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Abstract 
With practice, humans improve their performance in a task by either optimizing a known 

strategy or discovering a novel, potentially more fruitful strategy. We investigated the neural 

processes underlying these two fundamental abilities by applying fMRI in a task with two 

possible alternative strategies. For analysis we combined time-resolved network analysis with 

Coherence Density Peak Clustering (Allegra et al., 2017), univariate GLM, and multivariate 

pattern classification. Converging evidence showed that the posterior portion of the default 

network, i.e. the precuneus and the angular gyrus bilaterally, has a central role in the 

optimization of the current strategy. These regions encoded the relevant spatial information, 

increased the strength of local connectivity as well as the long-distance connectivity with other 

relevant regions in the brain (e.g., visual cortex, dorsal attention network). The connectivity 

increase was proportional to performance optimization. By contrast, the anterior portion of the 

default network (i.e. medial prefrontal cortex) and the rostral portion of the fronto-parietal 

network were associated with new strategy discovery: an early increase of local and long-range 

connectivity centered on these regions was only observed in the subjects who would later shift 

to a new strategy. Overall, our findings shed light on the dynamic interactions between regions 

related to attention and with cognitive control, underlying the balance between strategy 

exploration and exploitation. Results suggest that the default network, far from being “shut-

down” during task performance, has a pivotal role in the background exploration and 

monitoring of potential alternative courses of action. 
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Introduction  

“Practice makes perfect”, they say. By engaging long enough in any activity, we expect major 

improvements in both accuracy and speed. This is true for tasks as complex as playing piano and 

as mundane as preparing homemade pasta (Ericsson and Lehmann, 1996). These improvements 

may happen through multiple paths. One way is incremental task optimization: while following 

the same solution strategy, one can optimize the implementation of the adopted algorithm, 

achieving measurable processing gains (e.g., becoming quicker in mixing the same ingredients 

for pasta). Alternatively, one can optimize the task by learning about useful but previously 

unknown contingencies (e.g., that changing the order in which ingredients are mixed speeds up 

the procedure). This new information can be used to devise a new strategy, and then reach the 

same task goals with greater efficiency (Heathcote et al., 2000; Cohen et al., 2007; Badre et al., 

2010; Hayden et al., 2011; Collins and Frank, 2013; Donoso et al., 2014; Schuck et al., 2015; 

Roeder and Ashby, 2016; Cole et al., 2017; Gaschler et al., 2019).  

Task optimization has been associated with a decrease of activation both in areas specialized for 

the task and in a set of brain regions associated to control and attentional functions (Chein and 

Schneider, 2005; Patel et al., 2013; Hampshire et al., 2016). This evidence hints at an 

increasingly efficient processing of task-relevant information, but how this efficiency increase is 

reflected in the interplay of different brain circuits remains an open question. The distributed 

nature of the effects suggests that optimization entails an increasingly efficient routing of 

information across the brain. This may be understood as a modulation of neural circuits 

involving multiple brain regions, rather than just a local activation change. Evidence relating 

learning to connectivity changes has become available thanks to the recent development of tools 

for network dynamics analysis (Bassett et al., 2011, 2015; Cole et al., 2013; Bassett and Mattar, 

2017). These studies showed that learning induces brain-wide network modifications, with task-

related regions becoming increasingly segregated. Yet, the evidence available to date is 

essentially limited to motor sequence learning. Whether these observations generalize to other 

types of progressive task optimization, or underlie a strategy shift is currently unknown. In fact, 

other studies comparing task execution with rest observed an increase of integration across 

brain regions (Shine and Poldrack 2018). 

In this work, we investigate the modulation of functional coupling occurring during task 

optimization, instructed strategy shifts and the spontaneous discovery of new strategies. 

Subjects were instructed to press one of two alternative buttons based on the spatial features of 

the stimuli (as in Schuck et al., 2015). Although subjects were not informed, the color of the 

stimuli could be used to determine the correct response. Subjects could either spontaneously 

discover and use the new color strategy, or continue to use the instructed spatial strategy until 

they were explicitly told otherwise (Fig. 1). Our previous work (Schuck et al., 2015) revealed 

that the encoding of stimulus color in Medial Prefrontal Cortex predicts a strategy change. 

However, with our previous analysis approach, we could not assess whether and how brain 

networks changed their behavior during task optimization, or whether they behaved differently 

in people that would or would not generate a strategy change. Here, we fill this gap by analyzing 

the same data set with a novel analysis approach, Coherence Density Peak Clustering (CDPC, 

Allegra et al., 2017). By detecting sets of temporally coherent voxels (“clusters”), CPDC can 
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simultaneously reveal a functional coupling between neighboring and between distant voxels. 

An important feature of this algorithm is that it allows identifying clusters even in short time 

windows (approximately 20 seconds). This makes CDPC more sensitive to transient coherence 

than other analysis approaches, for instance group ICA (for a systematic comparison between 

the two methods see Allegra et al., 2017). Consistently with previous works (Bassett 2015), our 

main hypothesis is that task optimization will induce changes of the neural connectivity within 

the task relevant network. Whether change occurs in the form of an increased segregation, as 

suggested by Bassett et al. 2015, or rather an increased integration (as in Finc et al., 2017), is 

one of the open questions motivating our investigation. Furthermore, following our previous 

work (Schuck et al., 2015) we hypothesize that brain networks centered on rostro-medial 

prefrontal cortex (e.g. medial BA10, part of the default mode network) will behave differently in 

subjects who will or will not generate an alternative strategy. 

Overall, the CDPC analysis method combined with our experiment allowed us to reveal how the 

dynamics of local coherence and long-range connectivity is associated with instructed strategy 

optimization, the discovery of possible alternative strategies, and strategic shifts. 

Methods 
 

Task. Behavioral and imaging data of the main experiment were recorded while participants 

performed a simple perceptual decision-making task  (Spontaneous Strategy Switch Task, 

Schuck et al., 2015). Participants were instructed to respond manually to the position of a patch 

of colored dots within a square reference frame. They were asked to select one of two responses 

depending on which corner of the reference frame the colored squares were closest to (Fig. 2a). 

Participants held a button box in each hand and could press either left or right. Two opposite 

corners (along the diagonal) were mapped to the same response. The main task during scanning 

included twelve runs with 168 trials each. In Runs 1 and 2 (Random Runs), the stimulus color 

was unrelated to the position of the stimulus and the response. In Runs 3–10 (Correlated Runs) 

the color had a fixed relation to the response (e.g., all upper-left and lower-right stimuli were 

green, the remaining ones were red). Participants were not informed about this contingency but 

could learn and apply it spontaneously (Fig. 2b). By the end of Run 10, all participants were 

informed about the existence of a fixed association between color and corner (without 

specifying the relation) and instructed to use the color from then on (Instructed Runs). Each of 

the twelve runs of the main experiment lasted about 5 min and was followed by a short break. 

The experimenter monitored the performance of the participants. Written and oral feedback 

was given between runs if the error rate exceeded 20%. The response-stimulus interval was 

400 ms. To measure the learning and use of color information, different trial conditions were 

used (for details, see Schuck et al., 2015). In the standard condition (80 out of 168 trials/run), 

the patch of dots was presented for 400 ms and was closest to one of the four corners of the 

reference frame; in the ambiguous trials (32 out of 168) the stimulus was centered within the 

reference frame and was presented for 400 ms;  in the NoGo trials (32 out of 168) the colored 

squares were displayed for 2,000 ms without a reference frame in some trials and the task 

afterward continued with the next trial, with participants having to hold back any key press on 

the current trial; in the LateGo trials (16 out of 168), the frame was displayed after the initial 
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2,000 ms, and the participants had to react in a regular fashion; finally, in eight trials of each run 

the screen remained black for 3,000 ms (baseline condition). Due to the duration of the 

hemodynamic response function, the fast design of the experiment resulted in event-related 

BOLD signals, which also contained a signal proportion that reflected brain activation caused by 

previous and following events. 

Before entering the scanner, participants were instructed and trained in the task. The 

instructions described all conditions (except ambiguous trials). Participants were only told to 

press any key of their choosing in case they were uncertain about the stimulus location. The 

color of the stimuli was mentioned only in an unspecified manner (“A stimulus can be either red 

or green.”). The response mapping was shown in all color combinations (a stimulus in each of 

the four corners was shown in both red and green during the instruction). In the training phase, 

participants were slowly accustomed to the short display durations (the display duration was 

successively shortened until it reached 400 ms). Feedback was given for all wrong and 

premature responses and time-outs (2,500 ms threshold). The color of the stimuli was not 

systematically related to stimulus position during training. The training lasted at least 50 trials 

and ended when the participant made less than 20% errors in 24 consecutive trials. If the 

participant exceeded 168 trials without reaching the criterion, the training was restarted. 

Participants were further instructed that upon entering the scanner, no more feedback would be 

provided. After completion of the main experiment, participants completed a questionnaire with 

the following questions: (1) “In the experiment, which you have just completed, each corner had 

one associated color. Did you notice this while you were performing the task?” [yes/no]. (1b) “If 

yes, when did you notice this (after what percentage of the experiment)” [participants had to 

mark their answer on a scale from 0% to 100%]. (1c) “Did you use this color-corner relation to 

perform the task, i.e. to choose which button to press?” [yes/no]. (2) “Please indicate now which 

color the stimulus had for each of the four corners. If you did not notice this relation during the 

experiment or you are uncertain, you can guess.”  

 

Scanning and preprocessing. Acquisition of magnetic resonance images was conducted at the 

Berlin Center for Advanced Neuroimaging, Charité Berlin. We used a 3 T Siemens MagnetomTrio 

(Siemens) research-dedicated MRI scanner to acquire all data. T1-weighted structural images 

were acquired with an MP-RAGE pulse sequence with a resolution of 1 mm3. A T2∗-weighted 

echo-planar imaging (EPI) pulse sequence was used for functional imaging (3 × 3 × 3 mm voxels, 

slice thickness = 3 mm, TR = 2,000 ms, TE = 30 ms, FOV = 192 mm, flip angle = 78°, 33 axial 

slices, descending acquisition). EPI slices were aligned to the anterior-posterior commissure 

axis. Field maps for distortion correction were acquired also using an EPI sequence. To allow for 

T1 equilibration effects, the experiment was started 6 s after the acquisition of the first volume 

of each run. Image pre-processing was performed using SPM12 (Wellcome Trust Centre for 

Neuroimaging, London, United Kingdom) running under Matlab 7.4 (R2007a) (Mathworks, 

Sherborn, MA, USA). The performed preprocessing steps were: a correction for magnetic 

inhomogeneities using field maps, slice timing correction, realignment to correct for motion, co-

registration of anatomical images with functional images, and tissue segmentation based on the 

co-registered structural images to build a brain mask. Whenever required to allow for 

comparison of results across subjects, spatial normalization and/or smoothing was performed 
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on the Φ maps (Allegra et al., 2017). The Φ maps were normalized to the standard MNI template 

and spatially smoothed with a Gaussian kernel of 9mm FWHM. For visualization purposes, we 

used the MRIcron software (www.mricron.com) and BrainNet Viewer (Xia et al., 2013; 

www.nitrc.org/projects/bnv/). 

