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Abstract 

 
Learning the transition structure of the environment – the probabilities of transitioning 

from one environmental state to another – is a key prerequisite for goal-directed 

planning and model-based decision making. To investigate the role of the orbitofrontal 

cortex (OFC) in goal-directed planning and decision making, we used fMRI to assess 

univariate and multivariate activity in the OFC while humans experienced state 

transitions that varied in degree of surprise. In convergence with recent evidence, we 

found that OFC activity was related to greater learning about transition structure, both 

across subjects and on a trial-by-trial basis. However, this relationship was inconsistent 

with a straightforward interpretation of OFC activity as representing a state prediction 

error that would facilitate learning of transitions via error-correcting mechanisms. The 

state prediction error hypothesis predicts that OFC activity at the time of observing an 

outcome should increase expectation of that observed outcome on subsequent trials. 

Instead, our results showed that OFC activity was associated with increased expectation 

of the more probable outcome; that is, with more optimal predictions. Our findings add 

to the evidence of OFC involvement in learning state-to-state transition structure, while 

providing new constraints for algorithmic hypotheses regarding how these transitions 

are learned. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.17.302521doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.302521
http://creativecommons.org/licenses/by-nc-nd/4.0/


Significance Statement 

The orbitofrontal cortex (OFC) has been implicated in model-based decision making—

the kind of decisions that result from planning using an “environment model” of how 

current actions affect our future states. However, the widely suggested role of the OFC 

in representing expected values of future states is not sufficient to explain why the OFC 

would be critical for planning in particular. A new line of evidence implicates the OFC in 

learning about transition structure of the environment – a key component of the 

“environment model” used for planning. We investigate this function, adding to the 

growing literature on the role of the OFC in learning and decision making, while 

unveiling new questions about the algorithmic role of OFC in goal-directed planning. 
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Introduction 

To flexibly plan for the future, we must be able to predict which states of the world lead 

to which (i.e. we need to learn a model of the “transition structure” of the world). For 

example, to decide whether to drink warm milk or coffee, we need to know that warm 

milk makes us sleepy, but coffee wakes us up. This type of planning has been termed 

“model-based decision making”, in contrast to “model-free decision making”, which 

does not require such a model (Daw et al, 2005). 

 

The orbitofrontal cortex (OFC) has been shown to be particularly important for model-

based decision-making (Baxter et al, 2000; Izquierdo et al, 2004; Valentin et al, 2007; De 

Wit et al, 2009; Walton et al, 2010; McDannald et al, 2011; Rudebeck et al, 2011). 

However, previous research has focused on showing that OFC activity relates to the 

expected values of future rewards (Gottfried et al, 2003; Padoa-Schioppa and Assad, 

2006; Hampton et al, 2006; Fellows, 2007; Hare et al, 2008; Wallis and Kennerley, 2011; 

Monosov and Hikosaka, 2012). Recently, we have instead proposed that the OFC 

represents the current state of the task (Schuck et al, 2016), and that the OFC is 

especially critical for making decisions in situations where environmental stimuli do not 

unambiguously determine the task-relevant state (e.g., whether the state is “Thursday 

evening” and it is bedtime, versus “Friday evening,” in which case I don’t want to 

become sleepy as I am going to a party; Wilson et al, 2014; Bradfield et al, 2015; Chan et 

al., 2016; Nogueira et al, 2017). However, both value and state representation are 
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important in model-free as well as model-based decision making, and therefore these 

two lines of research do not explain why the OFC is critical specifically for the latter. 

