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Abstract 
With practice, humans may improve their performance in a task by either optimizing a known 
strategy or discovering a novel, potentially more fruitful strategy. How does the brain support 
these two fundamental abilities? In the present experiment, subjects performed a simple 
perceptual decision-making task. They could either use and progressively optimize an instructed 
strategy based on stimulus position, or spontaneously devise and then use a new strategy based 
on stimulus color. We investigated how local and long-range BOLD coherence behave during 
these two types of strategy learning by applying a recently developed unsupervised fMRI 
analysis technique that was specifically designed to probe the presence of transient correlations. 
Converging evidence showed that the posterior portion of the default network, i.e. the 
precuneus and the angular gyrus bilaterally, has a central role in the optimization of the current 
strategy: these regions encoded the relevant spatial information, increased the level of local 
coherence and the strength of connectivity with other relevant regions in the brain (e.g. visual 
cortex, dorsal attention network). This increase was proportional to the task optimization 
achieved by subjects, as measured by the reduction of reaction times, and was transiently 
disrupted when subjects were forced to change strategy. By contrast, the anterior portion of the 
default network (i.e. medial prefrontal cortex) together with rostral portion of the fronto-
parietal network showed an increase in local coherence and connectivity only in subjects that 
would at some point spontaneously choose the new strategy. Overall, our findings shed light on 
the dynamic interactions between regions related with attention and with cognitive control, 
underlying the balance between strategy exploration and exploitation. Results suggest that the 
default network, far from being “shut-down” during task performance, has a pivotal role in the 
background exploration and monitoring of potential alternative courses of action. 
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Introduction  

“Practice makes perfect”, they say. By engaging long enough in any activity, major improvements 
in both accuracy and speed are expected. This is true for tasks as complex as playing piano and 
as mundane as preparing home-made tagliatelle (Ericsson & Lehmann, 1996). These 
improvements may happen through multiple paths. One way is incremental task optimization: 
while following the same solution strategy, one can optimize the implementation of the adopted 
(or instructed) algorithm, yielding measurable processing gains. Alternatively, one can 
spontaneously learn about potentially useful contingencies in the task (e.g. new stimulus-
response associations), use this new information to devise a new strategy based on a different 
algorithm, and then switch to it, thus reaching the same task goals with greater efficiency 
(Badre, Kayser, & D’Esposito, 2010; Cohen, McClure, & Yu, 2007; Cole, Braver, & Meiran, 2017; 
Collins & Frank, 2013; Donoso, Collins, & Koechlin, 2014; Hayden, Pearson, & Platt, 2011; 
Heathcote, Brown, & Mewhort, 2000; Roeder & Ashby, 2016; Schuck et al., 2015; Wenke, De 
Houwer, De Winne, & Liefooghe, 2015). 
Task optimization has been associated with a decrease of activation both in areas specialized for 
the task and in a set of brain regions associated to control and attentional functions (Chein & 
Schneider, 2005; Hampshire et al., 2016; Patel, Spreng, & Turner, 2013). The distributed nature 
of these effects suggests that optimisation reflects increasingly efficient routing of information 
across the brain. This may be understood as a modulation of neural circuits involving multiple 
brain regions, rather than just a local activation change. Evidence relating learning to brain-wide 
network changes has become available thanks to the recent development of tools for network 
dynamics analysis (Bassett et al., 2011; Bassett, Yang, Wymbs, & Grafton, 2015; Bassett & Mattar, 
2017; Cole et al., 2013) able to capture the rich information contained in rapidly varying 
connectivity patterns. Nevertheless, the evidence available to date is mainly focused on motor 
learning, leaving open the question on how the human brain optimizes known strategies and 
how this relates to the discovery and implementation of new ones. 
We investigated the modulation of functional networks occurring during task optimization and 
how this modulation interacts with spontaneous or forced strategy shifts (Schuck et al., 2015). 
Subjects were instructed to press one of two alternative buttons based on the spatial features of 
the stimuli. Even though subjects were not informed, the color of the stimuli could be used to 
efficiently determine the correct response. Subjects could either spontaneously discover and 
decide to use the new color strategy, or continue to use the instructed spatial strategy until they 
were explicitly told otherwise (Fig. 1). 
The analyses were based on Coherence Density Peak Clustering (CDPC), a new fMRI analysis 
method developed by our group (Allegra et al., 2017). CDPC is based on Density Peak Clustering 
(Rodriguez & Laio, 2014), and detects the presence of clusters, sets of voxels whose BOLD time 
series are temporally coherent. Clusters can be reliably found even in short time windows 
(approximately 20 seconds). With CDPC we can identify potentially task-relevant voxels, such as 
those being frequently part of a cluster. Furthermore, CDPC can track the connectivity dynamics 
of those relevant voxels. 
Overall, this new analysis method combined with our experiment allowed us to pursue multiple 
aims. First, we could identify, with a fully unsupervised approach, the brain regions involved in 
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the task. Second, we traced the dynamics of local coherence and long-range connectivity 
associated with instructed strategy optimization. Third, we identified the BOLD signatures 
anticipating the discovery of a possible alternative strategy and its implementation. Fourth, we 
compared the changes induced by spontaneous and forced strategic shifts. 
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Results 

Participants performed a simple perceptual decision task (Schuck et al., 2015). They were 
instructed to respond manually to the position of a patch of colored dots within a square 
reference frame by selecting one of two responses. Participants held a button box in each hand 
and could press either the left or the right button. Color patches closer to the upper left or lower 
right corner mapped onto the left button, while patches closer to the lower left or upper right 
corner mapped onto the right button (Fig. 1). So there was a four-to-two stimulus-response 
mapping, where two opposite corners (along the diagonal) were mapped onto the same 
response. Participants performed 12 runs of the task, each one comprising 168 trials and lasting 
~5 minutes. In runs 1 and 2, the stimulus color (red or green) was unrelated to the position of 
the stimulus and the response. In runs 3–12 the color had a fixed relation to the response (e.g., 
all upper-left and lower-right stimuli were green, the remaining ones were red, Fig. 1). 
Participants were not informed about this contingency but they could learn it and generate a 
new task strategy based on the stimulus color. Before the last two runs (11-12), participants 
were explicitly instructed to switch to the color strategy. For the following analyses, we 
considered experimental “blocks”, where 1 block = ½ run, lasting ~2.5 minutes. 
 
Behavioral results 
Most of the behavioral results have been already reported in our previous work (Schuck et al., 
2015). We briefly summarize here the findings relevant to the present work. The majority of 
subjects (25/36, the “spatial strategy users”) used the instructed spatial strategy over the first 
20 blocks. As expected, spatial strategy users showed evidence of incremental task optimization 
during the first 20 blocks, as indexed by a progressive reduction of reaction times (RTs) and 
errors (Fig. 2a). After the instructed switch to the color strategy from block 21, RTs and errors 
further decreased, thus confirming the effectiveness of the color strategy. A minority of the 
subjects (11/36, “color users”) switched spontaneously to the color strategy before the end of 
the block 20. The switch point could be precisely and robustly identified by several behavioral 
markers (see Methods). In particular, in a fraction of the trials (ambiguous trials) the dots were 
centered within the square reference frame, equidistantly from all corners: in these trials, 
evidence of a color-based strategy comes from the number of responses that are consistent with 
the stimulus color (while a strategy based on stimulus position should yield essentially random 
responses). The fraction of color consistent-choices in color users shows an abrupt increase in 
the switch block (fig 2b). Before the strategy switch, color users also showed a progressive 
reduction in RTs and errors (Fig. 2c). This trend exhibits a transient stop just before the 
spontaneous switch. After the spontaneous switch to the color strategy, RTs and errors further 
decrease also in color users, albeit less abruptly as compared to spatial strategy users (Fig. 2d). 
 
Overview of the neuroimaging analyses 
The core of our neuroimaging analyses is based on Coherence Density Peak Clustering (CDPC) 
(Allegra et al., 2017). 
In Fig. 3 we summarize the main steps of the analysis. In the first step, we identified all voxels 
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potentially relevant for the task. The main idea behind CDPC is that task-related BOLD activity 
should organize into transient clusters of coherent activity. Given a time window, CDPC first 
implements a noise filter, discarding isolated voxels that are not coherent with their spatial 
neighbors, and then groups the remaining voxels into clusters. We applied CDPC over short (22 
s) running windows in the experiment and measured how frequently any voxel is clustered, thus 
generating a clustering frequency (Φ) map (Fig. 3a-3c). We then found that voxels with a high 
value of Φ can be grouped in 22 connected regions (Fig. 3d-3f). These regions were used as a 
“basis” to explore the time-dependence and the subject-dependence of Φ. Finally, we focused on 
long-range connectivity, thus complementing the analysis on Φ, a spatially local measure. We 
computed a pairwise connectivity matrix between the 22 regions, measuring the frequency with 
which voxels in each pair of regions are clustered together (Fig. 3g-3j). By computing the 
variations of the connectivity matrix over blocks, we explored how behavioral changes impact 
the long-range connectivity. 
 
