidence of more
explicit knowledge development in younger adults. Fig. 2 shows
the effect of age group on learning (infrequent–frequent condi-
tion) across blocks for RTs (panel A) and errors (B).

3.3. Effect of age on implicit and explicit knowledge components
of learning in the SRT task: PDP and recall

The above analyses indicted that aging does not only influence
performance level, but also learning in the SRT task. Next, we
disentangled implicit and explicit components of the acquired
knowledge. To this end, we analyzed the performance during the
PDP and the recall questionnaire. Fig. 3A shows the distribution of
correct triplets for the two age groups in the recall and PDP tests
as well as the simulated baseline distribution.

3.3.1. Amount of explicit and implicit knowledge
First, we quantified the amount of explicit knowledge more

precisely. As can be inferred from Fig. 3A, more younger adults
reported sequences with a high degree of overlap with the correct
sequence and this was particularly the case for the inclusion and
the recall tests. In the recall test, younger adults had higher
(probability-based) knowledge scores than older adults for the

number of triplets (mean number of triplets: YA 4.5; OA 3.98),
t(128)¼2.11, p¼ .0369 and the mean maximum length of correct
runs (YA 5.3, OA 4.6), t(141)¼2.37, p¼ .0194. Concerning the
results from the PDP, it is generally assumed that inclusion
performance reflects explicit plus implicit memory and exclusion
performance indicates automatic, implicit memory (Destrebecqz &
Cleeremans, 2001; Gaillard et al., 2009). Following Jacoby's frame-
work of dissociating automatic from intentional memory pro-
cesses using the PDP (Jacoby, 1991) and its adaption to implicit
sequence learning (Destrebecqz & Cleeremans, 2001),2 we com-
puted an explicitness score by subtracting the exclusion from the
inclusion score. In line with the above reported results from the
recall test,3 younger adults had also higher explicitness scores than
older adults, t(123)¼2.67, p¼ .0087. This analysis is equivalent to a
two-factorial ANOVA with factors age group and condition (inclu-
sion vs. exclusion), which yielded a significant interaction of age
group and condition, F(1, 123)¼7.12, p¼ .0087. This interaction was
driven by the fact that older and younger adults did not differ in
the exclusion condition, t(148)¼0.08, p¼1, but in the inclusion
condition, t(111)¼2.79, p¼ .0124. Hence, younger adults' perfor-
mance in the inclusion condition reflected high amounts of
explicit knowledge, whereas they did not differ in performance
in the exclusion condition, which is assumed to reflect implicit
knowledge. Whereas both age groups did not differ with respect to
implicit knowledge acquired, they differed in the amount of
explicit knowledge. This conclusion is further supported when
only participants with larger amounts of explicit sequence knowl-
edge are considered. Specifically, we categorized participants as
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2 Destrebecqz and Cleeremans did not use the difference, but only the number
of hits in the inclusion condition alone. Regardless if we considered the difference
between the inclusion and the exclusion condition or the inclusion condition alone
as a measure of explicit knowledge, a significant difference between age groups can
be found (see Fig. 3).

3 As expected, the recall score was mildly correlated with the score from the
PDP. Specifically, Kendall's tau correlation between the number of triplets during
recall and during the inclusion condition across age groups was τ¼ .22, po .001,
with τ¼ .25, p¼ .004 and τ¼ .17, p¼ .058 for younger and older adults, respectively.
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having explicit knowledge of the sequence if they reported more
than 6 correct triplets in the recall condition (corresponding to a
cutoff of po .01, because the event of 6 correct triplets is less likely
than 1% to be produced by chance) and compared the number of
explicit subjects across age groups. A χ2-test revealed that a larger
proportion of younger than older adults could be categorized as
having explicit knowledge (20% vs. 7%), χ2(1)¼4.2, p¼ .0393 (with
continuity correction).

