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A B S T R A C T   

Decisions that require taking effort costs into account are ubiquitous in real life. The neural common currency 
theory hypothesizes that a particular neural network integrates different costs (e.g., risk) and rewards into a 
common scale to facilitate value comparison. Although there has been a surge of interest in the computational 
and neural basis of effort-related value integration, it is still under debate if effort-based decision-making relies 
on a domain-general valuation network as implicated in the neural common currency theory. Therefore, we 
comprehensively compared effort-based and risky decision-making using a combination of computational 
modeling, univariate and multivariate fMRI analyses, and data from two independent studies. We found that 
effort-based decision-making can be best described by a power discounting model that accounts for both the 
discounting rate and effort sensitivity. At the neural level, multivariate decoding analyses indicated that the 
neural patterns of the dorsomedial prefrontal cortex (dmPFC) represented subjective value across different 
decision-making tasks including either effort or risk costs, although univariate signals were more diverse. These 
findings suggest that multivariate dmPFC patterns play a critical role in computing subjective value in a task- 
independent manner and thus extend the scope of the neural common currency theory.   

1. Introduction 

The ability to weigh rewards and costs is critical for optimal decision- 
making (Frömer and Shenhav, 2021; Lopez-Gamundi et al., 2021; 
Westbrook et al., 2020). Physical effort is a common type of cost asso-
ciated with our daily activities (Klein-Flügge et al., 2016; Sayalı and 
Badre, 2019), such as exercising (Harris and Bray, 2021) and helping 
others (Lockwood et al., 2017). Furthermore, imbalanced effort sensi-
tivity appears to be a key feature of multiple disorders, including 
schizophrenia (Gold et al., 2015), binge eating (Brassard and Balodis, 
2021), and depression (Treadway et al., 2012). Considering the ubiq-
uitous presence of physical effort in our daily life and its clinical rele-
vance, it is crucial to elucidate the cognitive and neural mechanisms 

underlying effort-based valuations. 
The neural common currency theory suggests that a particular neural 

network is involved in subjective value calculation on a common scale 
across multiple decision situations (Levy and Glimcher, 2012; Sescousse 
et al., 2013), thus providing a powerful framework to explain how 
different options are compared in the brain. Indeed, several lines of 
research have shown a positive association between ventromedial pre-
frontal cortex (vmPFC) activity and subjective value in decisions that 
involve other types of costs, such as risk and delay (Bartra et al., 2013; 
Kable and Glimcher, 2007; Peters and Büchel, 2009). Hence, the vmPFC 
has been proposed as a central node of this domain-general valuation 
network (Levy and Glimcher, 2012; Sescousse et al., 2013; Smith et al., 
2010). 
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While this view has also received some supportive evidence in effort- 
based decision-making (Hogan et al., 2019; Westbrook et al., 2019), a 
few other studies have identified effort-related value signals beyond the 
vmPFC (Chong et al., 2017; Klein-Flügge et al., 2016), particularly in a 
more dorsal portion of the medial prefrontal cortex (dmPFC) that mainly 
includes the dorsal anterior cingulate cortex (dACC) and some parts of 
the pre-supplementary motor area (Kolling et al., 2016; Piva et al., 
2019). A meta-analysis showed that both vmPFC and dmPFC activity are 
associated with effort-reward integration, although in opposite di-
rections (Lopez-Gamundi et al., 2021). These findings thus raise the 
possibility that, next to its ventral counterpart, the dmPFC also plays an 
important role in computing the subjective value of effortful options. 

To date, only a few studies with divergent results have directly tested 
if the neural common currency theory could be applied to effort-based 
decision-making by comparing it with other decisions that require 
cost-reward integration (Aridan et al., 2019; Massar et al., 2015; Prévost 
et al., 2010; Seaman et al., 2018). For example, one study found neural 
correlates of value in the vmPFC during both effort-based and risky 
decision-making (Aridan et al., 2019), whereas some other studies 
showed that the dmPFC was uniquely involved in effort-reward inte-
gration (Massar et al., 2015; Prévost et al., 2010). One possible factor 
that may have caused this inconsistency is that some studies required 
participants to exert effort during decision-making, while others did not, 
possibly confounding neural correlates of subjective value with motor 
execution effects (Chong et al., 2017; Lopez-Gamundi et al., 2021). 
Moreover, different computational models were used to describe 
effort-reward integration, which may influence the estimation of 
trial-by-trial subjective value and its neural correlates (Prévost et al., 
2010; Klein-Flügge et al., 2015; Chong et al., 2017; Arulpragasam et al., 
2018). Finally, those studies mainly relied on a mass-univariate 
approach, which ignores the dependencies between brain voxels, as 
opposed to multivariate pattern analyses (Haynes and Rees, 2006). 
Therefore, studies solely based on univariate analyses might be less 
sensitive to detecting value signals in heterogeneous regions like the 
medial prefrontal cortex (Jimura and Poldrack, 2012; Kahnt, 2018; Nee 
et al., 2011). 

The current study aimed to directly test the neural common currency 
theory by examining which brain regions represent subjective value 
across effort-based and risky decision-making. Unlike previous studies, 
we used a combination of computational modeling and both univariate 
and multivariate fMRI analyses. Accordingly, we first reanalyzed an 
existing dataset (Aridan et al., 2019) and then conducted an indepen-
dent study to confirm our results. We found that multivariate dmPFC 
patterns consistently represented subjective value across effortful and 
risky tasks, and such effects may be neglected by univariate analyses. 
Our results might help reconcile current debates on the neural basis of 
effort-based valuation and extend the scope of the neural common 
currency theory to include the dmPFC as a critical region in the 
domain-general valuation network. 

2. Materials and methods 

2.1. Study 1 

2.1.1. Participants 
We used the behavioral and fMRI data of the effort-based and risky 

decision-making tasks from the study of Aridan et al. (2019), in which 
the details of the participant data were reported. Briefly, forty (twen-
ty-one female) healthy, right-handed participants were enrolled in this 
study. One participant was excluded from the effortful task because they 
showed significant gain-aversive and loss-seeking behavior. Data from 
two participants were excluded because they showed extreme choice 
behaviors (i.e., accepted or rejected more than 90% of gambles) during 
the risky task. Therefore, the final dataset included 39 and 38 partici-
pants for effort-based and risky decision-making, respectively. The 
experiment was approved by the Institutional Review Board of the 

University of Texas at Austin, and all participants provided written 
informed consent prior to the experiment. 