Identification of the relevant regions 
In the following analyses, we considered fMRI data from 35 participants. One subject was 
excluded because the field of view did not cover the whole brain. For each subject, and for each 
of the 24 independent blocks, we applied CDPC to grey matter voxels as identified by tissue 
segmentation. CPDC was applied on sliding windows of 11 volumes (22 seconds), the same 
timescale for which the method was validated. For each subject and each block, we computed a 
clustering frequency map Φ௜ that measures the fraction of time windows within a block in which 
a voxel is coherent with its spatial neighbors and hence clustered. 
The Φ௜  maps are consistent across subjects: averaging Φ௜ maps over all blocks and performing 
spatial smoothing (9 mm FWHM), we obtained a between-subject correlation of .623 (SD 
= .003). A comparison between the average Φ௜ maps for color and spatial strategy users failed to 
detect any significant difference. We thus averaged Φ௜ maps over all subjects, and we obtained a 
Φഥ ௜ map reporting the average clustering frequency across subjects and blocks. Areas with high 
Φഥ ௜ represent voxels where a coherent signal is consistently found over different blocks and 
subjects. To estimate which values Φഥ ௜ could be expected in the absence of a real task-related 
signal, the same procedure was carried on for voxels in the white matter. We assumed that task 
processing did not modify Φ in the white matter. To identify potentially task-relevant voxels we 
conservatively thresholded the Φഥ ௜ map of the grey matter with the maximum value Φഥ௠௔௫ = .11 
observed in the white matter. In Fig. 4 we show the resulting thresholded Φഥ ௜ map for gray 
matter. We grouped spatially contiguous voxels above the white matter threshold in regions 
around each peak in the Φഥ ௜ map, thus obtaining 22 regions (Tab. 1). These high-Φ regions are 
distributed throughout the brain, including areas in the occipital cortex, parietal cortex, 
prefrontal cortex, temporal cortex, thalamus, and mesencephalon. These 22 regions will be used 
in the following as a “basis”, common to all subjects and all runs, for describing the time- and 
subject-dependence of the results. 
Since CDPC is an unsupervised technique, the high level of local coherent activity in the 
identified high-Φ regions is not necessarily related to the task. To verify which of the high-Φ 
regions are indeed task-related, we used multiple approaches. First, we compared CDPC results 
with the supervised, multivariate pattern analysis (MVPA) performed on the same regions (see 
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Methods, and for details see also Schuck et al., 2015). For each subject and each block, MVPA 
produced accuracy maps assessing whether local activity patterns represented relevant features 
of the stimuli, namely to which corner the patch is nearest. For each high-Φ region, we tested 
whether the average accuracy of the multivariate classifier was above the chance level. We 
found that several regions in the occipital, parietal and prefrontal cortex encoded spatial 
information (p < .05, FDR corrected, Fig. 5). A second approach to investigate task-relevance is 
to test whether the identified regions had a different average activation during task performance 
as compared to a resting baseline. Almost all regions showed either significant activation or 
significant de-activation (p < .05, FDR corrected, Fig. 5). Regions more active than baseline are 
medial and lateral occipital cortex bilaterally (1-2), and the superior parietal lobule bilaterally 
(9-10). All remaining areas, including occipital (3-4), central and lateral parietal (5-8, 11), 
prefrontal (12-15), temporal (16-20) are deactivated. Taken together, these findings suggest 
that most of the identified regions are likely related to the task. Further converging evidence is 
provided by the subsequent analyses. 
 
Temporal dynamics of the clustering frequency (Φ) 
Having identified the set of high-Φ regions, we focused on differences in Φ related to behavioral 
changes across time and across subjects. Across time, we may observe a qualitative change of 
the brain regions showing a high level of coherence. Alternatively, high-Φ regions may remain 
the same but the level of Φ in the regions may systematically change. 
We found that the Φ maps obtained were similar for different blocks within single subjects. We 
computed a block similarity for each subject by computing the Pearson correlation between all 
pairs of block Φ maps within each subject and averaging over blocks. Over all subjects, we 
obtained an average similarity of .64 (SD = .09), indicating an overall qualitative stability of the 
brain regions involved during the experiment. Consistently with this finding, the set of regions 
with significant coherence appeared stable during the experiment. For both color and spatial 
strategy users, we considered the voxels above the threshold Φഥ௠௔௫ in each block. Results are 
reported in Fig. 6. High-Φ regions do not qualitatively change during the experiment. No regions 
disappeared, and no new regions appeared. 
The lack of qualitative change, however, does not imply that Φ remains constant over time. In 
fact, quantitative variations of Φ were observed. We first analyzed the subjects who used the 
spatial strategy up to block 20 and switched to color strategy in blocks 21-24, after receiving 
explicit instructions. We computed the average Φ in each region as a function of the block. The 
variations of Φ across blocks were different between regions. In regions 3,4 (occipital) and 
5,6,7,9,11 (lateral and medial parietal) we observed three phenomena, as shown in Fig. 7 (a-e). 
First, in blocks from 1 to 20, i.e. when subjects used and improved the spatial strategy, Φ rose. 
Second, after the switch to the color strategy, Φ suddenly dropped. Third, Φ underwent a fast 
recovery, so that the measure was back to the pre-switch level after just one block (~2.5 min). 
Regions 9,10 (lateral superior parietal) showed both the increase and the drop but did not show 
the recovery. Regions 15-20 (temporal lobe) showed the increase, but no drop. Finally, the 
remaining regions, including 1,2 (occipital lobe), 12-15 (prefrontal cortex) and 21,22 (thalamus 
and mesencephalon) show little variation of Φ across time. The effects corresponding to the 
increase, drop and recovery are summarized for all regions in Fig. 8 and in Tab. 2. 
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As mentioned, several regions showed at the same time an increase in Φ during task 
optimization and a decrease upon strategy change (Fig. 8, Tab. 2). In these regions, the dynamics 
of Φ in blocks 1-20 and 20-21 is what would be expected for a variable correlated to the 
optimization of the spatial strategy: a gradual increase during learning of a specific strategy and 
a drop when such strategy is abandoned. In order to further explore this possibility, we 
evaluated the correlation between Φ and participants’ reaction times (RTs). Overall, the average 
RTs in blocks 1-20 are negatively correlated with Φ averaged over all regions (Fig. 9). We 
computed the correlation between Φ and RTs in each region and then averaged over subjects. 
The statistical significance of the resulting average correlation was assessed by using a 
permutation approach, re-computing the Pearson coefficient for 10,000 random permutations of 
the blocks. We found that the increase in Φ in most regions was significantly correlated with the 
decrease of RTs (p < .05, FDR corrected for multiple comparisons). The strongest effects were in 
the parietal, occipital and temporal regions (Fig. 9). If the observed negative correlation were 
just due to an unspecific, time-dependent, increase of Φ we would expect to find the same 
relation also in brain areas outside the 22 high-Φ regions examined. We assessed whether the 
negative correlation is present also in other brain regions by using a standard whole-brain atlas 
parcellating the brain in 268 regions (Finn et al., 2015). Only 28 regions out of 268 showed a 
significant negative correlation (p < .05, uncorrected). These regions are located in the parietal, 
precuneus and prefrontal cortex, with a large overlap with high-Φ regions. Finally, we checked 
whether the increase of Φ would be present even in an experiment in which task optimization is 
not expected to occur. If the increase of Φ were just due to artifacts or physiological noise, the 
increase should be observed irrespectively of whether some learning occurs in the experiment 
or not. We repeated the same analysis procedure on an experiment (Reverberi et al., 2018) 
where 15 subjects performed 7 runs of a simple language task (naming of common objects) not 
expected to trigger any learning. We evaluated the dynamics of Φ as a function of the run in the 
same regions showing a time-dependent increase in the present study. We did not observe any 
evidence for an increasing Φ in the language experiment (region 1: p = .01 uncorrected; region 
6: p = .04 uncorrected; all other ps > .1, uncorrected). Thus, the increase of Φ in the present 
study is likely related to the task. 
We carried out on color users an analysis similar to the one performed on spatial strategy users. 
It should be noticed that in color users the timing of the strategy change was not fixed as in 
spatial strategy users, but it was variable from subject to subject. Thus, we considered the 
increase of Φ from block 1 to the block of the strategy change. We again observed a significant 
increase of Φ in the regions already reported for spatial strategy users (Fig. 7 f-j). In contrast 
with spatial strategy users, however, in color users such an increase was observed also in 
prefrontal cortex (regions 12-15). Furthermore, color users showed no sudden decrease in Φ 
between blocks 20 and 21. This was expected given that color-users did not switch strategy at 
that point in time. Relatedly, we explored the presence of a decrease of Φ between the block in 
which subjects spontaneously changed strategy and the following one (equivalent to blocks 
20/21 in spatial strategy users). We observed a decrease of Φ in the same regions that showed 
an effect in the spatial strategy users. The effect, however, is considerably weaker compared to 
the spatial strategy users. In fact, results are not significant after FDR correction; the largest 
effect is observed for region 8 (left parietal) with p = .005 (uncorrected). The weakness of the 
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effect may be related to the reduced sample of color users (11 instead of 24 subjects). More 
importantly, the transition between the two strategies, when non-instructed, is likely to be 
gradual and, for a short period of time, the two strategies might be used simultaneously. 
 