 

Yet another line of research provides a potential explanation for the OFC’s particular 

prominence in model-based planning. This research suggests that the OFC is important 

for learning about the state-to-state “transition structure” of the world – the tendencies 

of certain environmental states to lead to other states. One study showed that OFC-

lesioned rats couldn’t learn about changes in the transitions from cues to outcomes 

(cue-outcome associations; McDannald et al, 2011), while a study in humans linked fMRI 

surprise signals in lateral OFC with updates in hippocampus of a model of transition 

structure (Boorman et al, 2016). Some newer studies have observed such surprise 

signals in the midbrain (Sharpe et al, 2017; Takahashi et al, 2017; Stalnaker et al, 2019), 

and have additionally found that these were correlated with cue-outcome learning and 

changes in outcome identity representations in the OFC (Howard and Kahnt, 2018). The 

hypothesized link between OFC and learning transition structure could also explain 

OFC’s centrality to model-based decision making, given that transition structure is a 

critical component of the “model” in such decision making. One cannot plan and 

mentally simulate the future result of current actions without an accurate model of how 

state transitions are likely to unfold in the future.   

 

How exactly might the OFC be involved in learning about transition structure? The OFC 

might itself compute or represent a prediction error at the time of unexpected 
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outcomes, which can be used to update an internal model of transition structure. Such 

“state prediction error” signals would occur upon observing state transitions that are 

unexpected, and could be used to guide learning so that transitions are better predicted 

in the future (e.g. Glascher et al, 2010). Note that these error signals are analogous to – 

but distinct from – reward prediction errors that are used for learning to associate 

states with their reward values (e.g., Rescorla and Wagner, 1972; Montague et al, 1996). 

However, the existing research does not make specific predictions about the role of OFC 

in representing or learning about transition structure, and state prediction errors are 

just one possible way. We therefore set out here to test whether the OFC might be in 

involved in error-driven learning via signaling of state prediction errors, and whether 

OFC activity could predict behavior related to learning transition structure. We also 

tested the two dominant hypotheses of OFC function – representing the current state, 

and representing expected value.    

 

In our experiment, black-and-white image cues led stochastically to M&M candies of 

different quantities and colors (outcomes). In the critical trials, the number of M&Ms 

was fully predictable, but their color was not, so as to generate state prediction errors in 

the absence of reward prediction errors. Using fMRI, we investigated activity in the 

human OFC at the time of these outcomes, and its relationship with participants’ 

behavioral predictions of state transitions.  
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Figure 1. (a) Experimental design. Trials began with fixation. Then, one of four image cues (4 different 
“start states”) appeared. On most trials, the box around the image opened, and a number of colored 
M&Ms dropped from the image, clinking as they fell into a bowl (5 different “end states”). On the 
randomly interspersed “guess” trials, the image cue was instead followed by a prompt to guess (within 1.5 
seconds) either the color or number of M&Ms that would have fallen on that trial.  
(b) Cue-outcome contingencies for each of the four images (transition matrix for the experiment). 
Numbers in table indicate probability of each end state (M&M outcome) given each start state (image 
cue). PE = prediction error. Larger state prediction errors are expected for rarer outcomes (smaller 
transition probabilities). Images and M&M colors were assigned randomly for each subject. Our analyses 
focused on Cue A and Cue B trials, which were designed to elicit state prediction errors in the absence of 
reward prediction errors. 
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2  Materials and Methods 

2.1  Subjects 

Twenty-four volunteers from the Princeton University community participated in 

exchange for monetary compensation ($20 per hour + up to $10 performance-related 

bonus). All subjects were right-handed (14 female, age range 18-34 years) and stated 

that they liked M&Ms. Informed written consent was obtained from all subjects, and the 

study protocol was approved by the Institutional Review Board for Human Subjects at 

Princeton University. 

 

2.2  Experimental design 

Each trial began with 0.5 - 8 seconds of fixation (truncated exponential distribution, 

mean 2.4 s). Then one of four black-and-white image cues depicting outdoor scenes 

appeared for 1.2 s (see Fig 1a). On 75% of the trials, this was followed by the opening of 

a box around the image (0.2 s). Then, a set of M&Ms appeared below the image and fell 

into a bowl, over the course of 0.9 s. As the M&Ms fell into the bowl, one clinking sound 

was emitted for each M&M in the set. A tally at the bottom of the screen (not shown in 

Fig 1a) indicated the total number of M&Ms received so far, for each of the four 

possible colors. 