 

Overview of the neuroimaging analyses. The core of our neuroimaging analyses is based on 

Coherence Density Peak Clustering (CDPC) (Allegra et al., 2017). We assume that: (i) the task-

evoked modulation of activation elicits temporal coherence in the frequency domain f≥ 0.05 Hz 

(see. Bassett 2011, Bassett 2015, Sun 2004); the elicited temporal coherence may be 

discontinuous within each block, thus better detectable over short time-windows; (ii) the 

changes in coherence, while involving multiple spatial scales from neighboring to distant voxels, 

affect at least a few spatially contiguous voxels. On the basis of assumption (i), we measured 

coherence in time windows of length 22s and then assessed how frequently coherence occurred 

within a block. On the basis of assumption (ii), we excluded from further analysis of all those 

voxels not coherent with at least 4 of their spatial neighbors.  

In Fig. 1, we summarize the main steps of the analysis. We first applied CDPC over short (22 s) 

sliding windows. 22s is the same time-window length for which CDPC was validated and the 

shortest time scale over which coherence can be reliably detected (see Methods and Allegra et 

al., 2017). We then measured how frequently, within each block, any voxel is functionally 

coupled to its neighboring voxels, i.e. how often any voxel is locally clustered within a cube of 9 

mm side. This defines a clustering frequency map Φ (Fig. 1a-1c). A large majority of voxels in the 

brain is hardly ever clustered, resulting in very low values of Φ: we assume that these voxels are 

not involved in task-dependent modulation of coherence. We thus focused the subsequent 

analysis on voxels with a relatively high value of Φ. The latter can be grouped into 22 brain 

regions (Fig. 1d-1f), that can be used as a basis to explore the time-dependence and the subject-

dependence of Φ.  

Next, we focused on long-range coherence. We assumed that a voxel with a time-series not 

coherent with its spatial neighbors is not providing a task-related signal, either at a local or a 

global scale. In Allegra et al., 2017, we showed that spurious long-range coherence can be 

observed by chance also when only noise is present in the data. However, the value of Φ for the 

voxels involved in these spurious correlations is low, offering a route to identify these artifacts. 

Intuitively, voxels producing spurious long-range coherence are sparse. On the basis of this 

analysis, voxels with low Φ (thus, with poor coherence with their spatial neighbors) should not 

be part of long-range clusters of coherent activity. Therefore, high-Φ regions represent a 

suitable basis to study not only the local coherence, but also the long-range one. We used CDPC 

to compute a pairwise connectivity matrix between the 22 regions: for each pair of regions, we 

measured the frequency with which voxels of the first regions are functionally coupled with 

voxels of the second (Fig. 1g-1j). Here, the functional coupling is measured by whether two 

voxels have similar BOLD time series and are thus assigned to a common long-range coherent 

cluster, as identified via CPDC (see methods for details). Again, we explored the subject- and 

time-dependence of results.  

Aside CDPC, we also used two state-of-the-art fMRI analysis methods to corroborate the 

interpretation of the CDPC results. We used a task-vs-rest GLM contrast to verify which of the 
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regions is activated/deactivated during the task. Moreover, we applied multivariate pattern 

analysis (MVPA, as described in detail in Schuck et al., 2015), to verify which of the regions is 

encoding the color/corner features of the stimuli. 

 

 
Figure 1 Summary of the neuroimaging analyses. In a window of 11 scans (22 s), we identify the subset of voxels 

that are locally coherent with at least four spatial neighbors (a). Voxels surviving this local coherence filter are 

shown in yellow. The filtering procedure is applied separately for each subject, using sliding windows (1-11, 2-12, 

etc.) and including only grey matter voxels (b). For each subject, we identify the frequency (fraction of time 

windows) with which a voxel has local coherence with its neighbors, producing a clustering frequency map Φ (c). 

We compute an average Φ map for all subjects (d). On this map, we identify voxels having significant values of 

average Φ. Significance is defined by computing Φ on white matter voxels (e). We threshold the grey matter Φ on 

the maximum value found in white matter. The above-threshold voxels are divided in 22 regions around each peak 

of the average Φ. Different regions are shown in different colors (f). Finally, we compute a connectivity matrix 

between high-Φ regions. For each subject separately, in each time window of 11 scans we consider the voxels 

surviving the spatial filter and we divide them into different coherent clusters based on density peak clustering (g). 

Voxels assigned to two different clusters are shown in red and green respectively. We compute the clusters in all 
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time windows (h) and define a pairwise connectivity between two regions by computing the frequency with which 

voxels belonging to two regions assigned to the same cluster (j).  

 

 

Clustering frequency maps. Coherence Density Peak Clustering (CDPC, Allegra, et al., 2017) 

aims at finding groups of voxels (clusters) whose BOLD signal is coherent in a given time 

window, usually short (e.g. 20 seconds). Contrary to other methods, such as community 

partition on a connectivity matrix, CPDC does not simply split all voxels into different clusters. In 

fact, voxels can be poorly coherent with other voxels (and hence not clearly part of any well-

defined cluster), or coherent with other voxels only as a consequence of correlated fluctuations 

in the noise (a spurious cluster). CDPC first discards all voxels displaying poor or potentially 

artifactual coherence and then assigns only the remaining voxels (usually a small fraction of the 

total) to clusters. 

The method starts by defining a distance ���  that captures the coherence between the BOLD 

signals of voxels � and �. The distance is given by the Euclidean distance between the BOLD time-

series of the two voxels 

��� = ��(
�(�� − 
�(�����
���  

where, however, the raw time-series 
�(��, 
�(�� have been suitably pre-processed, undergoing 

demeaning and amplitude-normalization. Note that the lowest frequency affecting the distances 

is 1/T (where T is the time window length), which for T = 22 s is .045 Hz. 

Two voxels are regarded as coherent if the distance between the respective BOLD signals is low, 

as defined by a threshold, ��� < �� . Coherence between voxels can occur even if only noise is 

present. However, when only noise is present, high coherence tends to be observed between 

isolated voxels, while the presence of several coherent voxels within a close spatial 

neighborhood is unlikely (see Allegra et al., 2017). More formally: for each voxel i, we define its 

neighbors as the voxels falling within a cube of 9 mm side centered on i, corresponding to about 

27 voxels. We denote with ��  the number of neighbors that are coherent with i. In our previous 

work, we showed that ��  was generally lower than a threshold n0 = 4 when only noise is present. 

All voxels with �� ≥ �� are thus considered in the clustering procedure, while voxels with �� < �� are discarded. This filtering procedure was shown to minimize the rate of detection of 

spurious clusters (see Allegra et al., 2017). This criterion of cluster membership relies entirely 

on a measure of coherence that is strictly spatially local (27 neighboring voxels).  

We run this procedure on sliding windows of 11 scans (22 s). This is the same length for which 

CDPC was validated (see Allegra et al., 2017), and it is considered as the minimal window length 

for which transient connectivity clusters can be reliably identified (Hutchison et al., 2013). We 

use overlapping windows, progressively shifting the center of the window by 1 scan. The 

procedure is applied twice for each subject, the first time including only grey matter voxels, and 

the second time only white matter voxels. 
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For each subject and for each voxel i, the clustering yields a binary value, for every time window 

t, tracking whether the voxel was or not in a cluster. We devised an index, Φ, measuring how 

often a voxel i is part of a cluster in an interval comprising �� time windows.  

Φ� = 1����(��(�� > �����
���  

where � is a time window label, �� the number of time windows, � is a step function 

(�(��(�� > ��� = 1 if �(��(�� > ���, and �(��(�� > ��� = 0 otherwise). Intuitively, Φ� is an 

aggregate measure of the coherence of the local activity of a voxel with its surroundings. We call Φ� clustering frequency map, since, as we discuss below, if voxel satisfies the condition ��(�� > �� it is automatically included in one of the clusters (Allegra et al., 2017).  

We compute a clustering frequency map for each block, i.e. half of a run (~150 s). Thus, for every 

subject, we generated 24 maps. The information given by a Φ map is not equivalent to the one 

obtained by running CDPC on a single time window equal to the entire block. The latter choice 

would include and emphasize the contribution of low frequencies (.005 Hz < f < .05 Hz) in the 

computation of ��� . This would reduce the sensitivity of the procedure to higher frequencies (f > 

.05 Hz), which are likely those critical for capturing the task related signals. The Φ maps focus on 

transient coherence occurring over timescales shorter than the whole block (Sakoğlu et al., 

2010).  

 

High-coherence regions. The Φ� maps can be used to identify voxels that are potentially 

relevant for a task, under the assumption that task relevant voxels would be more often part of a 

cluster than voxels that are not (Allegra et al., 2017). For each subject, we averaged Φ maps over 

all blocks, obtaining one map for each subject. We normalized the average individual maps to 

MNI space and performed a Gaussian smoothing (FWHM = 9 mm). Finally, we averaged 

individual maps to obtain a single group map Φ! � representing, for each voxel, the probability of 

being part of a cluster during task execution over all subjects. 

To define “high-Φ! �” regions, we selected a threshold as follows. We carried out the same CDPC 

procedure for voxels outside the gray matter, i.e., in regions for which we can assume that no 

real effects were present (Logothetis and Wandell 2004). Outside gray matter, we observed the 

highest Φ values in the white matter (as compared e.g. with CSF). We decided to use as 

threshold the most conservative value from white matter to exclude most of the Φ 

measurements not related to a real underlying signal in gray matter. Therefore, to identify 

potentially task-relevant voxels we conservatively thresholded the Φ! � map of the grey matter 

with the maximum value Φ!"#$ = .11 observed in the white matter.   