2.1.2. Experimental paradigm 
Prior to scanning, participants were required to complete an effort- 

calibration task to measure their maximum voluntary contraction 
(MVC) and an association task to establish the relationship between cost 
levels and cues used in subsequent decision-making (Fig. 1a). Both 
decision-making tasks used during scanning were based on a one-option 
mixed-gamble paradigm. 

For effort-based decision-making (Fig. 1b), each gamble included 
three components: a potential gain ($2-$12, in $2 increments), a po-
tential loss ($1-$6, in $1 increments), and a physical effort requirement 
(30, 40, 50, 60, and 70% MVC). Participants were asked whether they 
would like to accept a gamble by indicating one of the four responses 
(strongly accept, weakly accept, weakly reject, and strongly reject), 
which were collapsed into accept and reject categories in subsequent 
analyses. Each task included 180 trials based on the unique combination 
of these three components. The task was split into five runs, with 36 
trials each. Participants were instructed that they did not need to 
execute the required effort during the task. Instead, a trial would be 
randomly picked at the end of the task. If it was accepted, participants 
had to squeeze a dynamometer to reach the corresponding effort 
requirement. The outcome (gain or loss) was determined by their suc-
cessful effort performance. If the gamble was rejected, participants 
would not receive any outcome from this task. 

The risky decision-making task had a similar task structure (Fig. 1c), 
except that the effort requirement was replaced by the winning proba-
bility (90, 70, 50, 30, and 10%). Again, a trial was randomly picked at 
the end, and the outcome was based on the partcipants’ choice (accept 
or reject) and winning probability. 

2.1.3. MRI data acquisition 
The neuroimaging data are openly available at https://openneuro.or 

g/datasets/ds003782. They were collected on a 3T Siemens Skyra MRI 
scanner (Siemens, Erlangen, Germany). Scanning parameters were re-
ported in Aridan et al. (2019). Functional images were collected with a 
T2*-weighted multiband echo-planar imaging (EPI) pulse sequence (TR 
= 1000 ms, multiband acceleration factor = 4, iPAT parallel accelera-
tion factor = 2, TE = 30 ms, flip angle = 63◦, FOV = 230, voxel size =
2.4 × 2.4 × 2.4 mm, 56 slices). These data were acquired at an angle of 
30◦ off the anterior commissure-posterior commissure (AC-PC) line to 
reduce signal dropout in the orbitofrontal region (Deichmann et al., 
2003). A high-resolution T1-weighted anatomical image was collected 
using a MPRAGE pulse sequence (TR = 1900 ms, TE = 2.43 ms, flip 
angle = 9◦, FOV = 256, voxel size = 1.0 × 1.0 × 1.0 mm). 

2.2. Study 2 

2.2.1. Participants 
Thirty-six (twenty female) healthy, right-handed participants were 

enrolled in this study. All participants had normal or corrected-to- 
normal vision, fulfilled all eligibility criteria for participating in an 
fMRI study, and reported no history of psychiatric or neurological dis-
orders. Five participants were excluded from the subsequent experiment 
because of extreme choice behaviors (i.e., accepted or rejected more 
than 90% of effortful or risky options) during the pre-scanning tests. 
Another participant was excluded from the effortful task during scan-
ning because they showed significant gain-aversive and loss-seeking 
behavior. Therefore, the final dataset included 30 and 31 participants 
for effort-based and risky decision-making, respectively. After the 
experiment, participants received financial compensation based on their 
participation time and randomly selected chosen options from the 
decision-making tasks. The experiment was approved by the Ethics 
Committee of the Department of Education and Psychology of Freie 
Universität Berlin, and all participants provided written informed 
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consent prior to the experiment. 

2.2.2. Experimental paradigm 
The purpose of study 2 was to replicate the key findings of study 1 

and to address some potential issues related to the experimental design. 
Specifically, we modified the experimental task in order to: (1) have a 
similar overall acceptance rate of high-cost options between effort-based 
and risky decision-making; (2) separate the evaluation and action se-
lection phases during decision-making; (3) reduce the collinearity be-
tween subjective value and decision difficulty; and (4) reduce the 

involvement of the risk component in effort-based decision-making by 
removing the time limit of effort execution and potential losses during 
decision-making. 

Specifically, for effort-based decision-making, participants were 
required to complete three tasks outside the scanner (Fig. 1a): First, a 
calibration task was conducted to measure participants’ MVC. Partici-
pants were asked to squeeze the dynamometer (Vernier HD-BTA, Bea-
verton, USA) using their right hand as hard as possible for 6 s, followed 
by a rest period of 5 s. This procedure was repeated five times, and the 
MVC was defined as the averaged force above the median point over the 

Fig. 1. Experimental design overview. (a) Prior to scanning, participants were asked to complete an effort-calibration task and a cue-effort association training. In 
study 2, participants need to do an additional task to estimate indifference points (IDP) for all combinations of rewards and cost levels (effort or winning probability). 
In study 1, (b) one-option effort-based and (c) risky decision-making tasks were conducted during scanning. Each trial included three components: a potential gain, a 
potential loss, and a cost. In study 2, (d) two-option effort-based and (e) risky decision-making were conducted in the scanner. The amount of the smaller reward was 
determined by the indifference point of the large-reward option (as determined in the IDP task) and a proximity value (small reward = IDP⋅(1 + γ)). 
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last half of the squeezing period across these five trials (Meyniel et al., 
2016). Second, participants were trained to remember four associations 
between effort level cues (level 1–4) and physical effort requirements 
(50, 65, 80, 95% MVC), because the effort level cues would be used in 
the subsequent effort-based decision-making task. In each trial, partic-
ipants were presented an effort level cue. Subsequently, they were 
shown a thermometer with a yellow line as the required force level and 
the height of the red filling as the real-time squeezing force. Unlike study 
1, participants were required to keep the red filling above the yellow line 
for a total of 6 s. Although participants were asked to reach the effort 
requirement as quickly as possible, there was no time limit for effort 
execution. Therefore, participants could successfully complete all effort 
requirements in study 2. Each cue-effort association was repeated twice, 
yielding eight trials in total. Third, participants made a series of choices 
to estimate indifference points based on a previously validated proced-
ure (Westbrook et al., 2013). In each trial, participants were asked to 
choose between an option associated with a larger reward (2, 3, or 4 
points) and an effort requirement (level 1–4) and an alternative with a 
smaller reward but no effort requirement. The amount of the smaller 
reward was changed in a stepwise titration manner (6 iterations for each 
unique combination of effort and larger reward) until the two options 
were indifferent to participants (see Supplementary Methods and 
Figure S1 for details). 