Cluster-based connectivity analysis 
Clustering frequency (Φ) maps reveal how often a voxel is involved in a coherent activity in a 
time window of approximately 20s and in a spatially local neighborhood. A group of voxels 
generally shows high coherence not only with voxels in the spatial neighborhood but also at 
large distance. Φ maps, however, do not directly measure long-distance coherence, neither can 
reveal which regions, among those with high-Φ, have mutually coherent time series, i.e. are 
connected. To quantify long-range coherence effects we measured the frequency with which 
voxel pairs in two regions are assigned to the same cluster, weighted by a measure of the 
robustness of cluster assignment (Methods). By computing these values for all regions we built a 
clustering-based connectivity matrix (Fig. 10). The diagonal terms of the matrix represent a 
measure of the within-region coherence. By contrast, the off-diagonal terms represent the 
coherence or connectivity between regions. 
Like the Φ-maps, the connectivity matrices obtained are similar for different blocks within a 
single subject (r = .79, SD = .06) and, upon averaging over blocks, across different subjects (r 
= .65, SD = .15). In general, the within-region coherence (average 𝑁௔௔= .035, SD= .006) is higher 
than the between-region coherence (average 𝑁௔௕= .008, SD= .010). Nevertheless, we found 
strong long-range links between subsets of regions. In Fig. 10 we show the connectivity matrix 
averaged over blocks and subjects, and the 50% strongest links. We used the popular Louvain 
modularity optimization method (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) to assign 
regions to subnetworks or modules. Regions within a module display higher mutual 
connectivity. The optimal partition identifies 6 modules. The modules are frontal (F), parietal 
(P), occipito-parietal (OP), occipital (O), temporal (T) and thalamus (Fig. 10). Furthermore, the 
precuneus (region 5) acts as a hub connecting the four fronto-parieto-occipital modules, thus 
showing high connectivity with all of them. More in detail, all regions in the anterior frontal 
cortex (12-15) are assigned to the frontal module. The regions in the temporal cortex (16-20) 
form the temporal module including also the midbrain (22). The thalamus (21) is not connected 
with other regions and forms a module alone. The occipital and parietal regions are split into 3 
modules. The parietal module includes the precuneus (5) and the inferior lateral parietal regions 
(6-8,11). The occipito-parietal module joins two occipital regions (1,2) and the superior lateral 
parietal regions (9,10). Finally, two occipital regions (3,4) form the occipital module. 
By using an approach similar to the one used for Φ, we explored variations of the connectivity 
network in time. We first analyzed spatial strategy users (Fig. 11). We observed an increase of 
connectivity centered on the medial and lateral parietal lobe involving namely the parieto-
parietal, parieto-occipital and parieto-frontal links (p < 0.05 uncorrected, Wilcoxon test; links 
with p < 0.01 are also FDR corrected). Upon switch to color strategy (block 21), the strength of 
the links mainly centered on the parietal lobe decreased and then, as for clustering frequency, 
the same links showed a rebound to the connectivity level reached before the switch (p < 0.05 
uncorrected, Wilcoxon test). In Fig. 11a-c, we show the links with an increase between block 1 
and block 20, those with a decrease between block 20 and 21, and those with an increase 
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between block 21 and 24 (p < .05 uncorrected, Wilcoxon test). It is apparent that there is an 
increase between block 1 and block 20 of the connectivity within the P module, and between the 
P module and the OP, O, and F modules. To improve statistical sensitivity, we performed the 
same tests focusing on module-wise connectivity. We averaged over all pairs of links between 
regions assigned to two modules: for example by averaging all links between module P regions 
and module OP regions we obtained P-OP connectivity (Fig. 12a). The P-P, P-OP, P-O, P-F, and O-
F links have a significant increase in between block 1 and block 20 (p < .05 FDR corrected, 
Wilcoxon test) and a significant decrease between block 20 and block 21 (p < .05 FDR corrected, 
Wilcoxon test). 
We performed similar analyses for color users (Fig. 11d-e,12b) by realigning the time series to 
the switch block. Overall the pattern is similar to the one found in spatial strategy users. Notably, 
however, color users showed an increase in fronto-frontal connectivity that was not present in 
spatial strategy users: Connectivity increased within medial prefrontal cortex (region 13) and 
between medial prefrontal and the two anterior lateral frontal regions bilaterally (region 12 and 
14). Using the module-wise connectivity, we found a significant increase in P-P, P-OP, P-F, O-F, 
OP-F and F-F links between block 1 and the transition block (p < .05 FDR corrected, Wilcoxon 
test). Notably, the increase was significant even before the color-corner correlation was 
introduced (p < .05 FDR corrected, Wilcoxon test). Thus, color users seem to be characterized by 
a greater integration between regions of the F module, and between the F module and the 
occipito-parietal modules. Finally, in the passage to color strategy (from the transition block to 
the subsequent block) we observe a weak decrease of connectivity within the P module (p = .007 
uncorrected), and between the latter and the F, OP and O modules (p =.06, p = .07, p =.06 
uncorrected). 

Discussion 

Humans can improve their performance in any task by gradually optimizing the implementation 
of a known strategy, or by devising and then adopting novel, more efficient strategies (Badre et 
al., 2010; Collins & Frank, 2013; Donoso et al., 2014; Heathcote et al., 2000; Roeder & Ashby, 
2016; Schuck et al., 2015). Previous research has shown that practicing a task induces changes 
not only in the activation level of specific brain regions, but also in the long-range organisation 
of the relevant brain networks (Bassett & Mattar, 2017; Bassett et al., 2015; Chein & Schneider, 
2005; Cole et al., 2013; Patel et al., 2013). However, the network dynamics governing strategy 
optimization versus the discovery of a new strategy are still unknown. By applying an analysis 
approach integrating the Coherence Density Peak Clustering (CDPC) (Allegra et al., 2017) with 
Multi-Voxel Pattern analysis, standard GLM and behavioral analysis, we could identify the brain 
regions involved in the task learning and performance. We showed that strategy optimization 
was specifically associated to an increase in local coherence and network integration centered 
on the precuneus and the angular gyrus bilaterally, corresponding to the parietal portions of the 
default network. By contrast, new strategy discovery was anticipated by a higher coherence and 
network integration in the medial and rostrolateral prefrontal cortex. 
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Relevant brain regions: a fronto-parieto-occipital network 
We identified 22 brain regions displaying high average local coherence over the ~1h of task 
performance in all subjects. A CDPC-based connectivity analysis showed that these 22 regions 
segregated in two main networks. A larger network involved frontal, parietal and occipital 
regions. This network could be further subdivided into smaller modules with a higher degree of 
internal coherence (see below). Another smaller network mainly involved temporal regions, and 
it did not exhibit a finer subnetwork structure (Fig. 10). High local coherence alone does not 
entail the involvement in a task: CDPC is an unsupervised approach, therefore it detects the 
presence of spatial and temporal coherence even when this is not task-related. However, 
converging evidence shows that at least the regions in the larger fronto-parieto-occipital 
network are indeed task-related. First, critical features of the stimuli, such as the spatial 
position, are represented in activation patterns in the regions of the network, as shown by a 
region-based MVPA analysis (Fig. 5). This finding is further supported by the overlap with 
regions reported previously using searchlight-based MVPA (Schuck et al., 2015). Second, all 
regions of the network are either activated or deactivated during task execution, as compared to 
a low-level baseline. Third, the local coherence and connectivity are strongly modulated by 
strategy optimization, strategy discovery, and strategy shift. By contrast, the other smaller 
network, mainly involving the temporal lobe, showed only limited converging evidence of being 
task-related. This leaves its functional role in this task open to interpretation. We focus our 
following discussion on the main occipito-parieto-frontal network. 
 