We focus attention on voxels with high Φ! �, dividing them into a set of regions. To define the 

latter, we aggregated voxels above the Φ!"#$ threshold around every peak in the Φ map. The 

detailed procedure is reported in the Supplementary Materials. In this way, we could define 

regions tailored to the average spatial distribution of Φ (the center of each region corresponds 

to a point of high Φ). These regions are used as a “basis” to explore the time-dependence and the 

subject-dependence of Φ. In particular, they are used to perform statistical tests to compare Φ 

maps obtained in different blocks (see “statistical tests” in Supplementary Materials). This 

approach has several advantages as compared to a-priori parcellation schemes. First, it allows 
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focusing only on those voxels showing a high local coherence in their activation pattern, which 

are the best candidates for possibly showing measurable dynamical effects in the subsequent 

analyses. Second, it allows shaping the ROIs on the observed spatial distribution of the relevant 

signal (coherence). This may reduce the washing out of the signal caused by averaging different 

voxels within (possibly large) a priori parcels. Third, it enhances the statistical power, focusing 

the analysis on a limited set or regions-of-interest and thus limiting the severity of the 

correction for multiple comparisons.  

 

Connectivity: regional and long-range coherence. Φ maps identify voxels that are frequently 

coherent with their close spatial neighbors, and are thus assigned to clusters. Given that, voxels 

in the same high-Φ region can be considered, over the whole experiment, mutually coherent. 

However, Φ does not measure to which extent voxels within a high-Φ region, or in different 

high-Φ regions are mutually coherent. To answer this question, one needs to know not only 

whether two voxels are part of any cluster (as Φ does) but, more specifically, whether two 

voxels are part of the same cluster. To assign each voxel in each time window and in each subject 

to a specific cluster proceed as follows (Allegra et al., 2017). 

We first define the density &�  as the number of (non-isolated) voxels that are coherent with i, 

over the whole brain: '� = ��(��� < ����(��(�� > ����  

Notice that &�  is usually higher than the number of coherent neighbors (measured by ni for Φ) 

because typically a voxel is coherent with many voxels outside its local neighborhood. Cluster 

centers are identified as peaks in the density distribution. Following Rodriguez, & Laio 2014, we 

compute (� = )��*+,*-���, which is the minimum distance (in the space of BOLD signals) from a 

voxel with higher density. Cluster centers stand out as isolated points with a large values of (�. 
We rank the voxels according to their value of (�and consider as putative cluster centers the first 10 (Allegra et al., 2017). After the cluster centers have been chosen, all remaining voxels are 

assigned to a cluster following a recursive procedure. Each voxel is assigned to the same cluster 

of the most similar voxel having a higher density; if the latter voxel in not yet assigned, one looks 

for the voxel most similar to it having a higher density, and so forth until either an already 

assigned voxel or one of the cluster centers is reached. At the end of the procedure, we obtained 

a map, for each time window, assigning each voxel to a specific cluster. 

Given two regions a and b we define a measure of their mutual coherence as �#. = 1��
1/#/. � �((0�(�� = 0�(���&��(��&��(����∈#,�∈.  

where /#(.� is the number of voxels in region a (resp. b). The term ((0�(�� = 0�(��� is equal to 

one if voxel i and voxel j belong to the same cluster at time t. We weight this term by  its density 

normalized to that of the cluster center, &��(�� = 2-(��23(���(2-(��23(�� > 4� where &�(�� is the density of 

the cluster peak and 4 is a lower cutoff threshold (here, 4 = .3). In this way, we weight more 

pairs of voxels in the cluster cores (high density) than to the cluster tails (low density). The 
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diagonal terms �## measure the local coherence within the region a, while the off-diagonal 

terms �#. measure long-range coherence between different regions. 

 

GLM analysis. We performed a GLM analysis, with standard trials and resting trials as separate 

regressors, and motion parameters as nuisance variables. The response in standard trials was 

modeled as a response to stimulus presentation: onsets and durations corresponded to the 

onsets and durations of stimulus presentation. Resting trials had a duration of 3000 ms. We 

tested for significant activation or deactivations in the high-Φ regions, by averaging the contrast 

map over each region and performing a region-wise t-test over subjects.  

 

MVPA analysis. Representation of stimulus features (color and corner) was analyzed by a 

multivariate classification approach based on a support vector machine (SVM) with a linear 

kernel in combination with a searchlight approach (Kriegeskorte et al., 2006; Norman et al., 

2006; Haynes, 2015). For details, we refer to our previous work (Schuck et al., 2015). For color 

representation, the SVM was trained on parameter estimates (‘‘betas’’) from a general linear 

model of red and green NoGo trials in the last two runs (where all participants use the color 

strategy), and then tested on betas from Runs 1–10. This resulted in one accuracy map for each 

block and subject. For corner representation, the classifier was trained on betas of standard 

trials in the first two runs (where no participants use the color strategy) and then tested on 

betas from Runs 3–12.  

Results 

Participants performed a simple perceptual decision task (Schuck et al., 2015). They were 

instructed to respond manually to the position of a patch of colored dots within a square 

reference frame by selecting one of two responses. Participants held a button box in each hand 

and could press either the left or the right button. Color patches closer to the upper left or lower 

right corner mapped onto the left button, while patches closer to the lower left or upper right 

corner mapped onto the right button (Fig. 2). Therefore, there was a four-to-two stimulus-

response mapping, where two opposite corners (along the diagonal) were mapped onto the 

same response. Participants performed 12 runs of the task, each one comprising 168 trials and 

lasting ~5 minutes. In runs 1 and 2, the stimulus color (red or green) was unrelated to the 

position of the stimulus and the response. In runs 3–12 the color had a fixed relation to the 

response (e.g., all upper-left and lower-right stimuli were green, the remaining ones were red, 

Fig. 2). Participants were not informed about this contingency but they could learn it and 

generate a new task strategy based on the stimulus color. Before the last two runs (11-12), 

participants were explicitly instructed to switch to the color strategy. For the following analyses, 

we considered experimental “blocks”, where 1 block = ½ run, lasting ~2.5 minutes. Such block 

length is roughly the timescale over which the targeted behavioral changes would become 

reliably measurable. The same definition for blocks was used in our preceding work (Schuck et 

al., 2015). 
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Behavioral results. Most of the behavioral results have been already reported in our previous 

work (Schuck et al., 2015). We briefly summarize here the findings relevant to the present work. 

The majority of subjects (25/36, the “spatial strategy users”) used the instructed spatial strategy 

over the first 20 blocks. As expected, spatial strategy users showed evidence of incremental task 

optimization during the first 20 blocks, as indexed by a progressive reduction of reaction times 

(RTs) and errors (Fig. 3a). After the instructed switch to the color strategy from block 21, RTs 

and errors further decreased, thus confirming the effectiveness of the color strategy.  

 

Figure 2 Stimulus-response mappings in the task (a) Instructed S-R mapping used by corner users (b) learned S-R 

mapping used by color users. 

 

 

 

 
 

Figure 3 (a) Reaction times (black) and error rates (gray) as a function of block for spatial strategy users (b) 

Percentage of color use (of color-consistent choices in ambiguous trials) for color users as a function of block; the 
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time series have been realigned to the switch block of each subject (-1 = switch block), which is also identified by 

the vertical dashed line. (c) Reaction times and error rates as a function of block for color strategy users; the time 

series are realigned to the switch block of each subject (-1 = switch block); the vertical dashed line identifies the 

switch (d) Reaction times and error rates as a function of the block for color strategy users, without time series 

realignment. 

 

 

 

A minority of the subjects (11/36, “color users”) switched spontaneously to the color strategy 

before the end of the block 20. The switch point could be precisely and robustly identified by 

several behavioral markers (see Methods). In particular, in a fraction of the trials (ambiguous 

trials) the dots were centered within the square reference frame, equidistantly from all corners: 

in these trials, evidence of a color-based strategy comes from the number of responses that are 

consistent with the stimulus color (while a strategy based on stimulus position should yield 

essentially random responses). The fraction of color consistent-choices in color users shows an 

abrupt increase in the switch block (fig 3b). Before the strategy switch, color users also showed 

a progressive reduction in RTs and errors (Fig. 3c). This trend exhibits a transient stop just 

before the spontaneous switch. After the spontaneous switch to the color strategy, RTs and 

errors further decrease also in color users, albeit less abruptly as compared to spatial strategy 

users (Fig. 3d). 

 

Identification of a set of relevant regions. In the following analyses, we considered fMRI data 

from 35 participants. One subject was excluded because the field of view did not cover the whole 

brain. The core of our neuroimaging analyses is based on Coherence Density Peak Clustering 

(CDPC) (Allegra et al., 2017). See “Overview of the neuroimaging analyses” in Methods for a 

quick overview.  For each subject, and for each of the 24 independent blocks, we applied CDPC to 

grey matter voxels as identified by tissue segmentation. CPDC was applied on sliding windows of 

11 volumes (22 seconds).  

For each subject and each block, we computed a clustering frequency map Φ� that measures the 

fraction of time windows within a block in which a voxel is coherent with its spatial neighbors 

and hence clustered. The Φ� maps are consistent across subjects: averaging Φ� maps over all 

blocks and performing spatial smoothing (9 mm FWHM), we obtained a between-subject 

correlation of .623 (SD = .003). A comparison between the average Φ� maps for color and spatial 

strategy users failed to detect any significant difference.  Also, we did not observe any effect of 

the sex of the participants. We thus averaged Φ� maps over all subjects, and we obtained a Φ! � 
map reporting the average clustering frequency across subjects and blocks. The large majority of 

voxels have low values of Φ! � (< 0.1) and are thus rarely part of coherent clusters: we assume 

that these voxels are not involved in task-dependent modulation of coherence. Areas with high Φ! � represent voxels that are consistently clustered over different blocks and subjects.  

To study the time- and subject-dependence of the results, we focus attention on voxels with high Φ! �, dividing them into a set of regions serving as a common “basis” for analysis. To focus analysis 

on potentially task-relevant voxels we conservatively thresholded the Φ! � map of the grey matter 

with the maximum value Φ!"#$ = .11 observed in the white matter (see Methods for details).   
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Approximately 7% of all brain voxels survive this threshold. In Fig. 4 we show the resulting 

thresholded Φ! � map for gray matter. We grouped spatially contiguous voxels above the white 

matter threshold in regions around each peak in the Φ! � map, thus obtaining 22 regions (Tab. 1). 