 

Each of the four image cues was associated with different numbers and colors of M&Ms 

according to a predetermined schedule of reinforcement (Fig 1b). Cue A and Cue B were 

designed to elicit state prediction errors throughout the experiment due to a 
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probabilistic schedule of M&M color, but not reward prediction errors, because they 

always dropped exactly 2 M&Ms. Cue C, in contrast, was associated with 2 M&Ms of a 

fixed color, thus eliciting no prediction errors once the contingencies had been learned. 

Finally, Cue D was designed to elicit only reward prediction errors—it dropped either 1 

or 4 M&Ms of a fixed color (as with the other image cues, Cue D led to 2 M&Ms on 

average, such that all 4 cues were equated for average reward value). For each subject, 

the images and M&M colors were assigned randomly from a pool of 20 images and 5 

non-standard M&M colors (we used non-standard colors to avoid specific preferences 

for one color over another, as some people in the population curiously have for the 

standard M&M colors). 

 

Subjects earned one real M&M of a given color for every 17 “virtual” M&Ms that they 

received in the task. Subjects were requested to refrain from eating or drinking (except 

water) for at least 3 hours prior to the experiment, so that the M&Ms would be 

especially rewarding. Non-standard M&M colors were chosen to circumvent pre-existing 

preferences for specific M&M colors, and to achieve perceptually distinct outcomes that 

are of equal value. (Note also that our analyses of state prediction error always combine 

Cue A and Cue B trials, so that any potential value differences between the two colors 

cancel out.) In a post-experiment questionnaire, subjects rated the appeal of the M&Ms 

on a scale from 1 (not appealing at all) to 5 (very appealing). The mean rating was 3.8 ± 

0.2. 
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25% of all trials (pseudorandomly distributed) were “guess trials”. On these trials, the 

appearance of the black-and-white image cue was followed by a prompt reading 

“Guess: COLOR” or “Guess: NUMBER”. At the appearance of the prompt, the image cue 

disappeared. Subjects were given 1.5 s to guess what color/number of M&Ms would 

have fallen on that trial. Subjects received 10¢ for every question correctly answered. 

The purpose of the guess trials was to encourage subjects to pay attention to the image 

cue and to actively make a prediction of the upcoming M&M outcome on every trial – 

because the allowed response time was so short, subjects had to prepare an answer 

upon viewing the image cue in case a guess prompt followed.  

 

Subjects performed 72 training trials outside of the scanner, to familiarize themselves 

with the task and to learn the stimulus-outcome contingencies. During training, subjects 

received and ate the M&Ms they earned (approximately 7 M&M candies). They were 

then informed that future M&Ms they earned would be given to them after the ensuing 

scanning session, and they performed another 420 trials in the MRI scanner. At the end 

of the experiment, subjects received all M&Ms earned while in the scanner. The 420 

trials were evenly distributed between the four image cues, with trial order 

pseudorandomized so that the total number of M&Ms collected increased at the same 

rate for every color. The experiment was divided into 5 scan sessions of approximately 

10 minutes each. 
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2.3  Behavioral measures 

We evaluated three types of behavioral measures, computed separately for each 

subject and for each prediction trial type (image cue type x number/color prediction): 

(1) overall performance over the course of the experiment; (2) change in performance 

over the course of the experiment (3) sensitivity to the most recent outcome (a proxy 

for learning rate).  