Incremental task optimization and instructed strategy change 
The first aim of the present paper was to elucidate how coherence and connectivity vary when 
an established strategy is improved and when a shift to a new strategy occurs. Twenty-five out 
of thirty-six subjects continued to use the instructed spatial strategy and steadily improved their 
performance for ~50 minutes until they were explicitly told to switch to the color strategy for 
the last ~10 minutes. The optimization of the spatial strategy was associated with a progressive 
increase of local coherence in the precuneus, the lateral parietal lobe and in the medial occipital 
lobe. The increase of coherence in these regions was correlated with the reduction of reaction 
times during the optimization of the spatial strategy. When subjects were finally instructed to 
apply the color strategy, local coherence sharply dropped, as it would be expected if those 
regions were indeed involved in spatial strategy optimization. In the course of the instructed 
application of the new color strategy, coherence showed a fast recovery returning to the pre-
switch level after only one block (2.5 minutes) in the anterior calcarine sulcus, in the precuneus 
and the angular gyrus bilaterally, thus suggesting that these regions were also involved when 
applying the new color strategy. While increasing their local coherence, these parietal and 
occipital regions showed either a decreasing or constant average activation. Furthermore, all 
occipital and parietal regions (with the exception of the anterior calcarine sulcus, see below) 
encoded the relevant spatial information of the stimulus. Altogether, these findings suggest that 
the progressive optimization of task processing shapes the activity of neural populations to 
become more coherent, specifically in regions involved in task processing. To the best of our 
knowledge, such relation between local coherence, learning, and task performance has not been 
reported yet (for a related measure mainly applied in resting state analysis see Jiang & Zuo, 
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2016). 
Our findings indicate that a modulation of local coherence correlates with improved task 
performance. At present, however, we can only speculate as for the neural basis of this 
phenomenon. A modulation of local coherence is possibly achieved by a competitive mechanism 
enhancing task-relevant signals while reducing unrelated signals (Aston-Jones & Cohen, 2005; 
Eldar, Cohen, & Niv, 2013; Schmitz & Duncan, 2018). Furthermore, an increase in local 
coherence may indicate a progressive noise reduction, in line with recent neurophysiological 
findings. Works studying neuronal variability across multiple trials as a measure of the internal 
noise of a neural system have shown that the variability of task-relevant neurons decreases 
when stimuli are attended or perceived (Broday-Dvir, Grossman, Furman-Haran, & Malach, 
2018; Churchland et al., 2010; Hussar & Pasternak, 2010; Mitchell, Sundberg, & Reynolds, 2007; 
Nougaret & Genovesio, 2018; Schurger, Sarigiannidis, Naccache, Sitt, & Dehaene, 2015). The 
reduction in neuronal variability has been associated to individual differences in perceptual 
ability, and to training in a working memory task (Arazi, Censor, & Dinstein, 2017; Qi & 
Constantinidis, 2012). 
The findings on the four occipital regions we identified deserve a further comment. As 
mentioned above, the two regions in the anterior calcarine sulcus (3-4, Fig. 4) did not encode 
task-relevant information, while they showed learning effects similar to parietal regions. By 
contrast, the two regions in the posterior calcarine sulcus and lateral occipital cortex did not 
show learning effects but they encoded spatial information. Notably, posterior calcarine was 
activated compared to baseline while anterior calcarine was deactivated. We interpret this 
pattern as the effect of an attentional negative modulation on the portion of the calcarine sulcus 
processing the peripheral visual field, which is not useful for the task at hand. Thus, negative 
attentional modulation produces both a deactivation (Broday-Dvir et al., 2018) and a 
progressive increase in local coherence. By contrast, central visual field regions are activated, 
but their coherence already high at the beginning does not increase more with learning. 
The analysis of the connectivity between regions and its dynamics provided both a confirmation 
of the findings on local coherence and further insights. The connectivity matrix over the whole 
experiment allowed to aggregate regions in few modules (Blondel et al., 2008; Sporns & Betzel, 
2016) with stronger connectivity between regions within the module. Four modules were 
identified in the fronto-parieto-occipital network. Modules did not strictly follow mere 
anatomical proximity or functional subdivisions at rest (Power et al., 2011; Yeo et al., 2011). All 
frontal regions were in one module, but parietal regions and occipital regions were split. The 
module including regions in the angular gyrus and precuneus was largely composed by voxels 
belonging to the default network, similarly, the module including two occipital regions is 
entirely composed by voxels from the visual network. By contrast, the other two modules were 
mixed, one (the occipito-parietal) including both regions from the visual and the dorsal attention 
network, the other (frontal) including both voxels from the default network (the medial part of 
the network) and from the fronto-parietal control network (the lateral part). These departures 
from network organisation at rest underlie that the engagement in a task and practice shape the 
network organization of the brain (Power et al., 2011; Spadone et al., 2015; Yeo et al., 2011). 
The connectivity dynamics followed a pattern similar to that of local coherence, particularly in 
the parietal module (“P” in Fig. 10). During the task optimization phase, the regions belonging to 
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the parietal module greatly increased both the intra-module connectivity and the connectivity 
with all the other modules. Also, the connectivity showed a sharp drop upon strategy change. By 
contrast, other modules did not generally show a systematic increase of connectivity. 
Overall, our findings suggest that the increase in regional and long-range connectivity is a driver 
of learning. An increased connectivity favors transfer of information and integration between 
brain regions, with possibly different functional specializations, but all involved in processing a 
task (Deco & Kringelbach, 2016; Shine & Poldrack, 2017). Compatible effects have been reported 
when comparing brain connectivity during rest to visuospatial attention (Al-Aidroos, Said, & 
Turk-Browne, 2012; Spadone et al., 2015), working memory (Cohen & D’Esposito, 2016; Shine et 
al., 2016) or flexible rule application (Vatansever, Menon, & Stamatakis, 2017). By contrast, the 
evidence on the network dynamics associated with learning is still limited, also because the 
analysis tools available until recently had low sensitivity in detecting network changes (Bassett 
& Mattar, 2017; Bassett et al., 2015). One important study by Bassett and collaborators reported 
that visuomotor learning was associated with increased functional segregation (i.e. decreased 
temporal coherence Bassett et al., 2015), a finding seemingly in contrast with ours. We argue 
that this diversity is due to the different processing requirements of the tasks explored in the 
two studies. The task we considered required the application of simple visuomotor rules 
implying the trial-by-trial integration of visual features to produce the appropriate motor 
response. Even when the task was highly practiced, subjects needed to rely on visual 
information to produce the correct response. In the study by Bassett and collaborators, by 
contrast, subjects were required to produce motor sequences, that once recognized and learned, 
could be generated from memory without further relying on visual information. This may 
explain why learning produced a segregation of the visual and motor network (see also Cohen & 
D’Esposito, 2016). Furthermore, in the study by Bassett and collaborators training was much 
longer (many hours over 42 days compared to 50 minutes in our case), possibly explaining the 
release from “control hubs”. 
Notwithstanding the lack of network segregation during learning, the observed connectivity 
increase was far from homogeneous. The parietal module, a part of the default network, had a 
central role, being the only one increasing connectivity with all other modules. This finding 
highlights an active role of the default network during task processing, in contrast with the idea 
that the default network is shut down when a subject is engaged in a task (Crittenden, Mitchell, 
& Duncan, 2015; Margulies et al., 2016; Spreng, 2012; Vatansever, Menon, Manktelow, Sahakian, 
& Stamatakis, 2015). Thanks to its widespread connectivity, as emerged also in the present 
experiment, the default network could both receive sensory information and affect all task-
relevant regions, to optimize stimulus processing and decision (Bar, 2007; Margulies et al., 
2016). This possibility is consistent with recent works emphasizing the role of the default 
network also in optimizing and automatizing information processing (Dohmatob, Dumas, & 
Bzdok, 2018; Vatansever et al., 2017). Interestingly, the fact that the intra- and extra-module 
connectivity of the parietal module rebounds one block after switch suggests that optimization 
is an abstract process, recruited for strategies as diverse as those based on spatial information 
and color information. By contrast, during switching, when the system is reorganizing to cope 
with the new strategy the optimization is transiently paused. 
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Spontaneous alternative strategy discovery and change 
The second aim of the present paper was to understand how the spontaneous generation of a 
new strategy is related to coherence and connectivity dynamics. Eleven subjects discovered the 
uninstructed color strategy and applied it at a variable moment during task performance. These 
subjects showed an overall coherence and connectivity dynamics similar to the one described 
for corner strategy users, but with revealing differences. Similar to spatial strategy users, color 
strategy users showed an increased local coherence in the occipital and parietal regions before 
the spontaneous strategy change. Importantly, however, only color users showed an increase of 
local coherence in the anterior prefrontal regions. This specificity in local coherence was 
mirrored also in connectivity. While the intra-module connectivity of the prefrontal module 
remained constant in spatial strategy users, in color users the connectivity increased (Fig. 11). 
Notably, the tendency to increase started immediately, even before the color and the response 
were associated (first 4 blocks). Moreover, as spatial strategy users, color users showed a 
switch-related drop in local coherence and connectivity in the parietal module. 
Overall, these findings suggest that connectivity patterns in medial prefrontal and rostrolateral 
prefrontal cortex reflect processes involved in the spontaneous discovery of novel strategies. 
Notably, connectivity among different frontal regions differed between participants long before 
their behavior began to change, foreshadowing who will discover a novel strategy and who will 
not. Rostrolateral prefrontal cortex has been proposed to be responsible for the evaluation of 
potential alternative strategies (Badre & Nee, 2018; Domenech & Koechlin, 2015; Donoso et al., 
2014), while our own work has suggested that medial prefrontal cortex is involved in the 
internal simulation of an alternative strategy (Schuck et al., 2015). Moreover, the frontal regions 
also involve parts of orbitofrontal cortex that has been linked to the representation of task 
states, i.e. the information based upon which choices are currently selected (Badre & Nee, 2018; 
Schuck, Cai, Wilson, & Niv, 2016; Wilson, Takahashi, Schoenbaum, & Niv, 2014). It is thus 
possible that the connectivity increases reflect cross-talk between the above-named 
computations that are involved in finding and implementing a novel strategy. While this is also 
consistent with proposals relating the default network to background exploration (Bar, 2007; 
Constantinescu, O’Reilly, & Behrens, 2016; Crittenden et al., 2015; Dohmatob et al., 2018; 
Margulies et al., 2016; Vatansever et al., 2015), our findings additionally suggest a functional 
differentiation within the default network (Karahanoğlu & Van De Ville, 2015). The observation 
that the dynamics in the two subjects groups diverged from the beginning of the experiment 
suggests that the equilibrium between these two poles might be a relatively stable individual 
feature (Beaty et al., 2018; Melnick, Harrison, Park, Bennetto, & Tadin, 2013). 
 