These high-Φ regions are distributed throughout the brain, including areas in the occipital 

cortex, parietal cortex, prefrontal cortex, temporal cortex, thalamus, and mesencephalon. We 

stress that our main results are robust with respect to the choice of the Φ! � threshold: in the 

Supplementary Information (Figures S1-S4), we replicated our major results with two different 

thresholds (such that less than half, or more than twice the amount of voxels are included) and 

correspondingly two different sets of regions.  The main results did not change. 

 

 
Figure 4 Voxels in gray matter showing an average clustering frequency (Φ! ) higher than the maximum clustering 

frequency in white matter (Φ!"#$). Voxels have been grouped in 22 regions around each peak of the Φ!  map. 

 

Since CDPC is an unsupervised technique, the high level of local coherent activity in the 

identified high-Φ regions is not necessarily related to the task. To verify whether the high-Φ 

regions are indeed task-related, we used multiple approaches. First, we compared CDPC results 

with the supervised, multivariate pattern analysis (MVPA) performed on the same regions (see 

Methods, and for details Schuck et al., 2015). For each subject and each block, MVPA produced 

accuracy maps assessing whether local activity patterns represented relevant features of the 

stimuli, namely, to which corner the patch is nearest. For each high-Φ region, we tested whether 

the average accuracy of the multivariate classifier was above the chance level. We found that 

several regions in the occipital, parietal and prefrontal cortex encoded spatial information (p < 

.05, FDR corrected, Fig. 5a, 5b). A second approach to investigate task-relevance is to test 

whether the identified regions had a different average activation during task performance as 

compared to a resting baseline. Almost all regions showed either significant activation or 

significant de-activation (p < .05, FDR corrected, Fig. 5c, 5d). Regions more active than baseline 
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are medial and lateral occipital cortex bilaterally (1-2), and the superior parietal lobule 

bilaterally (9-10). All remaining areas, including occipital (3-4), central and lateral parietal (5-8, 

11), prefrontal (12-15), temporal (16-20) are deactivated. Taken together, these findings 

suggest that most of the identified regions are likely involved in the task. Further converging 

evidence is provided by the subsequent analyses. Results concerning the occipital regions 

deserve an additional comment. The two regions in the anterior calcarine sulcus (3-4, Fig. 4) did 

not encode task-relevant information, while they showed learning effects similar to parietal 

regions (discussed below). By contrast, the two regions in the posterior calcarine sulcus and 

lateral occipital cortex (1-2) did not show learning effects but they encoded spatial information. 

Notably, posterior calcarine was activated compared to baseline while anterior calcarine was 

deactivated. 

 
 

Figure 5 (a) MVPA analysis on the spatial position of the stimulus. Mean accuracy of the multivariate classifier in 

CDPC regions for all users. We mark with an asterisk (*) regions with significant mean corner accuracy (FDR 
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correction at α = .05, t-test). (b) Overlap (purple) between CDPC regions (red) and voxels with significant spatial 

representation (cluster-wise FWE correction at α = .05, T-test) for spatial strategy users (blue). (c) Mean activation 

for task versus rest contrast for all subjects. We mark with an asterisk (*) regions with significant activation or 

deactivation (FDR correction at α = .05, t-test). (d) Regions with significant activation (red) or deactivation (blue) 

for task versus rest contrast as revealed by GLM analysis for all subjects (color scale represents significance, -log(p), 

5 corresponds to p = 10-5).  O: region 1-4, occipital; P: region 5-11, parietal; F: region 12-15, frontal; T: region 

16,18,19,20, temporal; C: region 18, caudate; Θ: region 21, thalamus; M: region 22, midbrain.  

 

We interpret this pattern as the effect of an attentional negative modulation on the portion of 

the calcarine sulcus processing the peripheral visual field, which is not related to the task at 

hand. Thus, negative attentional modulation produces both a deactivation (Broday-Dvir, et al., 

2018) and a progressive increase in local coherence. By contrast, central visual field regions are 

activated, but their coherence, already high at the beginning, does not further increase with 

learning. 

 

Temporal dynamics of the clustering frequency (Φ). Having identified the set of high-Φ 

regions, we focused on differences in Φ related to behavioral changes across time and across 

subjects. We found that the Φ maps obtained were similar for different blocks within single 

subjects. We computed a block similarity for each subject by computing the Pearson correlation 

between all pairs of block Φ maps within each subject and averaging over blocks. Over all 

subjects, we obtained an average similarity of .64 (SD = .09), suggesting an overall qualitative 

stability of the brain regions involved during the experiment.  
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Figure 6 Stability of the high-Φ regions during the experiment. For each block separately, we considered the Φ for 

that block, averaged over subjects (top: corner users; bottom: color users), and identified the voxels with average Φ 

higher than the maximum value Φ!"#$  found in the white matter. Most voxels pass the threshold for almost all 

blocks. Here we show the conjunction map, representing the number of blocks where a voxel passes the threshold.  
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Figure 7 (a-e) Change of the average clustering frequency (Φ! ) as a function of the block for spatial strategy users. 

(a) Occipital regions 3-4 and parietal regions 5-9,11; (b) parietal regions 9-10; (c) frontal regions 12-15; (d) 

temporal regions 16-20; (e) occipital regions 1-2, thalamus 21, midbrain 22. Points are mean over subjects. (f-j) 

Change of the clustering frequency as a function of the block for color strategy users. On the left of each plot, we 

show the first 7 blocks. On the right, we show the 6 blocks around the switch after realigning the time series of each 

subject to the individual switch blocks (-1 is the block in which the subjects spontaneously switch strategy, +1 the 

subsequent block). The vertical dashed line identifies the switch. 

 

Consistently with this finding, the set of regions with significant coherence appeared stable 

during the experiment. This is not entirely obvious. Indeed, high-Φ regions were identified by 

applying a fixed threshold obtained from white matter to the average (across subjects and 

blocks) Φ map. Having a high average Φ across blocks does not imply that Φ is high in each 

block separately: there may be large variations over blocks, e.g., with some regions exhibiting 

high coherence only over a few blocks. This is why we repeated the analysis for different blocks, 

showing that the set of high-Φ regions obtained would not change from block to block. For both 

color and spatial strategy users, we considered the voxels above the threshold Φ!"#$ in each 

block. Results are reported in Fig. 6. High-Φ regions do not qualitatively change during the 

experiment. No regions disappeared, and no new regions appeared.  

The lack of qualitative change, however, does not imply that Φ remains constant over time. In 

fact, quantitative variations of Φ were observed. We first analyzed the subjects who used the 

spatial strategy up to block 20 and switched to color strategy in blocks 21-24, after receiving 

explicit instructions. We computed the average Φ in each region as a function of the block. The 

variations of Φ across blocks were different between regions. In regions 3,4 (occipital) and 

5,6,7,9,11 (lateral and medial parietal) we observed three phenomena, as shown in Fig. 7a. First, 

in blocks from 1 to 20, i.e. when subjects used and improved the spatial strategy, Φ rose. Second, 

after the switch to the color strategy, Φ suddenly dropped. Third, Φ underwent a fast recovery, 
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so that the measure was back to the pre-switch level after just one block (~2.5 min). Regions 

9,10 (lateral superior parietal) showed both the increase and the drop but did not show the 

recovery (Fig. 7b). Regions 16-20 (temporal lobe) showed the increase, but no drop (Fig. 7d). 

Finally, the remaining regions, including 1,2 (occipital lobe), 12-15 (prefrontal cortex) and 21,22 

(thalamus and mesencephalon) show little variation of Φ across time (Fig. 7c, 7e). The effects 

corresponding to the increase, drop and recovery are summarized for all regions in Fig. 8 and in 

Tab. 2.  

 

Figure 8 Clustering frequency (Φ) variations in high-Φ regions. (a-b) Difference of clustering frequency between 

block 20 and block 1 in spatial strategy users. (c-d) Difference of clustering frequency in the high-Φ regions 

between block 20 and block 21 in spatial strategy users. (e-f) Difference of frequency variation in the high-Φ 

regions between block 24 and block 21 in spatial strategy users. (g-h) Difference of clustering frequency between 

the block in which subjects spontaneously switched strategy (block “-1”) and the first block (block “1”) in color 

strategy users. (i-j) Difference of clustering frequency in the high-Φ regions between the block in which the subject 

spontaneously switches strategy (block “-1”) and the following block (block “+1”) for color strategy users. Column 

bars represent the average over subjects, error bars the standard error. We mark with an asterisk (*) regions where 

Φ increases significantly (Wilcoxon test, FDR correction at α = .05). In the rendering, we show regions with p < 0.05 

(unc.), the colorbar represents -log(p). O: region 1-4, occipital; P: region 5-11, parietal; F: region 12-15, frontal; T: 

region 16,18,19,20, temporal; C: region 18, caudate; Θ: region 21, thalamus; M: region 22, midbrain.  

 

As mentioned, several regions showed at the same time an increase in Φ during task 

optimization and a decrease upon strategy change (Fig. 8, Tab. 2). In these regions, the dynamics 
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of Φ in blocks 1-20 and 20-21 is what would be expected for a variable correlated to the 

optimization of the spatial strategy: a gradual increase during learning of a specific strategy and 

a drop when such strategy is abandoned. In order to explore this possibility further, we 

evaluated the correlation between Φ and participants’ reaction times (RTs). Overall, the average 

RTs in blocks 1-20 are negatively correlated with Φ averaged over all regions (Fig. 9a).  

We computed the correlation between Φ and RTs in each region and then averaged over 

subjects. The statistical significance of the resulting average correlation was assessed by using a 

permutation approach, re-computing the Pearson coefficient for 10,000 random permutations of 

the blocks. We found that the increase in Φ in most regions was significantly correlated with the 

decrease of RTs (p < .05, FDR corrected for multiple comparisons). The strongest effects were in 

the parietal, occipital and temporal regions (Fig. 9b). If the observed negative correlation were 

just due to an unspecific, time-dependent, increase of Φ we would expect to find the same 

relation also in brain areas outside the 22 high-Φ regions examined. We assessed whether the 

negative correlation is present also in other brain regions by using a standard whole-brain atlas 

parcellating the brain in 268 regions (Finn et al., 2015). Only 28 regions out of 268 showed a 

significant negative correlation (p < .05, uncorrected). These regions are located in the parietal, 

precuneus and prefrontal cortex, with a large overlap with high-Φ regions. Finally, we checked 

whether the increase of Φ would be present even in an experiment in which task optimization is 

not expected to occur. If the increase of Φ were just due to artifacts or physiological noise, the 

increase should be observed irrespectively of whether some learning occurs in the experiment 

or not. We repeated the same analysis procedure on an experiment (Reverberi et al., 2018) 

where 15 subjects performed 7 runs of a simple language task (naming of common objects) not 

expected to trigger any learning. We evaluated the dynamics of Φ as a function of the run in the 

same regions showing a time-dependent increase in the present study. We did not observe any 

evidence for an increasing Φ in the language experiment (region 1: p = .01 uncorrected; region 

6: p = .04 uncorrected; all other ps > .1, uncorrected). Thus, the increase of Φ in the present 

study is likely related to the task. 