After the three pre-scanning tasks, another effort-based decision- 
making task was conducted in the scanner, which is the focus of this 
paper. Participants were asked to complete another two-option decision- 
making task (Fig. 1d). To control the overall acceptance rate of effortful 
options and to ensure sufficient variability in choice behavior, we varied 
the amount of the smaller reward (SR) around the indifference point 
(IDP) of the corresponding larger-reward option using a proximity 
parameter γ (Westbrook et al., 2019): 

SR = IDP⋅(1 + γ) (1) 

Therefore, the absolute value of γ specified the subjective value 
difference between the two options. A positive value indicated that the 
effortless option was favored and vice versa. Each run of the task 
included 48 slightly biased trials (unique combination of proximity 
parameter value from {− 0.4, − 0.1, 0.2, 0.5}, effort requirement, and 
large reward) and eight strongly biased trials (unique combination of 
proximity parameter value from {− 0.8, 0.8} and effort requirement, 
randomly paired with a large reward). The amount of the smaller reward 
would not exceed that of the larger reward. 

This task included three runs and a total of 168 trials. In each trial, to 
isolate the motor component from the valuation process, participants 
were presented with two options for 2 s (evaluation period) first before 
getting the notice to make a choice within 2 s (action period). A 2–4 s 
interval was used between trials (ITI). At the end of the task (outside of 
the scanner), ten trials were randomly selected. If participants chose the 
effortful option, they could only get the rewards after exerting the 
required effort by squeezing the dynamometer. 

The risky decision-making part was implemented in a similar pro-
cedure, except that the calibration task was not required and that four 
risk levels were associated with four winning probabilities (90, 70, 50, 
30%). A two-option risky decision-making task (168 trials; Fig. 1e) was 
conducted in the scanner. Again, ten trials were randomly selected at the 
end of the task outside the scanner. Participants were shown the 
outcome of each trial generated by the computer based on the winning 
probability. The order of the effort-based and risky decision-making 
tasks was counterbalanced across participants. 

2.2.3. MRI data acquisition 
MRI data were acquired using a 3T Siemens Trio scanner (Siemens, 

Erlangen, Germany). Functional images were collected with a T2*- 
weighted EPI pulse sequence (TR = 2000 ms, TE = 25 ms, flip angle =
85◦, FOV = 220, voxel size = 3.4 × 3.4 × 4.0 mm, 34 slices). A high- 
resolution T1-weighted anatomical image was collected using a 

MPRAGE pulse sequence (TR = 2530 ms, TE = 3.39 ms, flip angle = 7◦, 
FOV = 256, voxel size = 1.3 × 1.0 × 1.3 mm, 144 slices). 

2.3. MRI data preprocessing 

MRI data of both datasets were preprocessed using SPM12 (version 
7177; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and DPABI 
(Yan et al., 2016) in MATLAB (version 2019b; http://www.mathworks. 
com/). Functional images were corrected for motion through realign-
ment with respect to the first volume. Both functional and anatomical 
images were manually checked and reoriented based on the AC-PC line 
before they were co-registered. The anatomical images were then 
segmented into gray matter, white matter, and cerebrospinal fluid. 
Finally, functional images were normalized to Montreal Neurological 
Institute (MNI) space and smoothed using a Gaussian kernel with 6-mm 
full-width-half-maximum (FWHM). Participants who showed excessive 
head motion (i.e., > 3 mm of displacement or 3◦ of rotation in any of the 
six head motion parameters from realignment) in more than two runs of 
a task were excluded from subsequent analyses. 

2.4. Computational modeling of choice behaviors 

Behavioral data were analyzed using R (version 4.1.2; https://cran. 
r-project.org/). For effort-based decision-making, we used five 
different discounting functions used in previous studies (Arulpragasam 
et al., 2018; Chong et al., 2017; Klein-Flügge et al., 2015; Prévost et al., 
2010) to characterize the way that a prospective outcome is devalued by 
effort (Figure S2), which were defined as follows: 

Linear : SV = OC − k⋅E (2)  

Hyperbolic : SV = OC⋅
1

1 + k⋅E
(3)  

Parabolic : SV = OC − k⋅E2 (4)  

Two − parameter power : SV = OC − k⋅Ep (5)  

Sigmoidal : SV = OC⋅
(

1 −

(
1

1 + e− k⋅(E− tp) −
1

1 + ek⋅tp

)

⋅
(

1 +
1

ek⋅tp

))

(6)  

where k is a free parameter, which reflects the discounting rate. The two- 
parameter power function has another free parameter p that reflects 
effort sensitivity. The sigmoidal function has another free parameter tp 
that determines the turning point of the curve (Klein-Flügge et al., 
2015). E denotes the objective effort requirement (e.g., 0.3, 0.4, 0.5, 0.6, 
0.7 for dataset 1). OC denotes the outcome. For study 1, it is defined as 
eq. (7), where λ reflects the relative weighting of losses and gains, and α 
reflects outcome sensitivity. 

OC = Gainα − λ⋅Lossα (7) 

For study 2, since options are not associated with potential losses, OC 
equals the potential gain value. 

OC = Gainα (8) 

Models for risky decision-making have already been extensively 
studied in previous work (Kahneman and Tversky, 1979; Nilsson et al., 
2011; Pachur et al., 2017; Tversky and Kahneman, 1992; Von Neumann 
and Morgenstern, 1944). Therefore, we examined two models based on 
the original and cumulative prospect theory to calculate trial-wise 
subjective value during risky decision-making. 

The original perspective theory (PT, Kahneman and Tversky, 1979) 
proposes that the subjective value of a risky option is defined as: 

SV = Gainα⋅p − λ⋅Lossα⋅q (9)  

where p and q are the winning and losing probability, respectively. For 
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study 2, only the part related to gains was used: 

SV = Gainα⋅p (10) 

The cumulative prospect theory (CPT; Tversky and Kahneman, 1992) 
further transforms objective probabilities into subjective probabilities: 

SV = Gainα⋅w+(p) − λ⋅Lossα⋅w− (q) (11) 

The weighting functions for gains and losses (w+ and w− ) are defined 
as: 

w+(p) =
δ+⋅pγ

δ+⋅pγ + (1 − p)γ  

w− (q) =
δ− ⋅qγ

δ− ⋅qγ + (1 − q)γ (12) 

The parameter γ controls the curvature of the weighting function. 
The parameters δ+and δ− control the elevation of the weighting function 
for gains and losses, respectively (Pachur et al., 2017). 