 

To assess overall performance, we computed the fraction of responses that were 

optimal (i.e. for which the subject selected the common outcome), across all scan 

sessions. To measure change in performance, we computed the difference in 

performance from the beginning to the end of the experiment as the fraction of optimal 

responses in the last scan session minus the fraction of optimal responses in the training 

session. To assess sensitivity to previous outcome, we computed the probability of 

predicting the common outcome after observing the common outcome on the previous 

trial with the same image cue, compared to the probability of predicting the common 

outcome after observing the uncommon outcome on the previous trial with the same 

image cue. The difference between these two quantities served as a proxy for learning 

rate – subjects with high learning rate would be more sensitive to the most recent 

outcome, and would show a larger difference between the two quantities. 
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2.4  fMRI acquisition 

Functional brain images were acquired using a 3T MRI scanner (Skyra; Siemens Erlangen, 

Germany), and were preprocessed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/). An 

echoplanar imaging sequence was used to acquire 40 slices of 2mm thickness with a 1-

mm gap (repetition time (TR) = 2.4s, echo time (TE) = 27ms, flip angle = 71°, field of view 

= 196 mm, phase encoding direction = anterior to posterior). We optimized our fMRI 

sequence for OFC signal acquisition by including a gap between slices, using shimming 

and fieldmap unwarping, and tilting the slices by approximately 30° from the axial plane 

towards a coronal orientation (Deichmann et al, 2003). Fieldmaps consisted of forty 3-

mm slices, centered at the centers of the echoplanar slices, with TR = 500ms, TE1 = 3.99 

ms, TE2 = 6.45ms, field of view = 196mm. At the end of the 5 functional scanning 

sessions, an MPRAGE anatomical scan was acquired, consisting of 176 1-mm axial slices, 

TR = 2.3s, TE = 3.08 ms, flip angle = 9°, and field of view = 256mm. 

 

2.5  Preprocessing  

All functional images were preprocessed using high pass filtering (filter at 1/100 Hz), 

motion correction (six-parameter rigid body transformation), correction for B0 magnetic 

inhomogeneities (fieldmap unwarping), spatial smoothing (Gaussian kernel with full 

width at half maximum of 5mm), and co-registration of functional and structural scans. 

For GLM results, we additionally performed spatial normalization of subject-level results 

to match a template in MNI space (12-parameter affine transformation). 
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2.6  Functional parcellation of orbitofrontal cortex 

Regions of interest for the orbitofrontal cortex were obtained from Kahnt et al. (2012), 

who used k-means clustering of functional connectivity patterns to parcellate OFC into 

subregions. We used the parcellation of OFC into two clusters, which correspond with 

medial-lateral subdivisions of OFC found in studies of cytoarchitectonic structure and of 

intra-regional anatomical connectivity (Carmichael and Price, 1996; Ongür and Price, 

2000). 

 

2.7  Obtaining mean percent signal change at M&M outcomes 

Using the FSL toolbox (http://fsl.fmrib.ox.ac.uk/fsl/), we performed a GLM analysis with 

the following regressors: one regressor for the onsets of each type of image cue (A, B, C, 

D); one regressor for the onsets of the M&M outcomes for Cue C; one regressor for the 

onsets of the uncommon outcomes for each of the image cues A, B, and D (3 regressors 

total); one regressor for the onsets of the common outcomes for each of the image cues 

A, B, and D (3 regressors total); and one parametric regressor for the clinks of the 

M&Ms into the bowl (1, 2, or 4 clinks). These 12 regressors were convolved with a 

standard hemodynamic response function. In addition, the design matrix included 6 

motion regressors and an intercept (constant) term.  

 

Regressor weights for each voxel and each scan session were converted to percent 

signal change by multiplying by the appropriate scale factor for events of length 0.1 sec 

convolved with the standard double-gamma hemodynamic response function, and then 
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dividing by the mean of the voxel’s timecourse for that scan session. These per-scan 

numbers were averaged across scans for each subject. To obtain the percent signal 

change for a region of interest, the percent signal change was averaged across all voxels 

in the region of interest. 