We carried out on color users an analysis similar to the one performed on spatial strategy users. 

It should be noticed that in color users the timing of the strategy change was not fixed as in 

spatial strategy users, but it was variable from subject to subject. Thus, we considered the 

increase of Φ from block 1 to the block of the strategy change. We again observed a significant 

increase of Φ in the regions already reported for spatial strategy users (Fig. 7 f-j). In contrast 

with spatial strategy users, however, in color users such an increase was observed also in 

prefrontal cortex (regions 12-15). Furthermore, color users showed no sudden decrease in Φ 

between blocks 20 and 21. This was expected given that color-users did not switch strategy at 

that point in time. Relatedly, we explored the presence of a decrease of Φ between the block in 

which subjects spontaneously changed strategy and the following one (equivalent to blocks 

20/21 in spatial strategy users). We observed a decrease of Φ in the same regions that showed 

an effect in the spatial strategy users. The effect, however, is considerably weaker compared to 

the spatial strategy users. In fact, the results are not significant after FDR correction; the largest 

effect is observed for region 8 (left parietal) with p = .005 (uncorrected). The weakness of the 

effect may be related to the reduced sample of color users (11 instead of 24 subjects). More 
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importantly, the transition between the two strategies, when non-instructed, is likely to be 

gradual and, for a short lapse of time, the two strategies might be used simultaneously. 

  

 
Figure 9 (a) Average reaction times (red) and average clustering frequency (blue) in high-Φ regions as a function 

of the block for spatial strategy users. Points are the mean over subjects, shaded regions ± the standard error. For 

each subject, reaction times are averaged over all trials in a block, and Φ is averaged over all regions. (b) Pearson 

correlation between Φ and reaction times in high-Φ regions for spatial strategy users.  We mark with an asterisk 

the regions that have a significant correlation (permutation test, p < .05). O: region 1-4, occipital; P: region 5-11, 

parietal; F: region 12-15, frontal; T: region 16,18,19,20, temporal; C: region 18, caudate; Θ: region 21, thalamus; M: 

region 22, midbrain.  

 

Finally, we checked whether the observed dynamic changes of Φ might be explained by motion 

artifacts. This is not the case (see supplementary information, Figures S5-S6). 

 

Cluster-based connectivity analysis. Clustering frequency (Φ) maps reveal how often a voxel 

is involved in a coherent activity in a time window of approximately 20s and in a spatially local 

neighborhood. A group of voxels generally shows high coherence not only with voxels in the 

spatial neighborhood but also at larger distance. Φ maps, however, do not directly measure 

long-distance coherence, neither can reveal which regions, among those with high-Φ, have 

mutually coherent time series, i.e. are connected. To quantify long-range coherence effects we 

measured the frequency with which voxel pairs in two regions are assigned to the same cluster, 

weighted by a measure of the robustness of cluster assignment (Methods). By computing these 

values for all regions, we built a clustering-based connectivity matrix (Fig. 10). The diagonal 

terms of the matrix represent a measure of the within-region coherence. By contrast, the off-

diagonal terms represent the coherence or connectivity between regions. The usage of the high-

Φ regions for analysis of the long-range coherence is optimal, since only regions with high local 

coherence are involved in long-range coherent clusters.  
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Like the Φ-maps, the connectivity matrices obtained are similar for different blocks within a 

single subject (r = .79, SD = .06) and, upon averaging over blocks, across different subjects (r = 

.65, SD = .15). In general, the within-region coherence (average �##= .035, SD= .006) is higher 

than the between-region coherence (average �#.= .008, SD= .010). Nevertheless, we found 

strong long-range links between subsets of regions. In Fig. 10 we show the connectivity matrix 

averaged over blocks and subjects, and the 50% strongest links. We used the popular Louvain 

modularity optimization method (Blondel et al., 2008) to assign regions to subnetworks or 

modules. Regions within a module display higher mutual connectivity. The optimal partition 

identifies 6 modules. The modules are frontal (F), parietal (P), occipito-parietal (OP), occipital 

(O), temporal (T) and thalamus (Fig. 10). Furthermore, the precuneus (region 5) acts as a hub 

connecting the four fronto-parieto-occipital modules, thus showing high connectivity with all of 

them. More in detail, all regions in the anterior frontal cortex (12-15) are assigned to the frontal 

module. The regions in the temporal cortex (16-20) form the temporal module including also the 

midbrain (22). The thalamus (21) is not connected with other regions and forms a module alone. 

The occipital and parietal regions are split into 3 modules. The parietal module includes the 

precuneus (5) and the inferior lateral parietal regions (6-8,11). The occipito-parietal module 

joins two occipital regions (1,2) and the superior lateral parietal regions (9,10). Finally, two 

occipital regions (3,4) form the occipital module. 

These modules do not strictly follow mere anatomical proximity or functional subdivisions at 

rest. All frontal regions are in one module, but parietal regions and occipital regions are split. 

The module including regions in the angular gyrus and precuneus is largely composed by voxels 

belonging to the default network. Similarly, the module including two occipital regions is 

entirely composed by voxels from the visual network. By contrast, the other two modules are 

mixed: one (the occipito-parietal) including both regions from the visual and the dorsal 

attention network, the other (the frontal) including both voxels from the default network and 

from the fronto-parietal control network.  

By using an approach similar to the one used for Φ, we explored variations of the connectivity 

network in time. We first analyzed spatial strategy users (Fig. 11). We observed an increase of 

connectivity centered on the medial and lateral parietal lobe involving namely the parieto-

parietal, parieto-occipital and parieto-frontal links (p < 0.05 uncorrected, Wilcoxon test; links 

with p < 0.01 are also FDR corrected). Upon switch to color strategy (block 21), the strength of 

the links mainly centered on the parietal lobe decreased and then, as for clustering frequency, 

the same links showed a rebound to the connectivity level reached before the switch (p < 0.05 

uncorrected, Wilcoxon test). In Fig. 11a-c, we show the links with an increase between block 1 

and block 20, those with a decrease between block 20 and 21, and those with an increase 

between block 21 and 24 (p < .05 uncorrected, Wilcoxon test). It is apparent that there is an 

increase between block 1 and block 20 of the connectivity within the P module, and between the 

P module and the OP, O, and F modules. To improve statistical sensitivity, we performed the 

same tests focusing on module-wise connectivity. We averaged over all pairs of links between 

regions assigned to two modules: for example by averaging all links between module P regions 

and module OP regions we obtained P-OP connectivity (Fig. 12a). The P-P, P-OP, P-O, P-F, and O-

F links have a significant increase in between block 1 and block 20 (p < .05 FDR corrected, 
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Wilcoxon test) and a significant decrease between block 20 and block 21 (p < .05 FDR corrected, 

Wilcoxon test). 

 

 

 
Figure 10 (a) Connectivity matrix between high-Φ regions, averaged over all subjects. The matrix element value 

corresponds to the value of �#. . Regions have been assigned to 6 modules according to a modularity maximization 

algorithm. The 6 modules are separated by black lines and are shown in different colors: occipito-parietal module 

(OP, regions 1-2,9-10), occipital module (O, regions 3-4), parietal module (P, regions 5-8,11), frontal module (F, 

regions 12-15), temporal module (T, regions 16-20,22), thalamus (Th, region 21).  (b) the 50% strongest links in 

the average network in axial and sagittal view. Nodes assigned to different modules are shown in different colors 

(blue) O module (cyan) OP module (green) P module (yellow) F module (orange) T module (red) Th module. 
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Figure 11 (a-b) Connectivity increase in blocks 1-20 for spatial strategy users. The matrix in panel (a) shows the 

log p-value of the increase between blocks 1 and 20 (Wilcoxon test). Panel (b) shows the links with a significant 

increase (p < .05 uncorrected) (c-d) Connectivity decrease between block 20 and block 21 for spatial strategy users. 

The matrix in panel (c) shows the p-value of the increase between block 20 and block 21 (Wilcoxon test). Panel (d) 

shows the links with a significant decrease (p < .05 uncorrected).  (e-f) Connectivity increase between blocks 21 

and 24 for spatial strategy users. The matrix in panel (e) shows the p-value of the increase between blocks 21 and 

24 (Wilcoxon test). Panel (f) shows the links with a significant increase (p < .05 uncorrected) (g-h) Connectivity 

increase between block 1 and the block when subjects switched strategy (block “-1”) for color strategy users. The 

matrix in the panel (g) shows the p-value of the increase between blocks 1 and -1 (Wilcoxon test comparing). Panel 

(h) shows the links with a significant increase (p < .05 uncorrected) (i-j) Connectivity decrease between the block 

when subjects switched strategy (block “-1”) and the subsequent block (block “+1”) for color strategy y users. The 

matrix in the panel (i) shows the p-value of the decrease between blocks -1 and +1 (Wilcoxon test). Panel (j) shows 

the links with a significant increase (p < .05 uncorrected). 

 

We performed similar analyses for color users (Fig. 11d-e, 12b) by realigning the time series to 

the switch block. Overall, the pattern is similar to the one found in spatial strategy users. 

Notably, however, color users showed an increase in fronto-frontal connectivity that was not 

present in spatial strategy users: Connectivity increased within medial prefrontal cortex (region 

13) and between medial prefrontal and the two anterior lateral frontal regions bilaterally 

(region 12 and 14). Using the module-wise connectivity, we found a significant increase in P-P, 

P-OP, P-F, O-F, OP-F and F-F links between block 1 and the transition block (p < .05 FDR 

corrected, Wilcoxon test). Notably, the increase was significant even before the color-corner 

correlation was introduced (p < .05 FDR corrected, Wilcoxon test). Thus, color users seem to be 

characterized by a greater integration between regions of the F module, and between the F 

module and the occipito-parietal modules. Finally, in the passage to color strategy (from the 

transition block to the subsequent block) we observe a weak decrease of connectivity within the 



 

 

 

 

  24 

P module (p = .007 uncorrected), and between the latter and the F, OP and O modules (p =.06, p 

= .07, p =.06 uncorrected). 