For both tasks, the softmax function was used to calculate the 
probability of choosing the effortful or risky option: 

P(A,B) =
eβ⋅SV(A)

eβ⋅SV(A) + eβ⋅SV(B)
(13)  

where P(A,B) is the choice probability of choosing (costly) option A over 
(no-cost) option B. β denotes the stochasticity of a participant’s choice. 
SV(A) and SV(B) represent the subjective value of option A and B, 
respectively. Please note that SV(B) is always 0 in study 1 and the 
amount of the smaller reward in study 2. 

All models were fitted and evaluated using a hierarchical Bayesian 
approach by following the template used in the hBayesDM package 
(Ahn et al., 2017). Because this method not only estimates parameters 
for each participant but also includes a group-level hyperparameter 
distribution that governs the individual-level parameters, it is less sen-
sitive to outliers and can generate more robust estimates (Huys et al., 
2011; Lockwood and Klein-Flügge, 2021). The parameter estimation 
was conducted using Monte-Carlo Markov Chain (MCMC) sampling 
implemented in Stan (version 2.21; https://mc-stan.org/). We used four 
chains, each with 2000 MCMC samples, including a burn-in period of 
1000 samples. To determine which model fit the data best, we used the 
loo package (version 2.4.1; https://cran.r-project.org/web/packages 
/loo/) to perform a model comparison based on the leave-one-out in-
formation criterion (LOOIC; Vehtari et al., 2017), which is a Bayesian 
criterion to evaluate the out-of-sample predictive performance of a 
model. A lower LOOIC indicates a better fit between the model and data. 
Model weight was also calculated using Bayesian model averaging based 
on Bayesian bootstrapping, with a higher weight indicating a higher 
probability of a model having generated the data (Yao et al., 2018). 

Finally, to assess the validity of the winning model, we further 
conducted posterior predictive checks and checked if the posterior 
prediction from the model could capture key features of the behavioral 
data (Zhang et al., 2020). Moreover, we performed parameter recovery 
analyses to examine if the parameters of the winning model could be 
accurately identified (Wilson and Collins, 2019). 

2.5. fMRI data analysis 

2.5.1. Univariate analysis 
To replicate the main findings reported in Aridan et al. (2019), we 

first conducted the model-based univariate fMRI analysis, in which the 
subjective value of each option was derived based on the winning model. 
For study 1, we focused on the choice period. Two general linear models 
(GLM1.1 and GLM1.2) were used to examine the neural activity related 
to the subjective value of each option during effort-based and risky 
decision-making, respectively. These models included two regressors 
using a stick function: high- and low-value trials, which were split based 

on the median subjective value. We used the contrast of high- vs. 
low-value at the first level. Moreover, another two GLMs (GLM1.3 and 
GLM1.4 for the effort-based and risky decision-making task, respec-
tively) similar to the ones used in the original study were also conducted 
for confirmatory purposes (Aridan et al., 2019). These models included a 
regressor of the choice period of all trials and trial-by-trial subjective 
values as a parametric modulator. We focused on the effect of this 
parametric modulator at the first level. 

In study 2, to isolate the effects of motor action on valuation, we 
divided each choice into evaluation and action periods. In subsequent 
analyses, we focused on the evaluation period and included the action 
period as a separate regressor of no interest. Because there are two op-
tions in each trial, we derived the subjective value of the chosen option 
from the winning model, consistent with other two-option decision- 
making studies (Arulpragasam et al., 2018; Hogan et al., 2019). We 
repeated the analyses used for study 1 but split trials based on the me-
dian chosen subjective value for GLM2.1 and GLM2.2. To facilitate the 
comparison across studies, we also conducted another two supplemen-
tary GLMs (GLM2.3 and GLM2.4) by including trial-wise chosen sub-
jective value as a parametric modulator. 

In all GLMs, trials without any responses were modeled as a separate 
nuisance regressor. Moreover, six motion parameters from the realign-
ment were included as regressors of no interest. Contrasts from the first- 
level analyses were taken to group-level random-effects analyses. Vox-
elwise analyses were conducted within a frontostriatal mask, including 
Brodmann area (BA) 9, 10, 11, 23, 32 and bilateral nucleus accumbens, 
caudate, and putamen from the Harvard-Oxford structural atlas, which 
covered most potential regions within the valuation network (Bartra 
et al., 2013; Clithero and Rangel, 2014; Lopez-Gamundi et al., 2021) and 
excluded most sensory and motor areas. Statistical maps were corrected 
for multiple comparisons using a voxel-level uncorrected threshold of p 
< 0.001 and a FWE cluster-level corrected at p < 0.05 by means of 
Gaussian Random Field Theory (GRFT). Since we were particularly 
interested in the roles of the vmPFC and dmPFC in cost-reward inte-
gration, we extracted the mean effects from 6-mm-radius spherical 
masks of the vmPFC (coordinate: 0, 40, − 4; Clithero and Rangel, 2014) 
and dmPFC (coordinate: 0, 22, 38; Piva et al., 2019; Venkatraman et al., 
2009) for illustration. 

2.5.2. Multivariate decoding analysis 
Multivariate decoding analysis, which is the focus of this manuscript, 

was performed using a linear support vector machine (SVM) algorithm 
for binary classification implemented in The Decoding Toolbox (TDT, v 
3.999E; Hebart et al., 2015). In study 1, we repeated the above 
mentioned first-level analyses on unsmoothed data and used the beta 
images from the choice period of GLM1.1 and GLM1.2 to examine neural 
representations of subjective value during effort-based and risky 
decision-making, respectively. For each task, a five-fold cross-run vali-
dation was used, in which the SVM was trained on all but one run and 
tested on the left-out run. We utilized the searchlight analysis (radius =
3 voxels) within the frontostriatal mask used in the univariate analyses 
above. Voxelwise cross-validated decoding accuracy (minus 
chance-level accuracy) was calculated. 

To examine subjective value representations independent of cost 
types, we further conducted a cross-task decoding analysis, which 
included the beta images from both GLM1.1 and GLM1.2. The SVM was 
trained on four runs of one task (e.g., run 1–4 of the effort-based deci-
sion-making task) and tested on one run of the other task (e.g., run 5 of 
the risky decision-making task), and the procedure was repeated ten 
times. 