 

2.8  Obtaining trial-by-trial estimates of percent signal change at M&M outcomes 

To obtain trial-by-trial estimates of percent signal change (PSC) in an ROI at each M&M 

outcome, we fit a separate GLM for each trial. This GLM was identical to the one used 

for estimating mean PSC (above), except that the regressor for the condition of the trial 

of interest was split into two – one regressor modeled the onset for the trial of interest 

only, and a second regressor modeled the onsets of all other trials in that condition 

(Mumford et al, 2012). These GLMs were fitted to data that were preprocessed in FSL, 

but the GLMs themselves were fitted using in-lab code written in MATLAB, for 

computational reasons. 

 

2.9  MVPA classification 

The purpose of our MVPA analyses was to test whether activity in OFC at the time of the 

M&M outcomes contained information about the start state and end state (stimulus 

and outcome) for each transition. We analyzed the trials that were designed to elicit 

state prediction errors (Cue A and Cue B trials).  

Given our rapid event-related design, we first used a GLM to deconvolve neighboring 

events, regress out motion artifacts, and to de-noise examples through averaging 
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(Mumford et al, 2012). The GLM included, for each half of each scan session, regressors 

modeling the appearance of the M&Ms for each of four trial types of interest (Cue A 

followed by M&M Color 1, Cue A followed by M&M Color 2, Cue B followed by M&M 

Color 1, Cue B followed by M&M Color 2), totaling 8 regressors per run. These were 

convolved with a canonical hemodynamic response function. In addition, for each scan 

session we modeled head motion using six motion regressors and the mean activity 

using an intercept regressor. We estimated this GLM on each subject’s smoothed, 

motion-corrected fMRI data using the FSL toolbox (http://fsl.fmrib.ox.ac.uk/fsl/). 

We used the resulting patterns of voxel-wise regressor weights for the four trial types 

(two regressor weights per run and trial type; z-scored) as training and testing examples 

for a support vector machine (SVM) classification algorithm with a linear kernel (nu-

SVM, as implemented in LIBSVM; Chang and Lin, 2011), under a leave-one-session-out 

cross validation scheme, using the Princeton MVPA Toolbox 

(https://code.google.com/p/princeton-mvpa-toolbox). We used a standard cost (nu) 

parameter of 1 for the SVM (results did not depend strongly on this parameter). 

To classify start state, we classified training and testing examples according to the image 

cue (Cue A or Cue B). To classify end state, we classified training and testing examples 

according to the M&M color (Color 1 or Color 2). 

3  Results 

3.1  Overall behavioral performance  

For the prediction task, the optimal strategy was to predict the most common outcome 

on every trial. Overall, subjects predicted the most common outcome 77 ± 2% of the 
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time. The 23% non-optimal guesses may have resulted from a combination of 

probability matching (for probabilistic transitions, Vulkan, 2000; Erev and Barron, 2000), 

imperfect knowledge of transition probabilities, and noise. Fig 2a shows subjects’ 

performance on each trial type. Subjects performed significantly above chance for all 

trial types (p < 10^-6; one-sided bootstrap test). 

 

 

 
Figure 2. Overall behavioral performance, for each image cue and prediction trial type. Hatched bars 

indicate that the outcomes were probabilistic for that cue and dimension (i.e. Cue D for number, and Cues 

A and B for color). Error bars indicate standard error of the mean. (a) Probability of choosing the more 

common outcome (the optimal prediction), for number prediction trials and color prediction trials, across 

the whole experiment. Dashed line: chance. (b) The difference in probability of choosing the more 

common outcome in the last session compared to the training session. Positive differences indicate 

learning during the task. *p < 0.05, **p < 0.01 ***p < 0.0001 
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3.2  Overall learning across the experiment 

Subjects became more optimal in their predictions as the experiment progressed, as 

measured by the difference between performance on the last scan session compared to 

performance during the training session (before entering the scanner) (Fig 2b). The only 

exception was in predicting the number of M&Ms for Cue D. Here, the optimal 

prediction was 1 M&M; however, participants predicted this amount on only around 

half the prediction trials and predicted the rare 4 M&Ms otherwise, possibly because of 

the high salience and appeal of the 4 M&Ms outcome. That is, although the 4 M&M 

outcome was delivered on only 1/3 of the trials involving Cue D, participants may have 

been confused regarding its frequency, or they may have predicted 4 M&Ms as a form 

of “wishful thinking”. Over the course of the task, predictions of the outcome of this cue 

did not improve, and even got worse numerically (Fig 2b). 