 

Figure 12 Strength of the links between modules as a function of the block for corner and color users. We show 

only links that have a significant effect (increase or change after the strategy shift) for either corner or color users 

(see Table 3). To facilitate the inspection of results, we show in green all links involving the parietal module, which 

have a similar behavior, and in yellow those involving the frontal module. (a) Strength of the links between modules 

as a function of the block for spatial strategy users. (b) Strength of the links between modules as a function of the 

block for color users. We show the 6 blocks around the switch after realigning the time series of each subject to the 

individual switch blocks (-1 is the block in which the subject spontaneously switches strategy, +1 the subsequent 

block). The vertical dashed line identifies the switch. 

 

Summary of the results. In summary, we identified 22 brain regions displaying high average 

local coherence over the ~1h of task performance in all subjects.  

Twenty-five out of thirty-six subjects continued to use the instructed spatial strategy and 

steadily improve their performance for ~50 minutes until they were explicitly told to switch to 

the color strategy for the last ~10 minutes. The optimization of the spatial strategy was 

associated with a progressive increase of local coherence in the precuneus, the lateral parietal 

lobe and in the medial occipital lobe. The increase of coherence in these regions was correlated 

with the reduction of reaction times during the optimization of the spatial strategy. When 

subjects were finally instructed to apply the color strategy, local coherence sharply dropped, as 
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it would be expected if those regions were indeed involved in spatial strategy optimization. In 

the course of the instructed application of the new color strategy, coherence showed a fast 

recovery returning to the pre-switch level after only one block (2.5 minutes) in the anterior 

calcarine sulcus, in the precuneus and the angular gyrus bilaterally, thus suggesting that these 

regions were also involved when applying the new color strategy. While increasing their local 

coherence, these parietal and occipital regions showed either a decreasing or a constant average 

activation. Furthermore, all occipital and parietal regions encoded the relevant spatial 

information of the stimulus, with the exception of the anterior calcarine sulcus that processes 

the peripheral eye field (see also Broday-Dvir et al., 2018).  

Eleven subjects discovered the uninstructed color strategy and applied it at a variable moment 

during task performance. These subjects showed an overall coherence and connectivity 

dynamics similar to the one described for corner strategy users, but with revealing differences. 

Similar to spatial strategy users, color strategy users showed an increased local coherence in the 

occipital and parietal regions before the spontaneous strategy change. Importantly, however, 

only color users showed an increase of local coherence in the anterior prefrontal regions. This 

specificity in local coherence was mirrored also in connectivity. While the intra-module 

connectivity of the prefrontal module remained constant in spatial strategy users, in color users 

the connectivity increased (Fig. 11). Notably, the tendency to increase started immediately, even 

before the color and the response were associated (first 4 blocks). Moreover, as spatial strategy 

users, color users showed a switch-related drop in local coherence and connectivity in the 

parietal module. 

Discussion 

Humans can improve their performance in any task by gradually optimizing the implementation 

of a known strategy, or by devising and then adopting novel, more efficient strategies (Heathcote 

et al., 2000; Badre et al., 2010; Collins and Frank, 2013; Donoso et al., 2014; Schuck et al., 2015; 

Roeder and Ashby, 2016). Previous research has shown that practicing a task induces changes 

not only in the activation level of specific brain regions, but also in the long-range organization 

of the relevant brain networks (Chein and Schneider, 2005; Cole et al., 2013; Patel et al., 2013; 

Bassett et al., 2015; Bassett and Mattar, 2017). However, the network dynamics governing 

strategy optimization versus the discovery of a new strategy are still unknown. By applying an 

analysis approach integrating the Coherence Density Peak Clustering (CDPC) (Allegra et al., 

2017) with Multi-Voxel Pattern analysis, standard GLM and behavioral analysis, we could 

identify the brain regions involved in the task learning, and describe the dynamics of local 

coherence and long-range connectivity involving these regions.  

 

Incremental task optimization and instructed strategy change. Our first aim was to 

understand how coherence and connectivity vary when an established strategy is improved and 

when a forced shift to a new strategy occurs. We found that progressive task optimization 

shapes the activity of neural populations to become more coherent, specifically in regions 

involved in task processing. To the best of our knowledge, such relation between local 

coherence, learning, and task performance has not been previously reported. Previous literature 
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has mainly analyzed local coherence in the context of the resting state, highlighting its 

usefulness as a marker of several pathologies rather than its modulation during a task (Jiang and 

Zuo, 2016). A modulation of local coherence is possibly achieved by a competitive mechanism 

enhancing task-relevant signals while reducing unrelated signals (Aston-Jones and Cohen, 2005; 

Eldar et al., 2013; Schmitz and Duncan, 2018). Furthermore, an increase in local coherence may 

indicate a progressive noise reduction, in line with recent neurophysiological findings. Works 

studying neuronal variability across multiple trials, as a measure of the internal noise of a neural 

system, have shown that the variability of task-relevant neurons decreases when stimuli are 

attended or perceived (Mitchell et al., 2007; Churchland et al., 2010; Hussar and Pasternak, 

2010; Schurger et al., 2015; Broday-Dvir et al., 2018; Nougaret and Genovesio, 2018, 2018). The 

reduction in neuronal variability has been associated to individual differences in perceptual 

ability, and to training in a working memory task (Qi and Constantinidis, 2012; Arazi et al., 

2017). 

The analysis of the connectivity between regions and its dynamics provided both a confirmation 

of the findings on local coherence and further insights. Four modules were identified in the 

fronto-parieto-occipital network with stronger connectivity between regions within each 

module (Blondel et al., 2008; Sporns and Betzel, 2016). Modules did not strictly follow mere 

anatomical proximity or functional subdivisions at rest.  Thus, the engagement in the task 

introduced major modifications in the network organization of the brain observable at rest, as 

already reported elsewhere (Power et al., 2011; Yeo et al., 2011; Spadone et al., 2015). The 

connectivity dynamics followed a pattern similar to that of local coherence, particularly in the 

parietal module (“P” in Fig. 10). During the task optimization phase, the regions belonging to the 

parietal module greatly increased connectivity, both intra-module and with all the other 

modules. In addition, the connectivity showed a sharp drop upon strategy change. By contrast, 

other modules did not generally show a systematic increase of connectivity. It would be 

certainly interesting to compare these findings with those obtained with a more traditional 

method, chiefly, standard connectivity analysis. In principle, such analysis may highlight other 

long-range coherent patterns correlating with behavior but escaping the CDPC analysis. This is 

possible only if the latter involve regions with poor local coherence. We leave such an analysis to 

a future investigation. 

Overall, our findings suggest that the increase in regional and long-range connectivity is a driver 

of learning. Increased connectivity favors transfer of information and integration between brain 

regions, with possibly different functional specializations, but all involved in processing a task 

(Deco and Kringelbach, 2016; Shine and Poldrack, 2018). Compatible effects have been reported 

when comparing brain connectivity during rest to visuospatial attention (Al-Aidroos et al., 2012; 

Spadone et al., 2015), working memory (Cohen and D’Esposito, 2016; Shine et al., 2016) or 

flexible rule application (Vatansever et al., 2017). By contrast, the evidence on the network 

dynamics associated with learning is still limited, also because the analysis tools available until 

recently had low sensitivity in detecting network changes (Bassett et al., 2015; Bassett and 

Mattar, 2017). One important study by Bassett and collaborators reported that visuomotor 

learning was associated with increased functional segregation (i.e. decreased temporal 

coherence Bassett et al., 2015), a finding seemingly in contrast with ours. We argue that this 

diversity is due to the different task-processing requirements of the two studies. In the task that 
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we considered, subjects needed to rely on visual information to produce the correct motor 

response even when the task was highly practiced. In the study by Bassett and collaborators 

subjects produced motor sequences, that once learned, could be recognized and generated from 

memory without further relying on visual information. This may explain why learning produced 

a segregation of the visual and motor network (see also Cohen and D’Esposito, 2016). Our 

results would then better relate to all those real-life situations necessitating the integration of 

multiple processing paths. 

While generally indicating a tendency towards integration rather than segregation, the observed 

connectivity increase was far from homogeneous. The parietal module, a part of the default 

network, had a central role, being the only one increasing connectivity with all other modules. 

This finding highlights an active role of the default network during task processing, in contrast 

with the commonly held idea that the default network is shut down when a subject is engaged in 

a task (Spreng, 2012; Crittenden et al., 2015; Vatansever et al., 2015; Margulies et al., 2016). 

Thanks to its widespread connectivity the default network could both receive sensory 

information and affect all task-relevant regions, to optimize stimulus processing and decision 

(Bar, 2007; Margulies et al., 2016; Vatansever et al., 2017; Dohmatob et al., 2018). Interestingly, 

the fact that the intra- and extra-module connectivity of the parietal module rebounds one block 

after switch suggests that optimization is an abstract process, recruited for strategies as diverse 

as those based on spatial information and color information. By contrast, during switching, when 

the system is reorganizing to cope with the new strategy the optimization is transiently paused. 

 

Spontaneous alternative strategy discovery and change. Our second aim was to understand 

how the spontaneous generation of new strategies is related to coherence and connectivity 

dynamics. We found that connectivity patterns in medial prefrontal and rostrolateral prefrontal 

cortex reflected the engagement of processes for the discovery of novel strategies. Notably, 

connectivity among different frontal regions differed between participants long before their 

behavior began to change, foreshadowing who will discover a novel strategy and who will not.  