Conclusions 
In this study, we explored how brain networks behaved while human subjects optimized their 
strategy for solving a task or created a new one. The observed network dynamics suggested a 
pivotal role of default-mode network regions, but with a clear functional differentiation within 
the network. While the posterior part of the default-mode network increased connectivity and 
local coherence when subjects optimized their current strategy, the anterior part together with 
the rostrolateral prefrontal portion of the network was only involved in subjects who changed 
strategy. We speculate that the partially different behavior of the default-mode network in 
different persons might be a stable individual feature. 
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Methods 
 
Task. Behavioral and imaging data of the main experiment were recorded while participants 
performed a simple perceptual decision-making task (Spontaneous Strategy Switch Task, Schuck 
et al., 2015). Participants were instructed to respond manually to the position of a patch of 
colored dots within a square reference frame. They were asked to select one of two responses 
depending on which corner of the reference frame the colored squares were closest to. 
Participants held a button box in each hand and could press either left or right. Two opposite 
corners (along with the diagonal) were mapped to the same response. The main task during 
scanning included twelve runs with 168 trials each. In Runs 1 and 2 (Random Runs), the 
stimulus color was unrelated to the position of the stimulus and the response. In Runs 3–10 
(Correlated Runs) the color had a fixed relation to the response (e.g., all upper-left and lower-
right stimuli were green, the remaining ones were red). Participants were not informed about 
this contingency but could learn and apply it spontaneously. By the end of Run 10, all 
participants were informed about the existence of a fixed association between color and corner 
(without specifying the relation) and instructed to use the color from then on (Instructed Runs). 
Each of the twelve runs of the main experiment lasted about 5 min and was followed by a short 
break. The experimenter monitored the performance of the participants. Written and oral 
feedback was given between runs if the error rate exceeded 20%. The response-stimulus 
interval was 400 ms. To measure the learning and use of color information, different trial 
conditions were used (for details, see Schuck et al., 2015). In the standard condition (80 out of 
168 trials/run), the patch of dots was presented for 400 ms and was closest to one of the four 
corners of the reference frame; in the ambiguous trials (32 out of 168) the stimulus was 
centered within the reference frame and was presented for 400 ms;  in the NoGo trials (32 out of 
168) the colored squares were displayed for 2,000 ms without a reference frame in some trials 
and the task afterward continued with the next trial, with participants having to hold back any 
key press on the current trial; in the LateGo trials (16 out of 168), the frame was displayed after 
the initial 2,000 ms, and the participants had to react in a regular fashion; finally, in eight trials 
of each run the screen remained black for 3,000 ms (baseline condition). Due to the duration of 
the hemodynamic response function, the fast design of the experiment resulted in event-related 
BOLD signals, which also contained a signal proportion that reflected brain activation caused by 
previous and following events. 
Before entering the scanner, participants were instructed and trained in the task. The 
instructions described all conditions (except ambiguous trials). Participants were only told to 
press any key of their choosing in case they were uncertain about the stimulus location. The 
color of the stimuli was mentioned only in an unspecified manner (“A stimulus can be either red 
or green.”). The response mapping was shown in all color combinations (a stimulus in each of 
the four corners was shown in both red and green during the instruction). In the training phase, 
participants were slowly accustomed to the short display durations (the display duration was 
successively shortened until it reached 400 ms). Feedback was given for all wrong and 
premature responses and time-outs (2,500 ms threshold). The color of the stimuli had no 
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systematic relation to stimulus position during training. The training lasted at least 50 trials and 
ended when the participant made less than 20% errors in 24 consecutive trials. If the participant 
exceeded 168 trials without reaching the criterion, the training was restarted. Participants were 
further instructed that upon entering the scanner, no more feedback would be provided. After 
completion of the main experiment, participants completed a questionnaire with the following 
questions: (1) “In the experiment, which you have just completed, each corner had one 
associated color. Did you notice this while you were performing the task?” [yes/no]. (1b) “If 
yes, when did you notice this (after what percentage of the experiment)” [participants had to 
mark their answer on a scale from 0% to 100%]. (1c) “Did you use this color-corner relation to 
perform the task, i.e. to choose which button to press?” [yes/no]. (2) “Please indicate now which 
color the stimulus had for each of the four corners. If you did not notice this relation during the 
experiment or you are uncertain, you can guess.”  
 
Clustering frequency maps. Coherence Density Peak Clustering (CDPC, Allegra et al., 2017) 
aims at finding groups of voxels (clusters) whose BOLD signal is coherent in a given time 
window, usually short (e.g. 20 seconds). Contrary to other methods, such as community 
partition on a connectivity matrix, CPDC does not simply split all voxels into different clusters. In 
fact, voxels can be poorly coherent with other voxels (and hence not clearly part of any well-
defined cluster), or coherent with other voxels only as a consequence of correlated fluctuations 
in the noise (a spurious cluster). CDPC first discards all voxels displaying poor or potentially 
artifactual coherence and then assigns only the remaining voxels (usually a small fraction of the 
total) to clusters. 
The method starts by defining a distance 𝑑௜௝  that captures the coherence between the BOLD 

signals of voxels 𝑖 and 𝑗. The distance is given by the Euclidean distance between the BOLD time-
series of the two voxels 

𝑑௜௝ = ඩ෍(𝜈௜(𝑡) − 𝜈௝(𝑡))
ଶ

்

௜ୀଵ

 

where, however, the raw time-series 𝜈௜(𝑡), 𝜈௝(𝑡) have been suitably pre-processed, undergoing 

demeaning and amplitude-normalization. Note that the lowest frequency affecting the distances 
is 1/T (where T is the time window length), which for T = 22 s is .045 Hz. 
Two voxels are regarded as coherent if the distance between the respective BOLD signals is low, 
as defined by a threshold, 𝑑௜௝ < 𝑑௖ . Coherence between voxels can occur even if only noise is 

present. However, when only noise is present, high coherence tends to be observed between 
isolated voxels, while the presence of several coherent voxels within a close spatial 
neighborhood is unlikely (Allegra et al., 2017). More formally: for each voxel i, we define its 
neighbors as the voxels falling within a sphere of 6 mm radius centered on i, corresponding to 
about 27 voxels. We denote with 𝑛௜  the number of neighbors that are coherent with i. In our 
previous work, we showed that 𝑛௜  was generally lower than a threshold n0 = 4 when only noise 
is present. All voxels with 𝑛௜ ≥ 𝑛଴ are thus considered in the clustering procedure, while voxels 
with 𝑛௜ < 𝑛଴ are discarded. This filtering procedure was shown to minimize the rate of detection 
of spurious clusters (Allegra et al., 2017). This criterion of cluster membership relies entirely on 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/481838doi: bioRxiv preprint first posted online Nov. 28, 2018; 

http://dx.doi.org/10.1101/481838
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