 

Importantly, there was significant variance across subjects in both average performance 

(described in section 3.1) and in learning (described in this section). This allowed us to 

test whether inter-subject variability could be explained by activity in OFC (see section 

3.5 below). 
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Figure 3. Trial-by-trial learning from recent outcomes. (a) For predictions of color in the conditions where 

color of the M&M outcome varied, subjects’ probability of predicting the common outcome was higher if 

they observed the common outcome (as opposed to the uncommon outcome) on the most recent trial 

with the same image cue (left: color prediction on Cue A and B trials). This pattern did not hold for 

predictions of number in the condition where number of M&Ms varied (right: number prediction on Cue 

D trials). Means ± SEM. (b) Correlations between sensitivity to recent outcomes (computed as the 

difference between the probability of predicting the common outcome after recently observing the 

common outcome for the same cue, compared to after an uncommon outcome; see panel a) and 

performance improvement across the experiment (computed as the difference in proportion of optimal 

predictions between the last session and the training session; see Figure 2b). 
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3.3  Learning from recent outcomes 

We evaluated each subject’s sensitivity to the most recent outcome as a behavioral 

proxy for learning rate – a subject with a high learning rate should be relatively more 

likely to expect an outcome that she recently experienced, while a subject with a low 

learning rate should be less affected by recent experience. To measure this, we 

compared the probability of the subject predicting the common outcome for a specific 

cue after most recently experiencing the common outcome for that cue, versus after 

most recently experiencing the uncommon outcome. Stronger sensitivity to the most 

recent outcome, i.e. higher learning rates, should manifest as larger differences 

between the two quantities. We evaluated learning for the scan sessions, as these were 

the sessions for which we could correlate learning with brain activity. 

 

For color prediction on Cue A and Cue B trials, subjects showed significantly greater 

probability of choosing the common outcome if the most recent outcome was common, 

suggesting that subjects were learning about Cue A and B outcomes from experience 

during the scan sessions (Fig 3a, left). This pattern of learning was not apparent for Cue 

D number prediction trials, consistent with the low overall accuracy and low 

improvement across the experiment for predicting the number of M&Ms for Cue D (Fig 

3a, right). 
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Figure 4. Basic neural results in OFC. (a) Subregions of OFC, displayed on the orbital surface of the brain. 

These regions of interest were obtained on a different dataset by Kahnt et al (2012), who parcellated the 

OFC using k-means clustering of functional connectivity. (b) Cross-validated classification performance for 

start state (image cue) and end state (M&M color) for Cue A and B trials, using multivariate linear 

classifiers on OFC activity. Mean across subjects. Error bars indicate SEM. *p < 0.05  (c-d) Percent signal 

change in subregions of OFC at the time of the common outcomes and the uncommon outcomes.  

***p < 0.005 

 

Note that higher sensitivity to recent outcomes does not necessarily imply greater 

improvement in performance across the experiment, because high learning rates can in 

fact lead to more highly fluctuating responses. Indeed, as shown in Fig 3b, sensitivity to 

recent outcomes was not correlated with improvement across the experiment in Cue A 

and B color prediction, and was marginally negatively correlated with improvement in 

Cue D number prediction. 
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3.4  Identity of outcomes (but not of image cues) was decodable from multivariate 

OFC activity – OFC does not simply represent perceptual input 

To evaluate OFC representations of the current state, we used multivariate classification 

methods to classify the outcome states (Color 1 vs Color 2) at the time of the M&M 

outcome for Cue A and Cue B trials. We analyzed a pre-defined OFC region of interest 