Rostrolateral prefrontal cortex has been proposed to be responsible for the evaluation of 

potential alternative strategies (Donoso et al., 2014; Domenech and Koechlin, 2015; Badre and 

Nee, 2018), while our own work has suggested that medial prefrontal cortex is involved in the 

internal simulation of an alternative strategy (Schuck et al., 2015). Moreover, the frontal regions 

also involve parts of orbitofrontal cortex that have been linked to the representation of task 

states, i.e. the information underlying choice selection (Wilson et al., 2014; Schuck et al., 2016; 

Badre and Nee, 2018). It is thus possible that the connectivity increases reflect cross-talk 

between the above-named computations that are involved in finding and implementing a novel 

strategy. While this is also consistent with proposals relating the default network to background 

exploration (Bar, 2007; Crittenden et al., 2015; Vatansever et al., 2015; Margulies et al., 2016; 

Dohmatob et al., 2018), our findings additionally show a functional differentiation within the 

default network (Karahanoğlu and Van De Ville, 2015). The observation that the connectivity 

dynamics in the two subjects groups diverged from the beginning of the experiment suggests 

that the equilibrium between these two poles might be a relatively stable individual feature 

(Melnick et al., 2013; Beaty et al., 2018), possibly present even from childhood (Schuck et al., 

2019). 
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Limitations. The present study has some limitations. First, we could not identify robust 

network modifications associated with spontaneous strategy change. This is probably due to the 

relatively small number of spontaneously switching subjects. While the proper number of 

subjects necessary to uncover network changes with CDPC was not known in advance, a 

posteriori we observe that n=11 is sufficient to detect the stronger, abrupt changes brought 

about by instructed strategy change, but not the subtle, possibly gradual ones occurring in 

spontaneous strategy change. A second limitation is that we did not perform resting-state fMRI 

on the same subjects. This would have provided a more straightforward “baseline” to 

benchmark the task CDPC results, and possibly allowed us to detect subtle differences between 

the spatial and color strategy users existing already in their spontaneous BOLD signal. Finally, 

the quite homogeneous demographics (all subjects were university students aged 21-31) did not 

allow us to investigate how general individual traits such as age, education, general intelligence 

might modulate the observed behavioral and functional changes. 

 

Conclusions. We explored how brain networks behaved while human subjects optimized their 

strategy or created a new one. The observed network dynamics indicates a pivotal role of 

default-mode network regions, but with a clear functional differentiation within the network. 

While the posterior part of the default-mode network increased connectivity and local 

coherence when subjects optimized their current strategy, the anterior part of the network 

together with the rostrolateral prefrontal cortex was only involved in subjects who changed 

strategy. We speculate that the different behavior of the default-mode network in different 

people is a stable individual feature. A key ingredient for performing this analysis and 

highlighting this complex scenario is the use of an unsupervised clustering approach, capable of 

capturing the presence of transient coherence, and of monitoring the subtle changes in this 

coherence during learning. 
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Tables 

Table 1 Summary information about the 22 high-Φ regions, including brain location (main AAL 

region and Brodmann area, MNI coordinates of the region center), size (number of voxels), and the 

short name used in figures. 

# Brain Region (AAL) 

Brodmann 

Area Size Coordinates Short name 

    x y z  

1 Left Lingual Gyrus 18 2212 -24 -86 -13 1 Occipital 

2 Right Lingual Gyrus 18 2799 21 -84 -9 2 Occipital 

3 Calcarine Sulcus 17 528 1 -77 11 3 Occipital 

4 Calcarine Sulcus 17 310 0 -61 9 4 Occipital 

5 Left Precuneus 7 2407 0 -65 38 5 Parietal 

6 Left Angular Gyrus 39 90 -50 -60 27 6 Parietal 

7 Left Angular Gyrus 39 144 -47 -62 33 7 Parietal 

8 Left Angular Gyrus 39 586 -39 -65 43 8 Parietal 

9 Left Superior Parietal Lobule 7 455 -24 -67 50 9 Parietal 

10 Right Superior Parietal Lobule 7 748 26 -68 48 10 Parietal 

11 Right Angular Gyrus 39 757 45 -57 44 11 Parietal 

12 Left Superior Frontal Gyrus, orbital part 10 440 -25 58 -3 12 Frontal 

13 Left Medial Orbitofrontal Cortex 10 815 -2 58 0 13 Frontal 

14 

Right Superior Frontal Gyrus, orbital 

part 11 748 26 58 -5 14 Frontal 

15 Right Middle Frontal Gyrus, orbital part 11 80 36 46 -14 15 Frontal 

16 Left Superior Temporal Pole 38 150 -34 7 -23 16 Temporal 

17 Left Superior Temporal Pole 38 79 -27 11 -21 17 Temporal 

18 Left Hippocampus 28 475 -17 -3 -20 18 Temporal 

19 Caudate  1039 0 8 -15 19 Caudate 

20 Right Hippocampus 34 779 21 0 -20 20 Temporal 

21 Right Thalamus  330 -1 -8 14 21 Thalamus 

22 Mesencephalon  222 1 -32 -9 22 Mesencephalon 
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Supplementary Materials 

Identification of the regions in the Φ!  map. We aggregated voxels above the Φ!"#$ threshold in 

regions around every peak in the Φ!  map. The detailed procedure is the following: 

a ) We rank the voxels in order of decreasing Φ! ; 

b) We loop over all voxels above the threshold, starting from the voxel with the 

highest Φ!(rank=1). At iteration �, we check if the voxels contiguous to the voxel of rank i have 

already been assigned. If not, then all contiguous voxels must have lower values of Φ! : the voxel 

of rank � is hence a peak and starts a new region. If instead some of the contiguous voxels have 

already been assigned, it implies that they have higher values of  Φ! , and we assign the voxel of 

rank i to the same region of these voxels. In case of ambiguity, we assign it to the same region of 

the contiguous voxel with highest Φ! .  

 

Statistical tests. Given two group samples of Φ maps obtained in different conditions, we 

perform non-parametric statistical tests. When comparing the results for two disjoint groups of 

subjects we use a nonparametric statistic for independent samples - such as the Anderson-

Darling statistic - to compare the distribution of Φ in the two samples; when comparing different 

conditions within a group of subjects, we can use a nonparametric statistic for dependent 

samples, such as the Wilcoxon signed-rank statistic. Indeed, Φ maps for different runs of the 

same subject can be correlated, so they cannot be assumed to be statistically independent. 

Once the test statistic is chosen, we apply the test region-wise by averaging the Φ map over the 

regions, obtaining a region-wise map. In order to correct for multiple comparisons, we set in 

advance a threshold (usually, 4 = .05) and control the false discovery rate (FDR, Benjamini & 

Hochberg, 1995). In multiple tests with � null hypotheses, the FDR is defined as the expected 

ratio between the number of false rejections and the total number of rejections. In order to keep 

the FDR below a threshold 4, one can follow a simple procedure. First, the p-values for each 

hypothesis are computed. Second, the p-values are sorted in increasing order, 7� ≤. . . ≤ 7# ≤. . . ≤ 7� and one identifies 9∗, the maximum a (if any) such that 7# < 49 �⁄ . Finally, one rejects 

all hypotheses such that 7# ≤ 7#∗. 
We test for changes in Φ in selected regions. Since the regions are selected on the basis of the 

average Φ, hence on a criterion that is not independent of the data that are to be tested, in 

principle we might incur in a “double dipping” issue (Kriegeskorte, Simmons, Bellgowan, & 

Baker, 2009). In fact, we do not meet such a problem.  A case of double-dipping would occur if, 

by selecting voxels with high average Φ across runs, we were inadvertently raising the chance of 

obtaining false positives.  More formally, under the null hypothesis that the distribution 

of  Φ� across subjects is the same in the two different runs the statistic  <�  follows a well-

defined distribution on which one computes p-values; a problem would occur if,  by restricting 

attention to voxels with high average Φ, the resulting distribution <� were biased towards 

higher values of <�,  inflating the likelihood of false positive detection. We can rule out this 

possibility by means of the following simulation, which shows that our selection criterion does 

not impact the null distribution of the chosen test statistics. Under the null hypothesis, the voxel-

wise distributions Φ� are the same in the two different runs.  We can then generate two 

hypothetical samples Φ�,=> and Φ�,=? , corresponding to the samples of Φ� obtained in two 
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different runs @�, @� across subjects, taking two Gaussian samples with mean given by the 

experimentally measured  Φ! �  and variance given by ΦA�BBBB − (Φ! ���. We then compute the 

distribution of <� over all voxels and over the 10% voxels with highest  
�� (Φ�,� +Φ�,��  in the two 

runs, averaged over subjects. The latter subset corresponds to our selection criterions: 

restricting attention to voxels with a high average across runs and subjects. The distributions 

of <�  are the same in the two cases (not shown). This proves that choosing voxels with 

high  Φ! �  (averaged over subjects and runs) does not artificially inflate the detection of false 

positives, under the null hypothesis that the distribution of Φ is the same in different runs. 

 

Dependence of results on the Φ!  threshold 

In order to ensure that our results are not dependent on the chosen Φ!  threshold, we replicated 

the analysis with two different thresholds: a more restrictive threshold Φ! = D. EF 

(corresponding to 5% of the voxels surviving the threshold, as opposed to 7.5% for the 

reference threshold) and a more liberal threshold Φ! = D. DG corresponding to 25% of the voxels 

surviving the threshold. For both thresholds, we find a set of regions by grouping together 

above-threshold voxels around each peak of Φ! , with the same procedure used for the reference 

threshold.   

 

In Fig. S1 we show the regions obtained with a threshold Φ! = D. EF. With this threshold, 19 out 

of the 22 reference peaks survive, and correspondingly we find regions with roughly the same 

locations and shape of the reference regions. Only the voxel extension of each region is 

considerably reduced. 

Nevertheless, the dynamical effects of Φ!(increases and decreases across blocks) are still 

appreciable. In fig. S2 we replicate fig. 8 and fig. 9b (dynamical changes of Φ!and relation with 

reaction times).  

 

In Fig. S3 we show the regions obtained with a threshold Φ! = D. DG. With this threshold, 45 

peaks survive. Most of the corresponding regions, however, correspond to previously identified 

regions, with the difference that a) some regions are split b) the regions have a considerably 

larger extension. Among these, regions 1-5 (occipital), regions 6-14 (precuneus and parietal), 

regions 15-20 (lateral and medial prefrontal), regions 31-38 (caudate and hippocampus), 39 

(thalamus), 40-43 (midbrain). A few small regions appear, that were not present with the 

reference threshold: regions 21-27 (middle-superior frontal gyrus), regions 28-29 (superior 

temporal gyrus), region 30 (motor cortex), regions 44-46 (cerebellum). 