3.3.2. Relation of explicit knowledge to RT gains over the course
of learning

The analyses above indicate that an important age difference
consists in the amount of explicit knowledge that participants
acquired. At the same time, analysis of RTs and errors during
learning showed that only after a substantial number of repeti-
tions the two age groups start to differ. To connect these two
findings, we investigated the relation of the explicit knowledge
scores to the RT gains that emerge during learning. If the gradual
occurrence of age difference in RT-based learning indicators is a
reflection of the emerging explicit knowledge, then one would
expect increasingly strong links between these RT differences and
the explicit knowledge. Hence, we calculated correlations relating
the RT difference between the frequent and infrequent condition
to the recall knowledge score separately for each block. This
analysis results in a correlation that reflects the influence of
explicit memory on learning-related RT reductions for each block.
To study the development of the correlations between verbal
knowledge and RT gains over time, we submitted these correla-
tions to a linear regression with block as the independent and the
correlations as the dependent variables. This analysis revealed that
younger adults show a linear increase over blocks in the correla-
tion between explicit memory on RT benefits, t(23)¼6.53,
po .0001, but not in older adults, t(23)¼�1.0, p¼ .317. Hence,
over the course of learning younger adults increasingly employed
explicit knowledge to speed up their RTs, whereas older adults did
not, indicating that the greater amount of explicit knowledge we
observed at the end the experiment is linked to the gradually
occurring age effect in RT differences during the learning phase.

3.4. Interactions of dopamine-related genes and age in learning
and memory

3.4.1. Effects of DA genes on learning in the SRT task
None of the learning-related RT effects interacted with the DA

score, i.e. nor any of the interactions involving condition,
ps4 .3344, neither the effect of sequence reversal in Block 26,
F(1, 38)¼0.13, p¼ .7232, was influenced by DA score. The learning-
related error pattern showed a trend for an interaction with age
group and dopamine-relevant genotypes. Specifically, we found a
marginal four way interaction between age group, condition,
acquisition phase and DA score, F(1, 76.8)¼3.69, p¼ .0583 and a
significant five-way interaction of age group, acquisition phase,
condition, DARPP-32 and DAT, F(7, 156)¼2.41, p¼ .0228.4 These
interactions reflect the fact that older carriers of beneficial dopa-
mine genotypes (i.e., the DAþ group) yielded a significantly larger
error rate in the infrequent as compared to the frequent condition
in the second acquisition phase of training (5.3% vs. 2.9%,
t(84.92)¼4.35, po .0001), indicating greater acquisition of the
frequent sequence. This effect, however, was not observed in older
adults who did not carry beneficial alleles, t(27.31)¼1.6, p¼ .1199.
Moreover, whereas the difference between errors in the infrequent

and the frequent condition did not differ between older DAþ and
DA� carriers in acquisition phase 1, t(44.7)¼1.16, p¼ .2537, there
was a marginal difference in acquisition phase 2, t(61.3)¼�1.9,
p¼ .0618. Among younger adults, this pattern did not differ
between the two gene score groups. As we indicated above,
younger adults generally showed an increasing difference between
conditions across acquisition phases and this effect likely reflects
increasing sequence knowledge, a finding that is in line with the
previous reports of an association between explicit knowledge and
more anticipatory key presses (Ghilardi et al., 2009). The above
analysis showed that older DAþ but not DA� carriers had a
similar error pattern than younger adults, with higher error rates
in the infrequent condition particularly in the second half of the
acquisition phase. Fig. 4A shows the difference between errors in
the infrequent and the frequent conditions separately for the DA
scores, the acquisition phases and the age groups.