For study 2, because both decision-making tasks only included three 
runs, each run was divided into two halves (i.e., six datasets for each 
task) to increase the number of datasets used for the decoding analyses 
(Jimura and Poldrack, 2012). GLM2.1 and GLM2.2 were performed on 
unsmoothed data, and beta images from the evaluation period were used 
for searchlight decoding analyses for each task. The cross-task decoding 
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analysis was also conducted as described above in study 1. 
Since subjective value is calculated based on the integration of 

related benefit and cost components, we further conducted separate 
multivariate decoding analyses to examine neural representations of 
these basic components. For effort-based decision-making, we used 
effort levels and outcomes as the dependent variables. For risky 
decision-making, because risk is an outcome-related cost that modulates 
its value (Klein-Flügge et al., 2015), we instead focused on risk and 
reward levels. 

Finally, we have conducted some control analyses to ensure our 
multivariate findings are valid and robust: (1) In study 1, since partici-
pants were asked to reach the required effort level within a 2 s time 
window, they showed a lower success rate for high effort requirement 
(Aridan et al., 2019). To reduce the potential effects of risk on 
effort-based value integration, we repeated the multivariate decoding 
analyses on trials with only low or medium effort requirements (level <
4) and included the high-effort trials as a separate regressor of no in-
terest; (2) Since we used a two-option decision paradigm in study 2, to 
examine if the results were influenced by the definition of the subjective 
value variable, we conducted another two supplementary multivariate 
decoding analyses based on subjective value difference (i.e., chosen – 
unchosen subjective value); (3) To ensure that the results were mainly 
driven by subjective value but not decision difficulty, we included an 
index of trial-wise decision difficulty (i.e., 1-|γ|) as a modulated re-
gressor in the multivariate decoding analyses (Todd et al., 2013) for 
study 2. (5) We also conducted control analyses by including choice as a 
modulated regressor for study 2 and response time (RT) for both studies 
to control for potential confounding effects of these factors on value 
integration. 

Within-task decoding results were corrected for multiple compari-
sons using a voxel-level uncorrected threshold of p < 0.001 and a FWE 
cluster-level corrected p < 0.05. For exploratory purposes, cross-task 
decoding analyses and other control analyses were corrected using a 
lenient threshold of voxel-level p < 0.005 and a FWE cluster-level cor-
rected p < 0.05. Similar to the univariate analyses, we extracted the 
mean decoding accuracy from the vmPFC and dmPFC spherical masks, 
respectively. It should be noted that these ROI results reflect post-hoc 
signal extractions from the searchlight analyses but not a priori ROI- 
wise MVPA. 

3. Results 

3.1. Effects of effort and risk on choices 

We first conducted two one-way analyses of variance (ANOVAs) to 

examine general effects of effort and risk on choices, respectively. In 
study 1, results (Fig. 2a) showed that participants’ probability of 
accepting an option decreased with effort (F(1.5, 58.1) = 42.00, p < 0.001, 
partial η2 = 0.53) and risk levels (F(2.0, 75.3) = 140.21, p < 0.001, partial 
η2 = 0.79). Moreover, participants showed a higher overall acceptance 
rate in the effortful compared with the risky task (F(1, 36) = 36.38, p <
0.001, partial η2 = 0.50). 

In study 2, where we used two pre-scanning tasks to estimate indif-
ference points for all combinations of reward and effort/risk, we took 
these indifference points normalized based on the larger reward 
amounts (i.e., indifference point/larger reward) as the dependent vari-
able for one-way ANOVAs. This normalization step allowed us to 
compare the results across participants on a common scale. Both effort 
(F(2.3, 68.2) = 101.10, p < 0.001, partial η2 = 0.77) and risk levels (F(2.5, 

74.5) = 95.63, p < 0.001, partial η2 = 0.76) decreased participants’ 
normalized indifference points (Figure S3). For tasks conducted in the 
scanner, since we manipulated the small reward amount around the 
indifference point of the high-cost option using a proximity parameter, 
participants showed comparable acceptance rates of around 50% for 
high-cost options between tasks (F(1, 29) = 0.98, p = 0.77, partial η2 =

0.03; Fig. 2b). Moreover, as shown in Fig. 2c, participants selected more 
high-cost options when they were favorable (i.e., positive proximity 
values) and chose them less frequently when no-cost options were more 
favorable (Effort: F(2.8, 80.3) = 166.71, p < 0.001, partial η2 = 0.85; Risk: 
F(2.2, 66.1) = 114.62, p < 0.001, partial η2 = 0.79). These experimental 
manipulations also decreased the high collinearity at the subject level in 
study 1 (Figure S4 and Table S1). 

3.2. Behavioral modeling of effort- and risk-related value integration 

For effort-based decision-making in study 1, model comparison re-
sults showed that choice behavior was best described by a model based 
on the two-parameter power function (Fig. 3). Importantly, although the 
effortful task used in study 2 had a different structure (e.g., two options 
and no losses involved), model comparisons showed that the two- 
parameter power discounting model also fit the data best. 

Regarding risky decision-making, we examined two models based on 
the original and cumulative prospect theory, respectively (Kahneman 
and Tversky, 1979; Tversky and Kahneman, 1992). Model comparisons 
suggest that the CPT model performed better than the original PT model 
in both studies (ΔLOOIC = 33 and 135). Group-level means and 95% 
highest density intervals for each parameter were included in Tables S2. 

Since the model comparison only provides insights into the relative 
performance of the models in the model space, we further examined the 

Fig. 2. Behavioral results. (a) In study 1, participants accepted less effortful and risky options when cost levels increased. (b) In study 2, since we manipulated the 
reward amount of the no-cost option around the indifference point for each high-cost option, the overall acceptance rate was around 50% for both tasks, and the 
acceptance rate did not change with cost levels. (c) The probability of choosing a high-cost option was influenced by the proximity value. 
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validity of the winning model based on separate posterior predictive 
checks for each task. We found that all winning models could generate 
posterior predictions that captured key features of the data (Figure S5). 
Additionally, we conducted parameter recovery analyses for the win-
ning model for each task. The results showed that all group- and 
individual-level parameters could be accurately recaptured (Figure S6- 
S7). 

3.3. Univariate neural correlates of subjective value 

For effort-based decision-making (Fig. 4 and Table S3), we found that 
dmPFC activity was negatively associated with subjective value 
magnitude in both studies (study 1: t(38) = − 4.02, p < 0.001, Cohen’s d 
= − 0.64; study 2: t(29) = − 5.07, p < 0.001, Cohen’s d = − 0.92). 
Conversely, vmPFC activity was positively associated with subjective 
value in study 1 (t(38) = 4.60, p < 0.001, Cohen’s d = 0.74), but this 
effect was not significant in study 2 (t(29) = 0.02, p = 0.98, Cohen’s d =
0). 