The dynamical effects of Φ!  (increases and decreases across blocks) can be replicated also with 

this choice of regions. In fig. S4 we replicate fig. 8 and fig. 9b (dynamical changes of Φ!  and 

relation with reaction times). The main increases/decreases observed in the reference regions 

can be appreciated in the corresponding regions. In the “new” regions, significant dynamical 

effects are found only in superior temporal gyrus (regions 28-29, increase of Φ in blocks 1-20) 

and dorsolateral frontal (region 21-22, increase of Φ in blocks 1-20 and decrease from 21 to 22). 

The correlation with reaction times is present for most regions, as in the reference case, with the 
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strongest effects in parietal and precuneus. Among the “new” regions, the dorso-frontal ones 

(21-28) also show a Φ dynamics correlated with the RT.  

Overall, the significance of the effects appears to be slightly reduced compared to the reference 

case, as consequence of the larger region size as well as the greater number of multiple 

comparisons to be performed. Therefore, this choice of regions yields a decreased statistical 

power for studying the dynamics of Φ.  

 

 
Figure S1 Voxels in gray matter showing an average clustering frequency (Φ) higher than 0.12. Voxels have been 

grouped in 19 regions around each peak of the Φ map.  
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Figure S2 Dynamic variations of the clustering frequency (Φ) in regions found with the threshold Φ>0.12, and 

relation with reaction times for spatial strategy users. (a-b) Difference of clustering frequency between block 20 

and block 1 in spatial strategy users. (c-d) Difference of clustering frequency in the high-Φ regions between block 

20 and block 21 in spatial strategy users. (e-f) Difference of frequency variation in the high-Φ regions between 

block 24 and block 21 in spatial strategy users. (g-h) Difference of clustering frequency between the block in which 

subjects spontaneously switched strategy (block “-1”) and the first block (block “1”) in color strategy users. (i-j) 

Difference of clustering frequency in the high-Φ regions between the block in which the subject spontaneously 

switches strategy (block “-1”) and the following block (block “+1”) for color strategy users. Column bars represent 

the average over subjects, error bars the standard error. We mark with an asterisk (*) regions where Φ increases 

significantly (Wilcoxon test, FDR correction at α = .05). In the rendering, we show regions with p < 0.05 (unc.), the 

colorbar represents -log(p) (k) Pearson correlation between dynamics of Φ and reaction times for spatial strategy 

users.  We mark with an asterisk the regions that have a significant correlation (permutation test, p < .05). O: region 

1-4, occipital; P: region 5-10, parietal; F: region 11-13, frontal; T: region 14-16, temporal; C: region 17, caudate; Θ: 

region 18, thalamus; M: region 19, midbrain.  
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Figure S3 Voxels in gray matter showing an average clustering frequency (Φ) higher than 0.07. Voxels have been 

grouped in 46 regions around each peak of the Φ map.  
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Figure S4 Dynamic variations of the clustering frequency (Φ) in regions found with the threshold Φ>0.07 and 

relation with reaction times for spatial strategy users. (a-b) Difference of clustering frequency between block 20 

and block 1 in spatial strategy users. (c-d) Difference of clustering frequency in the high-Φ regions between block 

20 and block 21 in spatial strategy users. (e-f) Difference of frequency variation in the high-Φ regions between 

block 24 and block 21 in spatial strategy users. (g-h) Difference of clustering frequency between the block in which 

subjects spontaneously switched strategy (block “-1”) and the first block (block “1”) in color strategy users. (i-j) 

Difference of clustering frequency in the high-Φ regions between the block in which the subject spontaneously 

switches strategy (block “-1”) and the following block (block “+1”) for color strategy users. Column bars represent 

the average over subjects, error bars the standard error. We mark with an asterisk (*) regions where Φ increases 

significantly (Wilcoxon test, FDR correction at α = .05). In the rendering, we show regions with p < 0.05 (unc.), the 

colorbar represents -log(p) (k) Pearson correlation between dynamics of Φ and reaction times for spatial strategy 

users.  We mark with an asterisk the regions that have a significant correlation (permutation test, p < .05). O: region 

1-5, occipital; P: region 6-14, parietal; F: region 16-27, frontal; m: region 28, motor; T: region 29-36, temporal; C: 

region 37, caudate; Θ: region 38, thalamus; M: region 39-43, midbrain; c: region 44-46, midbrain  
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Influence of motion on the results. We computed Frame Displacement (FD) measure for each 

frame as in  (Power et al. 2014). For each frame t,  we consider the difference in the 6 motion 

parameters from frame t to frame t+1, and take the sum of the absolute values.  For each subject 

separately, we averaged the FD estimates over all frames within a block to obtain a block-wise 

average FD. In Fig. S5 we show the FD and Φ as a function of the block (on average over 

subjects). It is apparent that the trends of Φ and FD are not correlated.   

For each subject, we regressed the FD time series (across blocks ) from the Φ time series of each 

voxel (across blocks). Fig. S6 reproduces Fig. 8 and Fig. 9 in the manuscript, with the FD-

corrected Φ.  Qualitatively, we obtain the same results both for the dynamics of Φ across blocks 

(increase in blocks 1-20, sudden decrease in block 21, etc.) and for the correlation between Φ 

and the reaction times. The effects remain significant after regressing the FD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Correlation between clustering frequency and motion estimates. We show the mean framewise 

displacement (FD) within a block vs average whole-brain clustering frequency Φ within the same block. Both time 

series are obtained by averaging over subjects.  
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Figure S6 Clustering frequency (Φ) variations in high-Φ regions. The FD time series has been regressed out of the 

Φ time series of each block (a-b) Difference of clustering frequency between block 20 and block 1 in spatial strategy 

users. (c-d) Difference of clustering frequency in the high-Φ regions between block 20 and block 21 in spatial 

strategy users. (e-f) Difference of frequency variation in the high-Φ regions between block 24 and block 21 in 

spatial strategy users. (g-h) Difference of clustering frequency between the block in which subjects spontaneously 

switched strategy (block “-1”) and the first block (block “1”) in color strategy users. (i-j) Difference of clustering 

frequency in the high-Φ regions between the block in which the subject spontaneously switches strategy (block “-

1”) and the following block (block “+1”) for color strategy users. Column bars represent the average over subjects, 

error bars the standard error. We mark with an asterisk (*) regions where Φ increases. O: region 1-4, occipital; P: 

region 5-11, parietal; F: region 12-15, frontal; T: region 16,18,19,20, temporal; C: region 18, caudate; Θ: region 21, 

thalamus; M: region 22, midbrain.  



 

Table 2 Effects found in the 22 high-Φ regions, including GLM activation vs baseline, corner and color 
representation, temporal dynamics of Φ. For each region, the corresponding p-values are reported. Bold values 
are significant effects (FDR correction at α= .05) 

   spatial strategy users Color users 

# Brain region Activation 
vs Baseline 

Corner 
rep. 

∆Φ 1-20 ∆Φ 20-21 ∆Φ 21-24 Color 
rep. 

∆Φ 1-(-1) ∆Φ 1-(+1) 

1 Occipital .00002 .00002 .31731 .17024 1 .002 .03285 1 

2 Occipital .00246 .00011 .21923 .45757 .34575 .00104 .10951 .85886 

3 Occipital .00006 .09976 .00511 .037 .00325 .07463 .02623 .37394 

4 Occipital .00074 .04513 .00468 .0039 .00325 .3893 .03285 .65664 

5 Parietal .00112 .00025 .00055 .00009 .00015 .31358 .01279 .15486 

6 Parietal .00091 .00194 .00055 .01516 .01192 .72994 .00444 .78967 

7 Parietal .00044 .02145 .0001 .00152 .00075 .87919 .00444 .09116 

8 Parietal .00016 .01837 .00009 .00609 .00055 .59615 .00444 .01637 

9 Parietal .00002 .00374 .01013 .00124 0.75330 .96453 .01279 .02623 

10 Parietal .00002 .02106 .00788 .00009 1 .5628 .02079 .06188 

11 Parietal .00025 .00475 .00003 .00016 .00009 .07242 .00585 .15486 

12 Frontal .00009 .00882 .13735 .51109 .17024 .12713 .01637 .10951 

13 Frontal .00003 .02166 .19854 .06329 .09185 .30872 .00765 .02079 

14 Frontal .00005 .05537 .7533 .56771 .71032 .85361 .01279 .13066 

15 Frontal .17024 .06586 .7533 .21923 .86389 .31178 .18231 .03285 

16 Temporal .00005 .0401 .0039 .30368 .49289 .85463 .02079 .47691 

17 Temporal .00039 .18354 .01013 .68916 .37577 .11511 .04086 .4236 

18 Temporal .00009 .05097 .01639 .97721 .54851 .06746 .01637 .92915 

19 Caudate .00082 .55459 .023 .7533 .40735 .30839 .92915 .37394 

20 Temporal .00018 .12924 .01193 1 .95443 .4761 .07536 .92915 

21 Thalamus .30368 .52672 .36057 .7317 .37577 .25354 .06188 .07537 

22 Mesencephalon .68916 .50802 .93169 .84148 .73171 .73791 .32806 .72211 

  



 

Table 3 Network dynamics effects. For each pair of network modules, 
the values of N have been averaged over ROIs in the two modules. For 
each pair of modules, the corresponding p-values are reported. Bold 
values are significant effects (FDR correction at α= .05) 
 

  
 

Spatial strategy users Color users 

 Link ∆1-20 ∆20-21 ∆ 1-(-1) ∆1-(+1) 

1 OP-OP .56771 .79707 .65664 1 

2 OP-O .26516 .02990 .37395 .47691 

3 OP-P .00296 .00167 .00765 .07537 

4 OP-F .23014 .90901 .00765 .92915 

5 OP-T .60705 .07649 .42360 .92915 

6 OP-Th .07649 .10340 .78968 .47691 

7 O-O .01772 .02400 .42360 .65664 

8 O-P .00270 .00152 .03285 .07537 

9 O-F .00152 .00113 .00335 .21322 

10 O-T .07649 .64757 .65664 .65664 

11 O-Th .44045 .81920 .18231 .07537 

12 P-P .00032 .00103 .00765 .00765 

13 P-F .00049 .00325 .00335 .06188 

14 P-T .18875 .56771 .59371 .37395 

15 P-Th .97721 .40735 .47691 .05046 

16 F-F .90901 .60705 .00444 .85886 

17 F-T .40735 .84148 .47691 .59371 

18 F-Th .36057 .29045 .02623 .85886 

19 T-T .04868 .30368 .59371 .92915 

20 T-Thl .42371 .29045 .59371 .37395 

21 Th-Th .19854 .08648 1 .92915 
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