3.4.2. Effects of DA genes on explicit knowledge
To analyze a possible influence of the DA score on the measures

of explicit and implicit knowledge, we conducted ANOVAs includ-
ing main effects for the factors age group and DA score (DAþ vs.
DA�) for the recall, inclusion and exclusion tests. The analysis of
the recall revealed a significant interaction of DA score and age
group, F(1, 85.9)¼6.4, p¼ .0132. Follow-up analyses showed that
among older adults DAþ carriers had significantly higher recall
scores than DA� carriers, t(67)¼2.67, p¼ .015, which is also
reflected in a higher number of triplets: 4.2 vs. 3.3, max. 8 vs. 6,
p¼ .03. In contrast, this was not the case for younger adults, t
(27.7)¼0.07, p¼1. In the PDP inclusion condition, we did not find
an effect of DA score, F(1, 44.3)¼0.82, p¼ .3689. Likewise, we did
not find such an effect for the exclusion condition, F(1, 86.4)¼2.31,
p¼ .1318. Fig. 4B shows the data from the verbal recall.

Table 2 provides an overview over descriptive statistics and
Table 3 over the reported effects.

4. Discussion

Implicit memory is related to dopamine in the striatum and
associated with a polymorphism (VNTR) on the DAT gene (Simon
et al., 2011). Moreover, striatal dopaminergic neuromodulation is
largely impaired in older adults and likely related to learning
deficiencies (Eppinger et al., 2013). At the same time, however,
previous studies have shown that learning-related RT benefits in
an implicit learning task are comparable for younger and older
adults (e.g., Howard & Howard, 1989), suggesting that implicit
learning might be spared from age-related deterioration. In the
present research, we investigated the amount of implicit and
explicit sequence memory after extensive training in an incidental
learning task in younger and older adults. Specifically, we studied
the effects of dopaminergic genotypes on motor performance and
disentangled contributions from explicit as well as implicit mem-
ory to sequence learning indicators (RT and error gains).

Our analyses revealed that older adults had (a) worse motor
performance (i.e., overall RT level), (b) less learning-related RT and
error differences (i.e., better performance in trials following a
frequent as compared to a infrequent sequence) and (c) developed
less explicit knowledge (e.g., verbal recall) about the sequence over
the course of learning. Implicit knowledge (as indicated by the
exclusion PDP score), in contrast, was equivalent between age
groups. In particular, we observed that both age groups developed
substantial learning-related RT improvements during the first 10
blocks of learning (i.e., 70 repetitions of the sequence), whereby
amount and speed of acquisition were comparable to younger
adults. After block 10, however, younger but not older adults
continued to improve. At the end of learning (25 blocks) they

4 According to the stepwise inclusion procedure, this term would not have
been included in the analysis. It is reported here to further evaluate the marginal
interaction with DA score.
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showed significantly larger RT reductions (see Fig. 2A). Correlation
analyses showed that with ongoing training, younger adults
increasingly developed and made use of their explicit memory to
speed up RTs, whereas older adults did not show this pattern.
Hence, an observable age difference in learning related RT gains in
an implicit motor skill acquisition task was accompanied by
emerging explicit knowledge in younger but not older adults.
The emergence of explicit knowledge after the initial 10 blocks of
learning is in line with the slower model-based instead of habit-
based learning in the computational account of sequence predic-
tion by Bornstein and Daw (2012).

Most notably, our genetic analyses showed that genetic effects
of two dopamine related genes interacted with each other as well
as with age group, reflecting interactive genetic effects in older but
not younger adults. Similar to the effects of age group, these effects
modulated (a) motor performance level, (b) learning-related error
differences and (c) explicit knowledge. Specifically, a combination
of non-beneficial alleles in dopamine-relevant polymorphic DNA
sites (SNP rs907094 in DARPP-32 and a VNTR in DAT) was related
to slower RTs, less learning related difference between errors in

the frequent and the infrequent conditions and less explicit
sequence memory (verbal recall) after learning in older but not
younger adults.