For risky decision-making (Fig. 4 and Table S3), in study 1, we found 

positive neural correlates of subjective value in the vmPFC (t(37) = 2.25, 
p = 0.03, Cohen’s d = 0.36) but not dmPFC (t(37) = 1.09, p = 0.29, 
Cohen’s d = 0.18). In study 2, we observed significant positive correlates 
of subjective value in a cluster in the dmPFC (t(30) = 2.22, p = 0.03, 
Cohen’s d = 0.40) but not vmPFC (t(30) = − 1.87, p = 0.07, Cohen’s d =
− 0.34). 

The above results are based on the categorical contrast of high vs. 
low subjective value, as the same GLMs were used in the subsequent 
multivariate decoding analyses. The main results could be qualitatively 
replicated by univariate analyses that included trial-wise subjective 
value as a parametric modulator (Figure S8). 

3.4. Multivariate neural representations of subjective value 

Since the univariate approach does not take dependencies between 
voxels into account, it may be less sensitive to detecting value-related 
signal in heterogeneous brain regions (Kahnt, 2018). To deal with this 
issue, we conducted searchlight multivariate decoding analyses within 
the same frontostriatal mask used in the univariate analyses. For 

Fig. 3. Computational modeling of effort-based decision-making. (a) We compared the five discounting models (linear, hyperbolic, parabolic, two-parameter power, 
and sigmoidal) used in previous studies to describe how outcomes are devalued by effort costs. We found that the two-parameter power model showed the best fit in 
both studies. (b) Mathematical formula and graphical illustrations of the two-parameter power function. The graphs show that the combination of the two free 
parameters (discounting rate k and cost sensitivity p) can generate a wide range of discounting curves. SV and OC denote subjective value and outcome, respectively. 
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effort-based decision-making, we found that subjective value informa-
tion could be accurately decoded from a large cluster including both the 
vmPFC (t(38) = 5.78, p < 0.001, Cohen’s d = 0.93) and dmPFC (t(38) =
9.38, p < 0.001, Cohen’s d = 1.50) in study 1 (Table 1 and Fig. 5a). 
Additionally, we found that activity of the dmPFC also represented 
subjective value in study 2 (Figure 5c; t(29) = 6.60, p < 0.001, Cohen’s d 
= 1.20), but the effect was not significant in the vmPFC (t(29) = 1.43, p 
= 0.16, Cohen’s d = 0.26). 

Similarly, for risky decision-making, subjective value information 
could be decoded in the vmPFC (t(37) = 2.23, p = 0.03, Cohen’s d =
0.36) and dmPFC (t(37) = 4.32, p < 0.001, Cohen’s d = 0.70) in study 1 
(Table 1 and Fig. 5b). In study 2, we found that activity patterns of the 
vmPFC (t(30) = 3.15, p = 0.004, Cohen’s d = 0.57) and dmPFC (t(30) =
5.29, p < 0.001, Cohen’s d = 0.95) also represented subjective value 
information (Fig. 5d). 

3.5. Cross-task subjective value encoding in the dmPFC 

To directly test whether the dmPFC encodes value information in a 
task-independent manner, as suggested by the neural common currency 
theory (Kahnt, 2018), we utilized a cross-task multivariate decoding 
analysis (Table 1 and Fig. 6). Strikingly, we found that a cluster 
including the dmPFC (t(36) = 4.26, p < 0.001, Cohen’s d = 0.70) and a 
small part of the vmPFC (t(36) = 4.42, p < 0.001, Cohen’s d = 0.73) 
contained subjective value information independent of task type in 
study 1. In study 2, task-independent value information was mainly 
represented in the posterior dmPFC (t(29) = 3.63, p < 0.001, Cohen’s d 
= 0.66), but not the vmPFC (t(29) = − 0.91, p = 0.37, Cohen’s d =

− 0.17). 
Importantly, although the significant clusters from the two studies 

did not perfectly overlap, the above-chance decoding maps converged in 
a cluster in the dmPFC (Fig. 6c) at an uncorrected voxel-level threshold 
of p < 0.005. These findings thus provide support to the neural common 
currency theory and highlight the critical role of the dmPFC in subjec-
tive value representation across tasks and datasets. 

3.6. Multivariate decoding analyses on benefit and cost terms 

To examine whether the brain regions identified above can represent 
both benefit and cost terms related to subjective value, we conducted 
separate multivariate decoding analyses for these basic components for 
each task. For effort-based decision-making, we found that the dmPFC 
was involved in effort and outcome encoding in both studies (Figure S9). 
For risky decision-making, both studies showed that the risk information 
could be decoded from dmPFC neural patterns. In addition, we observed 
reward-related neural codes in the dmPFC in study 2, although this ef-
fect was not significant in study 1 (Figure S10). 

3.7. Multivariate decoding control analyses 

In study 1, we repeated the multivariate decoding analyses only on 
trials with low or medium effort requirements (level < 4) to reduce the 
involvement of risk associated with high-effort trials. Because we were 
still able to identify neural representations of subjective value in the 
dmPFC after excluding high-effort trials (Figure S11), this finding should 
not be attributed to risk processing. 

Fig. 4. Univariate neural correlates of subjective value. (a, b) In study 1, neural activity of the vmPFC was positively associated with subjective value in both tasks. In 
addition, dmPFC activity showed a negative association with subjective value. In study 2, (c) we observed some negative correlates of subjective value in the dmPFC 
during effort-based decision-making, (d) whereas the effect was opposite for risky decision-making. 
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In study 2, multivariate decoding results were based on chosen 
subjective value, to ensure that our findings were not influenced by the 
exact definition of the subjective value variable, we repeated all analyses 
using the subjective value difference of each trial as the dependent 
variable. These analyses yielded similar results as reported in the main 
analyses and showed that subjective value difference information could 
also be decoded from the neural patterns of the dmPFC (Figure S12). 

Furthermore, previous work suggests that the dmPFC encodes choice 
difficulty beyond subjective value (Hogan et al., 2019; Shenhav et al., 
2016; Westbrook et al., 2019). In study 2, we independently manipu-
lated decision difficulty and chosen subjective value across trials, which 
thus allowed us to conduct multivariate decoding control analyses by 
including trial-wise decision difficulty (i.e., 1-|γ|) as a potential con-
founding variable (Todd et al., 2013). The decoding results remained 
qualitatively the same after controlling for the effects of decision diffi-
culty (Figure S13). Moreover, to explore whether multivariate pattern 
activity in the dmPFC reflects choice difficulty, we performed decoding 
analyses on decision difficulty with subjective value as a modulated 
regressor. However, we did not observe any significant results in the 
dmPFC after controlling for the effects of chosen subjective value, sug-
gesting that dmPFC neural patterns identified in this study were mainly 
driven by subjective value rather than decision difficulty. 