  17 

a measure of coherence that is strictly spatially local (27 neighboring voxels). 
We run this procedure on sliding windows of 11 scans (22 s). This is the same length for which 
CDPC was validated (Allegra et al., 2017), and it is considered as the minimal window length for 
which transient connectivity clusters can be reliably identified (Hutchison et al., 2013). We use 
overlapping windows, progressively shifting the center of the window by 1 scan. The procedure 
is applied twice for each subject, the first time including only grey matter voxels, and the second 
time only white matter voxels. 
For each subject, and for each voxel i, the clustering yields a binary value for every time window 
t, tracking whether the voxels was or not in a cluster. We devised an index, Φ, measuring how 
often a voxel i is part of a cluster in an interval comprising 𝑁௧ time windows. 

Φ௜ =
1

𝑁௧
෍𝜒(𝑛௜(𝑡) > 𝑛଴)

ே೟

௧ୀଵ

 

where 𝑡 is a time window label, 𝑁௧ the number of time windows, 𝜒 is a step function 
(𝜒(𝑛௜(𝑡) > 𝑛଴) = 1 if 𝜒(𝑛௜(𝑡) > 𝑛଴), 𝜒(𝑛௜(𝑡) > 𝑛଴) = 0 otherwise). Intuitively, Φ௜ is an aggregate 
measure of the coherence of the local activity of a voxel with its surroundings. We call Φ௜ 
clustering frequency map, since, as we discuss below, if voxel satisfies the condition 𝑛௜(𝑡) > 𝑛଴ it 
is automatically included in one of the clusters (see (Allegra et al., 2017)). 
We compute a clustering frequency map for each block, i.e. half of a run (~150 s, Schuck et al., 
2015). Thus for every subject, we generated 24 maps. The information given by a Φ map is not 
equivalent to the one obtained by running CDPC on a single time window equal to the entire 
block. The latter choice would include and emphasize the contribution of low frequencies ( .005 
Hz < f < .05 Hz) in the computation of 𝑑௜௝ . This would reduce the sensitivity of the procedure to 

higher frequencies (f > .05 Hz), which are likely those critical for capturing the task related 
signals. The Φ maps focus on transient coherence occurring over timescales shorter than the 
whole block (see also Sakoğlu et al., 2010).  
 
High-coherence regions. The Φ௜ maps can be used to identify in a data-driven way voxels that 
are potentially relevant for a task, under the assumption that task relevant voxels would be 
more often part of a cluster than voxels that are not (Allegra et al., 2017). For each subject, we 
averaged Φ maps over all blocks, obtaining one map for each subject. We normalized the 
average individual maps to MNI space and performed a Gaussian smoothing (FWHM = 9 mm). 
Finally, we averaged individual maps to obtain a single group map Φഥ ௜ representing, for each 
voxel, the probability of being part of a cluster during task execution over all subjects. We 
assumed that coherence observed in the white matter could be safely ascribed to physiological 
and non-physiological noise. Therefore, we could use the distribution of Φഥ ௜ in white matter to 
identify a threshold above which Φ௜ would be unlikely produced in the absence of a real (e.g. 
task-related) signal. We repeated the procedure described above, this time including in the 
analysis only white-matter voxels. We conservatively used as threshold the maximum 
value Φഥ௠௔௫ found in the white matter. Intuitively, the resulting thresholded map of the grey 
matter represents the voxels that are likely involved in the task.   
To study the dynamics of Φ, we aggregated voxels above the Φഥ௠௔௫ threshold in regions around 
every peak in the Φ map. The detailed procedure is the following: 
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a) We rank the voxels in order of decreasing Φഥ ; 
b) We loop over all voxels above the threshold, starting from the voxel with the 
highest Φഥ(rank=1). At iteration 𝑛, we check if the voxels contiguous to the voxel of rank n have 
been already assigned. If not, then all contiguous voxels must have lower values of Φഥ : the voxel 
of rank 𝑛 is hence a peak and starts a new region. If instead some of the contiguous voxels have 
already been assigned, it implies that they have higher values of Φഥ , and we assign the voxel of 
rank n to the same region of these voxels. In case of ambiguity, we assign it to the same region of 
the contiguous voxel with highest Φഥ . In this way, we could define regions tailored to the average 
spatial distribution of Φ. 
 
Connectivity: regional and long-range coherence. Φ maps identify voxels that are frequently 
coherent with their close spatial neighbors, and are thus assigned to clusters. Given that, voxels 
in the same high-Φ region can be considered, over the whole experiment, mutually coherent. 
However, Φ does not measure to which extent voxels within a high-Φ region, or in different 
high-Φ regions are mutually coherent. To answer this question, one needs to know not only 
whether two voxels are part of any cluster (as Φ does) but, more specifically, whether two 
voxels are part of the same cluster. To assign each voxel in each time window and in each subject 
to a specific cluster proceed as follows (Allegra et al., 2017). 
We first define the density 𝜌௜  as the number of (non-isolated) voxels that are coherent with i, 
over the whole brain: 

𝜚௜ =෍𝜒(𝑑௜௝ < 𝑑௖)𝜒(𝑛௝(𝑡) > 𝑛଴)

௝

 

Notice that 𝜌௜  is usually higher than the number of coherent neighbors (measured by ni for Φ) 
because typically a voxel is coherent with many voxels outside its local neighborhood. Cluster 
centers are identified as peaks in the density distribution. Following (Rodriguez & Laio, 2014), 
we compute 𝛿௜ = 𝑚𝑖𝑛దೕவద೔𝑑௜௝, which is the minimum distance (in the space of BOLD signals) 

from a voxel higher density. Cluster centers stand out as isolated points with a large values of 𝛿௜. 
We rank the voxels according to their value of 𝛿௜and consider as putative cluster centers the first 
𝑘௠௔௫ = 10 (Allegra et al., 2017). After the cluster centers have been chosen, all remaining voxels 
are assigned to a cluster following a recursive procedure. Each voxel is assigned to the same 
cluster of the most similar voxel having a higher density; if the latter voxel in not yet assigned, 
one looks for the voxel most similar to it having a higher density, and so forth until either an 
already assigned voxel or one of the cluster centers is reached. At the end of the procedure, we 
obtained a map, for each time window, assigning each voxel to a specific cluster. 
Given two regions a and b we define a measure of their mutual coherence as 

𝑁௔௕ =
1

𝑁௧

1

𝑠௔𝑠௕
෍ ෍𝛿(𝑐௜(𝑡) = 𝑐௝(𝑡))𝜌௜

௖(𝑡)𝜌௝
௖(𝑡)

௧௜∈௔,௝∈௕

 

where 𝑠௔(௕) is the number of voxels in region a (resp. b). The term 𝛿(𝑐௜(𝑡) = 𝑐௝(𝑡)) is equal to 

one if voxel i and voxel j belong to the same cluster at time t. We weight this term by  its density 

normalized to that of the cluster center, 𝜌௜
௖(𝑡) =

ఘ೔(௧)

ఘ೎(௧)
𝜒(

ఘ೔(௧)

ఘ೎(௧)
> 𝛼) where 𝜌௖(𝑡) is the density of 

the cluster peak and 𝛼 is a lower cutoff threshold (here, 𝛼 = .3). In this way, we weight more 
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pairs of voxels in the cluster cores (high density) than to the cluster tails (low density). The 
diagonal terms 𝑁௔௔ measure the local coherence within the region a, while the off-diagonal 
terms 𝑁௔௕ measure long-range coherence between different regions. 
 