Our data is of theoretical significance from three perspectives:
first, it provides novel evidence to lend further support for the
notion that the development of implicit and explicit memory
during incidental sequence learning are differentially affected by
aging. Second, it underscores the role of dopamine in affecting
motor-based sequence learning, particularly the emergence of
explicit memory in an incidental learning situation. Third, it
substantiates the view that genetic effects on cognition might be
magnified in older adults. Regarding the first perspective, our
findings of spared implicit sequence memory (Bennett, Madden,
Vaidya, Howard, & Howard, 2011; Fleischman et al., 2004; Howard
& Howard, 1989, but see Gaillard et al. (2009) for an exception that
is methodological close to the present study) as well as emerging
age-differences in learning related RT benefits (Bennett et al.,
2011; Simon, Vaidya, Howard, & Howard, 2012) are in line with the
previous studies. Our analyses extend these previous results by
supporting the idea that increasing development and usage of
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Fig. 4. Interaction of age and gene effects on verbal recall and errors. (A) Plot depicts the learning related error effect (more errors in the infrequent as compared to the
infrequent condition) for DA score and age group. (B) Knowledge scores for the recalled sequence separately for the DA score levels and age group. Bars indicate standard
error of the mean.

Table 2
Descriptive statistics of key dependent measures.

Age group DA score Reaction time (ms) Error (%) PDP (knowledge score) Verbal recall
(knowledge score)

Blocks 1–12 Blocks 13–25 Blocks 1–12 Blocks 13–25 Exclusion Inclusion

Random Sequence Random Sequence Random Sequence Random Sequence

Older DA � 645.4 608.7 614.3 560.2 5.32 3.16 3.99 2.80 0.16 0.22 0.16
DA þ 602.3 563.1 569.1 509.1 4.38 3.11 5.33 2.95 0.20 0.22 0.22

Younger DA � 468.8 422.0 456.0 374.8 7.78 4.19 10.90 4.12 0.19 0.24 0.26
DA þ 457 415.2 442.3 368.9 7.03 4.04 9.86 3.85 0.18 0.31 0.26

Note: table shows descriptive statistics of task performance and markers of implicit and explicit knowledge. Details see text.

Table 3
Summary of findings (inferential statistics).

Factor Performance General learning Implicit knowledge Explicit knowledge

Age group RT: po .01 RT: po .01 – Recall: p¼ .04
Error: p¼ .02 Error: po .01 PDP: po .01

DA Genes RT: po .01/p¼ .04 –

Age group�DA Genes RT: p¼ .01/(p¼ .07) Error: (p¼ .06)/p¼ .02 – Recall: p¼ .01

Note: table shows a summary of findings of the different measures. All p values reflect the corresponding terms in the ANOVAs as reported in the text (rounded to the second
decimal place). Double values given in the DA gene and age group�DA genes rows reflect the DA score and DARPP-32�DAT factors, respectively.
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explicit memory contributes to emerging age differences in RT
benefits in the SRT task. Regarding the second perspective, our
study supports the crucial importance of dopamine decline for
cognitive aging (Bäckman et al., 2006). The presented results
suggest that age-related decline in dopamine modulation may
underlie all observed age-related deficits in motor performance
and explicit memory during sequence learning. Interestingly, the
dopamine genotypes investigated in this study related only to our
measures of explicit but not of implicit sequence memory, despite
the known relation between dopamine and implicit learning in
younger adults. This result is surprising in light of previous
research that linked dopamine and dopamine-related genotypes
to implicit learning. At the same time, our finding adds to a
growing literature that supports the notion that implicit and
explicit sequence learning engage overlapping brain networks
(Aizenstein et al., 2004; Aizenstein et al., 2006) and that explicit
memory is also implicated by the striatum (Scimeca & Badre,
2012) and dopamine (Karabanov et al., 2010). Moreover, it is in line
with studies that indicated that the striatum plays a specific role in
the development of explicit memory in incidental learning situa-
tions (Rose et al., 2010). The previous research has also revealed
that the correlations of explicit and implicit memory of a sequence
with striatal and hippocampal brain activity might change with
age (Dennis & Cabeza, 2011; Rieckmann et al., 2010). This research
showed that the hippocampus plays a greater role in implicit
sequence learning in older adults. The present findings compli-
ment the aforementioned research and indicate that age-related
impairments of striatal dopaminergic neuromodulation might lead
to an impairment of the development of explicit memory but not
implicit memory during incidental sequence learning.