Finally, we also conducted multivariate decoding analyses by 
including choice for study 2 and RT for both studies as a modulated 
regressor. Notably, neural codes of subjective value could be reliably 
decoded in all these control analyses (Figure S14-S15). 

4. Discussion 

We used behavioral modeling combined with univariate and multi-
variate fMRI analyses to examine the neural and computational 

mechanisms underlying effort-based and risky decision-making. We 
found that the two-parameter power discounting model showed the best 
fit for modeling effort-based decision-making. At the neural level, the 
multivariate decoding analyses consistently showed that the dmPFC 
represented subjective value information in a task-independent manner, 
although the effects may be undetectable in some univariate analyses. 
These findings further elucidate the neural response patterns within the 
medial prefrontal cortex during value integration and suggest that the 
dmPFC may serve as a potential hub in subjective value computations 
independent of the cost types. 

Previous behavioral modeling studies have used different discount-
ing functions to describe the way that effort devalues prospective out-
comes, yet yielded mixed results (Arulpragasam et al., 2018; Chong 
et al., 2017; Klein-Flügge et al., 2015; Prévost et al., 2010). In the cur-
rent study, we compared different discounting models used in previous 
research and found that the two-parameter power discounting model 
showed the best fit for effort discounting. A key feature of this model is 
that, next to the discounting-rate parameter k, it includes another free 
parameter p modeling effort sensitivity (Arulpragasam et al., 2018). 
Although a preliminary consensus is that effort discounting follows a 
concave shape at the group level, which can also be achieved by the 
parabolic or sigmoidal model (Chong et al., 2017; Klein-Flügge et al., 
2015), a large amount of between-subject variability was often reported 
(Escobar et al., 2023). The effort sensitivity parameter p allows the 
power discounting function to flexibly generate a wide range of dis-
counting shapes to account for individual differences in effort 
discounting. 

At the neural level, there has been considerable debate over the exact 
role of the dmPFC, particularly the dACC area, in effort-reward inte-
gration (Arulpragasam et al., 2018; Chong et al., 2017; Hogan et al., 
2019; Klein-Flügge et al., 2016; Westbrook et al., 2019). Although lesion 
studies in animals and non-invasive brain stimulation studies in humans 
suggest that the dmPFC is critically involved in effort-based decision--
making (Rudebeck et al., 2008; Soutschek et al., 2022; Walton et al., 
2009), fMRI studies in humans yielded rather divergent results (Arul-
pragasam et al., 2018; Chong et al., 2017; Hogan et al., 2019; Klein--
Flügge et al., 2016). One potential explanation is that the association 
between dmPFC activity and subjective value is often negative when 
using univariate analyses (Lopez-Gamundi et al., 2021), which might 
have been overlooked by studies focusing on positive neural correlates. 
Moreover, neural activity within the dmPFC is highly heterogeneous 
(Neubert et al., 2015), which may cause the results to be undetectable 
when voxels within this region are treated as homogenous. 

Therefore, one important advantage of the current study is that we 
utilized both univariate and multivariate analysis approaches. Indeed, 
for effort-based decision-making, we observed negative correlations 
with subjective value in the dmPFC using univariate analyses and sig-
nificant neural coding of subjective value in this region using multi-
variate decoding analyses. Notable, within-task multivariate decoding 
consistently showed a larger effect size compared to the corresponding 
univariate analysis (Table S4). These findings are in line with a recent 
study that used representational similarity analysis, another multivar-
iate method, to examine subjective value representations during effort- 
based decision-making (Lockwood et al., 2022). For risky 
decision-making, despite diverse univariate results in the dmPFC, 
multivariate patterns of this region consistently represented subjective 
value. These results are in keeping with a previous study based on 
intertemporal decision-making (Wang et al., 2014), in which MVPA 
yielded value codes in the dmPFC even in the absence of univariate ef-
fects. Taken together, these findings suggest that the dmPFC can 
represent subjective value based on distributed neural coding that may 
be beyond the detectability of univariate analyses. 

Cross-task multivariate decoding is especially suited to test whether 
a brain region represents subjective value using similar neural patterns 
in different tasks at the subject level (Kahnt, 2018). This analysis yielded 
a significant dmPFC cluster in both studies, suggesting that subjective 

Table 1 
Within- and cross-task multivariate decoding results.       

MNI coordinates 
Analysis Voxels Region BA t 

value 
x y z 

Study 1, 
effort task 

3586 dmPFC/dlPFC 32 9.30 0 21 45   

Left precentral 
gyrus 

9 6.21 − 45 9 45   

Left frontal 
pole 

10 5.81 − 30 51 6   

vmPFC 10 5.63 3 51 0  
40 Right OFC 11 5.49 27 24 − 21 

Study 1, risk 
task 

837 Right dlPFC/ 
dmPFC 

32/ 
9/24 

6.52 27 33 42  

73 Right OFC 11 4.30 21 63 − 12 
Study 2, 

effort task 
424 dmPFC 32 7.09 − 9 24 48 

Study 2, risk 
task 

2205 dlPFC 9 7.10 − 21 30 39   

dmPFC 32 6.70 − 6 18 45   
Frontal pole 10/ 

11 
7.08 − 24 54 0   

vmPFC 11/ 
10 

5.93 − 9 42 − 9 

Study 1, 
cross tasks 

699 dmPFC/dlPFC 10/ 
32 

4.50 − 12 57 15 

Study 2, 
cross tasks 

144 dmPFC 32/ 
24 

3.80 − 3 15 27 

Within-task multivariate decoding results are corrected for multiple comparison 
using a voxel-wise uncorrected threshold of p < 0.001 and a FWE cluster-level 
corrected threshold of p < 0.05. For large clusters (i.e., voxel size > 2000), 
another three peak coordinates inside the cluster were reported. For exploratory 
purposes, cross-task multivariate decoding results are corrected using a voxel- 
wise threshold of p < 0.005 and a FWE cluster-level corrected threshold of p 
< 0.05. 
dmPFC: dorsomedial prefrontal cortex; dlPFC: dorsolateral prefrontal cortex; 
vmPFC: ventromedial prefrontal cortex; OFC: orbitofrontal cortex. 
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value represented in the dmPFC might generalize across cost types and 
datasets. Although less is known about multivariate representation of 
subjective value in effort-based decision-making, our findings align 
closely with previous MVPA studies showing subjective value signals in 
the dmPFC across other decision-making tasks (e.g., intertemporal and 
risky) and different reward categories (Gross et al., 2014; Piva et al., 
2019; Pogoda et al., 2016). Most previous studies focused on the role of 
the vmPFC in domain-general value integration (Bartra et al., 2013; 
Clithero and Rangel, 2014; Levy and Glimcher, 2012; Peters and Büchel, 
2009). Our cross-task MVPA findings suggest that the dmPFC may also 

be critically involved in calculating subjective value regardless of task 
type. 