Statistical tests. Given two group samples of Φ maps obtained in different conditions, we 
perform non-parametric statistical tests. When comparing the results for two disjoint groups of 
subjects we use a nonparametric statistic for independent samples - such as the Anderson-
Darling statistic - to compare the distribution of Φ in the two samples; when comparing different 
conditions within a group of subjects, we can use a nonparametric statistic for dependent 
samples, such as the Wilcoxon signed-rank statistic. Indeed, Φ maps for different runs of the 
same subject can be correlated, so they cannot be assumed to be statistically independent. 
Once the test statistic is chosen, we apply the test region-wise by averaging the Φ map over the 
regions, obtaining a region-wise map. In order to correct for multiple comparisons, we set in 
advance a threshold (usually, 𝛼 = .05) and control the false discovery rate (FDR, Benjamini & 
Hochberg, 1995). In multiple tests with 𝑁 null hypotheses, the FDR is defined as the expected 
ratio between the number of false rejections and the total number of rejections. In order to keep 
the FDR below a threshold 𝛼, one can follow a simple procedure. First, the p-values for each 
hypothesis are computed. Second, the p-values are sorted in increasing order, 𝑝ଵ ≤. . . ≤ 𝑝௔ ≤

. . . ≤ 𝑝ே and one identifies 𝑎∗, the maximum a (if any) such that 𝑝௔ < 𝛼𝑎 𝑁⁄ . Finally, one rejects 
all hypotheses such that 𝑝௔ ≤ 𝑝௔∗. 
We test for changes in Φ in selected regions. Since the regions are selected on the basis of the 
average Φ, hence on a criterion that is not independent of the data that are to be tested, in 
principle we might incur in a “double dipping” issue (Kriegeskorte, Simmons, Bellgowan, & 
Baker, 2009). In fact, we do not meet such a problem.  A case of double-dipping would occur if, 
by selecting voxels with high average Φ across runs, we were inadvertently raising the chance of 
obtaining false positives.  More formally, under the null hypothesis that the distribution 
of  Φ௜ across subjects is the same in the two different runs the statistic  𝑊௜  follows a well-
defined distribution on which one computes p-values; a problem would occur if,  by restricting 
attention to voxels with high average Φ, the resulting distribution 𝑊௜ were biased towards 
higher values of 𝑊௜,  inflating the likelihood of false positive detection. We can rule out this 
possibility by means of the following simulation, which shows that our selection criterion does 
not impact the null distribution of the chosen test statistics. Under the null hypothesis, the voxel-
wise distributions Φ௜ are the same in the two different runs.  We can then generate two 
hypothetical samples Φ௜,௥భ and Φ௜,௥మ , corresponding to the samples of Φ௜ obtained in two 

different runs 𝑟ଵ, 𝑟ଶ across subjects, taking two Gaussian samples with mean given by the 
experimentally measured  Φഥ ௜  and variance given by Φప

ଶതതതത − (Φഥ ௜)
ଶ. We then compute the 

distribution of 𝑊௜ over all voxels and over the 10% voxels with highest  
ଵ

ଶ
(Φ௜,ଵ +Φ௜,ଶ)  in the two 

runs, averaged over subjects. The latter subset corresponds to our selection criterions: 
restricting attention to voxels with a high average across runs and subjects. The distributions 
of 𝑊௜  are the same in the two cases (not shown). This proves that choosing voxels with 
high  Φഥ ௜  (averaged over subjects and runs) does not artificially inflate the detection of false 
positives, under the null hypothesis that the distribution of Φ is the same in different runs. 
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Scanning and preprocessing. Acquisition of magnetic resonance images was conducted at the 
Berlin Center for Advanced Neuroimaging, Charité Berlin. We used a 3 T Siemens MagnetomTrio 
(Siemens) research-dedicated MRI scanner to acquire all data. T1-weighted structural images 
were acquired with an MP-RAGE pulse sequence with a resolution of 1 mm3. A T2∗-weighted 
echo-planar imaging (EPI) pulse sequence was used for functional imaging (3 × 3 × 3 mm voxels, 
slice thickness = 3 mm, TR = 2,000 ms, TE = 30 ms, FOV = 192 mm, flip angle = 78°, 33 axial 
slices, descending acquisition). EPI slices were aligned to the anterior-posterior commissure 
axis. Field maps for distortion correction were acquired also using an EPI sequence. To allow for 
T1 equilibration effects, the experiment was started 6 s after the acquisition of the first volume 
of each run. Image pre-processing was performed using SPM12 (Wellcome Trust Centre for 
Neuroimaging, London, United Kingdom) running under Matlab 7.4 (R2007a) (Mathworks, 
Sherborn, MA, USA). The performed preprocessing steps were: a correction for magnetic 
inhomogeneities using field maps, slice timing correction, realignment to correct for motion, co-
registration of anatomical images with functional images, and tissue segmentation based on the 
co-registered structural images to build a brain mask. Whenever required to allow for 
comparison of results across subjects, spatial normalization and/or smoothing was performed 
on the Φ maps (Allegra et al., 2017). The Φ maps were normalized to the standard MNI template 
and spatially smoothed with a Gaussian kernel of 9mm FWHM. For visualization purposes, we 
used the MRIcron software (www.mricron.com) and BrainNet Viewer (Xia et al., 2013; 
www.nitrc.org/projects/bnv/). 
 
GLM analysis 
We performed a GLM analysis, with standard trials and resting trials as separate regressors, and 
motion parameters as nuisance variables. The response in standard trials was modeled as a 
response to stimulus presentation: onsets and durations corresponded to the onsets and 
durations of stimulus presentation. Resting trials had a duration of 3000 ms. We tested for 
significant activation or deactivations in the high-Φ regions, by averaging the contrast map over 
each region and performing a region-wise T-test over subjects. 
 
MVPA analysis 
Representation of stimulus features (color and corner) was analyzed by a multivariate 
classification approach based on a support vector machine (SVM) with a linear kernel in 
combination with a searchlight approach (Haynes, 2015; Kriegeskorte, Goebel, & Bandettini, 
2006; Norman, Polyn, Detre, & Haxby, 2006). For details, we refer to the previous work (Schuck 
et al., 2015). For color representation, the SVM was trained on parameter estimates (‘‘betas’’) 
from a general linear model of red and green NoGo trials in the last two runs (where all 
participants use the color strategy), and then tested on betas from Runs 1–10. This resulted in 
one accuracy map for each block and subject. For corner representation, the classifier was 
trained on betas of standard trials in the first two runs (where no participants use the color 
strategy) and then tested on betas from Runs 3–12. 
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Figures 

 
Figure 1 Stimulus-response mappings in the task (a) Instructed S-R mapping used by spatial strategy users (b) 
learned S-R mapping used by color strategy users. 
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Figure 2 (a) Reaction times and error rates as a function of block for spatial strategy users (b) Percentage of color 
use (of color-consistent choices in ambiguous trials) for color strategy users as a function of block; the time series 
have been realigned to the switch block of each subject (-1 = switch block), which is also identified by the vertical 
dashed line. (c) Reaction times and error rates as a function of block for color strategy users; the time series are 
realigned to the switch block of each subject (-1 = switch block); the vertical dashed line identifies the switch (c) 
Reaction times and error rates as a function of the block for color strategy users, with time series realigned to the 
switch block (-1 = switch block) (d) Reaction times and error rates as a function of the block for color strategy 
users, without time series realignment. 
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Figure 3 Summary of the neuroimaging analyses. In a window of 11 scans (22 s), we identify the subset of voxels 
that are locally coherent with at least four spatial neighbors (a). Voxels surviving this local coherence filter are 
shown in yellow. The filtering procedure is applied separately for each subject, using sliding windows (1-11, 2-12, 
etc.) and including only grey matter voxels (b). For each subject, we identify the frequency (fraction of time 
windows) with which a voxel has local coherence with its neighbors, producing a clustering frequency map Φ (c). 
We compute an average Φ map for all subjects (d). On this map, we identify voxels having significant values of 
average Φ. Significance is defined by computing Φ on white matter voxels (e). We threshold the grey matter Φ on 
the maximum value found in white matter. The above-threshold voxels are divided in 22 regions around each peak 
of the average Φ. Different regions are shown in different colors (f). Finally, we compute a connectivity matrix 
between high-Φ regions. For each subject separately, in each time window of 11 scans we consider the voxels 
surviving the spatial filter and we divide them into different coherent clusters based on density peak clustering (g). 
Voxels assigned to two different clusters are shown in red and green respectively. We compute the clusters in all 
time windows (h) and define a pairwise connectivity between two regions by computing with which frequency 
voxels belonging to two regions assigned to the same cluster (j). 
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Figure 4 Voxels in gray matter showing an average clustering frequency (Φഥ ) higher than the maximum clustering 

frequency in white matter (Φഥ௠௔௫). Voxels have been grouped in 22 regions around each peak of the Φഥ  map. 
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Figure 5 (a) MVPA analysis on the spatial position of the stimulus. Mean accuracy of the multivariate classifier in 