Finally, our behavioral genetic results are in accordance with
the previous reports of age-related magnifications of genotype–
phenotype associations (Li, Chicherio et al., 2010; Li, Papenberg
et al., 2013; Nagel et al., 2008; Schuck et al., 2013). The present
study provides further support for the notion that this magnifica-
tion might be a general phenomenon which results from non-
linear cognition-brain resources relationships (Lindenberger et al.,
2008). Moreover, our findings also add to the literature document-
ing that not a single polymorphic locus alone, but an interaction of
two alleles which both impact the dopamine system are associated
with cognitive phenotypes in older adults (see also Li, Passow
et al., 2013; Papenberg et al., 2013). Our results also underline that
studying gene-gene interactions and combining functionally simi-
lar genes provides a powerful tool to investigate effects on
cognitive and neurological phenotypes (Bertolino et al., 2008;
Bertolino et al., 2009; Li, Passow et al., 2013). Given the age-
related decline of DAT availability (van Dyck et al., 2002) and
D2/D3 receptor density (Kaasinen et al., 2000; Rinne et al., 1993), a
magnification of genetic effects falls in line with the resource
modulation hypothesis (Lindenberger et al., 2008). Due to our
small sample size, the difficulty to interpret null findings in
younger adults, and explanatory gaps in the links between genetic
influences and brain activity, our genetic findings have to be
interpreted with caution and further investigations are needed
to replicate our results.

Despite the aforementioned support of the present results by
data and theory, some aspects of our findings warrant further
investigation. First, it is surprising that despite the effect of DA
genotypes (DARPP-32 rs907094 or DAT VNTR) on verbal recall (and
the weak effect on learning-related error patterns), we did not find
larger RT benefits in DAþ compared to DA� carriers. A correla-
tional analysis of RT gains and verbal recall revealed increasingly
large correlation among younger but not older adults, although
some of the older adults have substantial explicit memory. This
suggests that RT benefits observed in younger adults may partially
reflect explicit knowledge about the sequence that emerged

during the course of learning and indicates differential age effects
on error rates and RTs (see also, Seidler, Tuite, & Ashe, 2007 for an
example of such effects). It is possible that the differential feed-
back about speed at the end of each block might also contribute to
this finding. The question why older adults who obtained sub-
stantial explicit memory over learning did not show RT benefits,
however, needs to be a subject of future investigations. On a more
general level, the use of a candidate genes approach relies critically
on statistical power (Payton, 2009). In our findings, some of
the effects that are apparent only in one measure (e.g., the DA
score did have an effect only on the recall but not on the PDP
measure) or are only marginally significant (learning related error
pattern) reflect a potential limitation in statistical power of our
study. Another potential reason, however, might be reliability
differences between the recall and PDP measures (e.g., Buchner
& Brandt, 2003).

In summary, the present study supports the view that
(a) implicit learning shows less age-related impairment than
explicit learning, (b) older adults show a specific impairment in
the development and use of explicit memory from initially implicit
memory and (c) dopamine-regulation genetics is linked to older
adults' capability to develop explicit memory in incidental learn-
ing situations. On a general level, our findings of genotype by age
group interactions support the view that aging-related change in
underlying neurochemical mechanisms in specific or brain func-
tions in general may affect the extent of genetic effects on implicit
and explicit memory. However, replications from future studies
involving independent samples are necessary in order to establish
the generalizability of these effects. Taken together, these results
offer new insights into the process of age-related memory dete-
rioration on the cognitive and neural level. They underscore the
notion that studies of age-related memory changes need to
differentiate between functions that are related to the striatum
and to the hippocampus in younger adults and consider changes
on the level of behavior as well behavior-brain, genotype-
phenotype relations.
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