As mentioned above, the vmPFC has been regarded as a potential hub 
for task-independent subjective value representation (Levy and 
Glimcher, 2012) since a plethora of research has demonstrated neural 
correlates of value in this region across different reward types and 
valuation stages (Bartra et al., 2013; Clithero and Rangel, 2014; Kahnt 
et al., 2014; Sescousse et al., 2013; Smith et al., 2010). Indeed, both 
univariate and multivariate analyses showed neural correlates of sub-
jective value in the vmPFC in study 1. However, some analyses did not 

Fig. 5. Within-task multivariate decoding results. (a, b) In study 1, the dmPFC and vmPFC represented subjective value in both tasks, although the vmPFC cluster 
was only detectable before multiple comparison correction. (c, d) In study 2, subjective value could also be decoded from the dmPFC in both tasks, and the cluster 
identified in the risky decision-making task extended to the vmPFC. 

Fig. 6. Cross-task multivariate neural representations of subjective value. (a) In study 1, neural patterns of the dmPFC and a small part of the vmPFC represented 
subjective value independent of the task. (b) In study 2, only the dmPFC was found to represent task-independent value information. (c) The results of the two studies 
converged in a cluster in the dmPFC. 
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identify significant value signals in the vmPFC and anterior dmPFC in 
study 2. These inconsistent results may be related to the differences in 
the task design since participants can focus on computing the value of 
the single option in study 1 but may have relied on additional cognitive 
processes (e.g., attention distribution) in study 2 because two options 
were represented simultaneously in each trial (Arulpragasam et al., 
2018; Westbrook et al., 2019). Moreover, the blood oxygenation 
level-dependent signal around the vmPFC is likely to be affected by 
susceptibility gradients, and these influences could be reduced by 
changing the scanning orientation (Deichmann et al., 2003), as imple-
mented in study 1. A potential limitation of study 2 is that it did not use 
this optimized orientation when collecting functional images. Hence, 
future studies on valuation processes related to vmPFC activity should 
thus consider changing the imaging slice orientation to reduce related 
signal dropout. 

A broader question that follows from these considerations is whether 
the dmPFC and vmPFC play a similar role in value integration. A popular 
hypothesis proposes that the vmPFC is mainly involved in computing the 
net value of potential outcomes associated with an option (also referred 
to as stimulus value in some cases). Accordingly, this signal gets passed 
on to the dmPFC to compute action value (similar to subjective value 
used in the current study) by subtracting related costs from it (Rangel 
and Hare, 2010; Rushworth and Behrens, 2008; Shenhav et al., 2016). 
Indeed, we found that the dmPFC can independently represent both 
outcomes and effort levels, supporting its role in integrating these two 
components during effort-based decision-making. Alternatively, other 
researchers argued that the dmPFC is more likely to encode prediction 
error to guide value integration in the vmPFC during decision-making 
(Arulpragasam et al., 2018; Vassena et al., 2020, 2014). Most of these 
studies were based on a sequential decision-making task and univariate 
fMRI analyses. Future studies using other neural measurements and 
multivariate analyses are needed to elucidate the role of the dmPFC 
when prediction error and subjective value are dissociable. Finally, 
another possibility is that value integration during decision-making is 
achieved by a joint effort of a small number of regions (Hunt and Hay-
den, 2017). This mechanism reduces the risk of completely losing the 
ability to integrate values when a core site (e.g., vmPFC) inside the 
network is disrupted (Yu et al., 2022). Taken together, the precise role of 
the dmPFC in value integration and how it interacts with the vmPFC 
during decision-making remain to be open questions that deserve 
further investigation (Fatahi et al., 2020). 

5. Conclusions 

In summary, our study indicates that effort discounting can be best 
described by a two-parameter power function. Using multivariate fMRI 
analysis, we found that the activity patterns of the dmPFC can represent 
subjective value across effort-based and risky decision-making, and the 
results are robust across two independent studies. Overall, the work we 
present here advances our understanding of the neural and computa-
tional mechanisms underlying effort-related value integration and sug-
gests that the dmPFC emerges as a potential hub that utilizes a task- 
independent mechanism for computing subjective value. 

Data and code availability statement 

Behavioral data and analysis code are available on the Open Science 
Framework (https://osf.io/qdmyx/). Imaging data for study 1 are 
available on https://openneuro.org/datasets/ds003782/. Imaging data 
for study 2 are not openly available due to ethical restrictions, but are 
available upon request to the corresponding authors with a data sharing 
agreement in accordance with the conditions of the local ethics 
committee. 

CRediT authorship contribution statement 

Yuan-Wei Yao: Conceptualization, Methodology, Formal analysis, 
Data curation, Writing – original draft, Visualization, Project adminis-
tration. Kun-Ru Song: Software, Formal analysis, Investigation, Writing 
– review & editing. Nicolas W. Schuck: Methodology, Visualization, 
Writing – review & editing. Xin Li: Investigation, Writing – review & 
editing. Xiao-Yi Fang: Conceptualization, Resources, Writing – review 
& editing. Jin-Tao Zhang: Conceptualization, Resources, Writing – re-
view & editing, Supervision, Funding acquisition. Hauke R. Heekeren: 
Conceptualization, Writing – review & editing, Supervision. Rasmus 
Bruckner: Methodology, Formal analysis, Data curation, Writing – re-
view & editing, Visualization, Supervision. 

Declaration of Competing Interest 

The authors declare no conflict of interest. 

Acknowledgments 

This research was supported by the National Natural Science Foun-
dation of China (No. 32171083 and No. 31871122). Y.W.Y. was sup-
ported by the Einstein Center for Neurosciences Berlin. N.W.S. was 
funded by a Starting Grant from the European Union (ERC-StG-REPLAY- 
852669), and an Independent Max Planck Research Group grant awar-
ded by the Max Planck Society (M.TN.A.BILD0004) and the Excellence 
Strategy of the Federal Government and the Länder. The funders had no 
role in study design, data collection and analysis, decision to publish, or 
preparation of the manuscript. We would like to thank Andrew West-
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