CDPC regions for all users. We mark with an asterisk (*) regions with significant mean corner accuracy (FDR 

correction at α = .05, T-test). (b) Overlap (purple) between CDPC regions (red) and voxels with significant spatial 

representation (cluster-wise FWE correction at α = .05, T-test) for spatial strategy users (blue). (c) Mean activation 

for task versus rest contrast for all subjects. We mark with an asterisk (*) regions with significant activation or 

deactivation (FDR correction at α = .05, T-test). (d) Regions with significant activation (red) or deactivation (blue) 

for task versus rest contrast as revealed by GLM analysis for all subjects (color scale represents significance, -log(p), 

5 corresponds to p = 10-5) 

 
 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/481838doi: bioRxiv preprint first posted online Nov. 28, 2018; 

http://dx.doi.org/10.1101/481838
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

  34 

 

 
Figure 6 Stability of the high-Φ regions during the experiment. For each block separately, we considered the Φ for 
that block, averaged over subjects (top: corner users; bottom: color users), and identified the voxels with average Φ 

higher than the maximum valueΦഥ௠௔௫  found in the white matter. Most voxels pass the threshold for almost all 
blocks. Here we show the conjunction map, representing the number of blocks for which a voxel passes the 
threshold. 
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Figure 7 (a-e) Change of the average clustering frequency (Φഥ ) as a function of the block for spatial strategy users. 

(a) Occipital regions 3-4 and parietal regions 5-9,11 (b) parietal regions 9-10 (c) frontal regions 12-15 (d) 

temporal regions 16-20 (e) occipital regions 1-2, thalamus 21, midbrain 22. Points are mean over subjects. (f-j) 

Change of the clustering frequency as a function of the block for color strategy users. On the left of each plot, we 

show the first 7 blocks. On the right, we show the 6 blocks around the switch after realigning the time series of each 

subject to the individual switch blocks (-1 is the block in which the subjects spontaneously switch strategy, +1 the 

subsequent block). The vertical dashed line identifies the switch. 
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Figure 8 Clustering frequency (Φ) variations in high-Φ regions. (a-b) Difference of clustering frequency between 

block 20 and block 1 in spatial strategy users. (c-d) Difference of clustering frequency in the high-Φ regions 

between block 20 and block 21 in spatial strategy users. (e-f) Difference of frequency variation in the high-Φ 

regions between block 24 and block 21 in spatial strategy users. (g-h) Difference of clustering frequency between 

the block in which subjects spontaneously switched strategy (block “-1”) and the first block (block “1”) in color 

strategy users. (i-j) Difference of clustering frequency in the high-Φ regions between the block in which the subject 

spontaneously switches strategy (block “-1”) and the following block (block “+1”) for color strategy users. Column 

bars represent the average over subjects, error bars the standard error. We mark with an asterisk (*) regions where 

Φ increases significantly (Wilcoxon test, FDR correction at α = .05). In the rendering, we show regions with p < 0.05 

(unc.), the colorbar represents -log(p) 
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Figure 9 (a) Average reaction times (red) and average clustering frequency (blue) in high-Φ regions as a function 

of the block for spatial strategy users. Points are the mean over subjects, shaded regions ± the standard error. For 

each subject, reaction times are averaged over all trials in a block, and Φ is averaged over all regions. (b) Pearson 

correlation between Φ and reaction times in high-Φ regions for spatial strategy users.  We mark with an asterisk 

the regions that have a significant correlation (permutation test, p < .05). 
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Figure 10 (a) Connectivity matrix between high-Φ regions, averaged over all subjects. The matrix element value 

corresponds to the value of 𝑁௔௕ . Regions have been assigned to 6 modules according to a modularity maximization 
algorithm. The 6 modules are separated by black lines and are shown in different colors: occipito-parietal module 
(OP, regions 1-2,9-10), occipital module (O, regions 3-4), parietal module (P, regions 5-8,11), frontal module (F, 
regions 12-15), temporal module (T, regions 16-20,22), thalamus (Th, region 21).  (b) the 50% strongest links in 
the average network in axial and sagittal view. Nodes assigned to different modules are shown in different colors 
(blue) O module (cyan) OP module (green) P module (yellow) F module (orange) T module (red) Th module. 
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Figure 11 (a-b) Connectivity increase in blocks 1-20 for spatial strategy users. The matrix in panel (a) shows the 
log p-value of the increase between blocks 1 and 20 (Wilcoxon test). Panel (b) shows the links with a significant 
increase (p < .05 uncorrected) (c-d) Connectivity decrease between block 20 and block 21 for spatial strategy users. 
The matrix in panel (c) shows the p-value of the increase between block 20 and block 21 (Wilcoxon test). Panel (d) 
shows the links with a significant decrease (p < .05 uncorrected).  (e-f) Connectivity increase between blocks 21 
and 24 for spatial strategy users. The matrix in panel (e) shows the p-value of the increase between blocks 21 and 
24 (Wilcoxon test). Panel (f) shows the links with a significant increase (p < .05 uncorrected) (g-h) Connectivity 
increase between block 1 and the block when subjects switched strategy (block “-1”) for color strategy users. The 
matrix in the panel (g) shows the p-value of the increase between blocks 1 and -1 (Wilcoxon test comparing). Panel 
(h) shows the links with a significant increase (p < .05 uncorrected) (i-j) Connectivity decrease between the block 
when subjects switched strategy (block “-1”) and the subsequent block (block “+1”) for color strategy users. The 
matrix in the panel (i) shows the p-value of the decrease between blocks -1 and +1 (Wilcoxon test). Panel (j) shows 
the links with a significant increase (p < .05 uncorrected). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/481838doi: bioRxiv preprint first posted online Nov. 28, 2018; 

http://dx.doi.org/10.1101/481838
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

  40 

 
 
 
 
 
 
 
Figure 12 Strength of the links between modules as a function of the block for corner and color users. We show 
only links that have a significant effect (increase or change after the strategy shift) for either corner or color users 
(see Table 3). To facilitate the inspection of results, we show in green all links involving the parietal module, which 
have a similar behavior, and in yellow those involving the frontal module. (a) Strength of the links between modules 
as a function of the block for spatial strategy users. (b) Strength of the links between modules as a function of the 
block for color users. We show the 6 blocks around the switch after realigning the time series of each subject to the 
individual switch blocks (-1 is the block in which the subject spontaneously switches strategy, +1 the subsequent 
block). 
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Tables 

 

Table 1 Summary information about the 22 high-Φ regions, including brain location (main AAL 
region and Brodmann area, MNI coordinates of the region center), size (number of voxels), and the 
short name used in figures. 

# Brain Region (AAL) 
Brodmann 
Area Size Coordinates Short name 

    x y z  

1 Left Lingual Gyrus 18 2212 -24 -86 -13 1 Occipital 

2 Right Lingual Gyrus 18 2799 21 -84 -9 2 Occipital 

3 Calcarine Sulcus 17 528 1 -77 11 3 Occipital 

4 Calcarine Sulcus 17 310 0 -61 9 4 Occipital 

5 Left Precuneus 7 2407 0 -65 38 5 Parietal 

6 Left Angular Gyrus 39 90 -50 -60 27 6 Parietal 

7 Left Angular Gyrus 39 144 -47 -62 33 7 Parietal 

8 Left Angular Gyrus 39 586 -39 -65 43 8 Parietal 

9 Left Superior Parietal Lobule 7 455 -24 -67 50 9 Parietal 

10 Right Superior Parietal Lobule 7 748 26 -68 48 10 Parietal 

11 Right Angular Gyrus 39 757 45 -57 44 11 Parietal 

12 
Left Superior Frontal Gyrus, 
orbital part 10 440 -25 58 -3 12 Frontal 

13 Left Medial Orbitofrontal Cortex 10 815 -2 58 0 13 Frontal 

14 
Right Superior Frontal Gyrus, 
orbital part 11 748 26 58 -5 14 Frontal 

15 
Right Middle Frontal Gyrus, 
orbital part 11 80 36 46 -14 15 Frontal 

16 Left Superior Temporal Pole 38 150 -34 7 -23 16 Temporal 

17 Left Superior Temporal Pole 38 79 -27 11 -21 17 Temporal 

18 Left Hippocampus 28 475 -17 -3 -20 18 Temporal 

19 Caudate  1039 0 8 -15 19 Caudate 

20 Right Hippocampus 34 779 21 0 -20 20 Temporal 

21 Right Thalamus  330 -1 -8 14 21 Thalamus 

22 Mesencephalon  222 1 -32 -9 22 Mesencephalon 
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