(Figure 4a). Cross-validated classifier performance was significantly above chance (50%) 

for classifying M&M outcome (classification accuracy 53.9% and 54.0%, p=0.013 and 

0.012, for medial and lateral OFC respectively; one-sided bootstrap test), indicating 

reliable representations of outcome state in both medial and lateral OFC (Fig 4b). In 

contrast, we did not find above-chance classifier performance for the image cue (Cue A 

vs Cue B) at the time of the outcome (classification accuracy 49.6% and 48.5%, p=0.61 

and 0.75, for medial and lateral OFC respectively; one-sided bootstrap test). This is 

despite the fact that, on each trial, the image cue was still on the screen at the time that 

the M&M outcome appeared, and in fact occupied a much larger area of the screen 

than the M&Ms, indicating that OFC representations of the current state do not simply 

reflect perceptual input. 

 

3.5  Univariate OFC responses at the time of outcome did not signal state prediction 

errors 

In general, we did not observe significant differences in univariate BOLD responses for 

common vs. uncommon outcomes (corresponding to hypothesized small vs. large 
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prediction errors). The exception was in lateral OFC for Cue D, where the BOLD response 

was more negative for the common (1 M&M) outcome as compared to the uncommon 

4 M&M outcome (Fig. 4c-d; p<0.005, one-sided bootstrap test), suggesting possible 

sensitivity to reward value or salience in lateral OFC in particular. 

 

3.6  Across subjects, average activity in OFC was correlated with overall learning, but 

not overall performance 

Univariate OFC activity at the time of the outcomes for Cues A and B was significantly 

correlated with learning to predict M&M color, but not in a manner predicted by a 

straightforward account of OFC activity as a state prediction error. In particular, if 

univariate BOLD activity in OFC reflected state prediction errors, then we would expect 

that greater OFC responses at the time of an outcome would lead to greater learning 

from the occurrence of that state (a larger prediction error), and thus a greater 

behavioral tendency to subsequently predict that particular outcome. That is, we should 

expect greater change towards expecting the common outcome after observing the 

common outcome, and greater change towards expecting the uncommon outcome 

after observing the uncommon outcome. 

 

Instead, subjects with more negative BOLD responses in OFC at the time of any outcome 

(both common and uncommon) showed a greater increase in their tendency to choose 

the common outcome (i.e. the optimal response) for Cues A and B throughout the 

experiment, in line with other findings linking suppression of the default mode network  
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Figure 5. Across-subject correlations of OFC activity with improvement and overall performance. Each 

point indicates one subject. (a) Across-subject correlations of OFC activity with improvement across the 

experiment, measured as the difference, between the last session and the training session, in probability 

of predicting the most common outcome. Correlations are shown for mean % signal change in OFC 

subregions at the uncommon outcomes and common outcomes, and also for the difference between the 

two. (b) Across-subject correlations of OFC activity with overall performance, measured as the probability 

of predicting the most common option, across all sessions. 
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(that the OFC is part of) to better task performance (Raichle, 2015). This was true for 

both medial and lateral subregions of OFC (Fig 5a; p=0.00047 for uncommon outcomes 

in lateral OFC, p=0.016 for common outcomes in lateral OFC, p=0.0093 for uncommon 

outcomes in medial OFC, p=0.015 for common outcomes in medial OFC; one-sided 

bootstrap test). Lateral OFC further showed a negative correlation between learning and 

the difference in mean activity for uncommon vs. common outcomes across subjects 

(p=0.048; one-sided bootstrap test). 

 

Interestingly, we did not find any relationship between average activity in OFC and 

subjects’ overall performance (Fig 5b). That is, OFC activity only showed a relationship 

with change in performance, suggesting a specific role for OFC in learning of the 

transition structure.  

 

We also did not find any across-subject correlations between OFC activity and overall 

improvement for predicting outcome properties that were not probabilistic – i.e. 

number of M&Ms for Cues A and B (where number was held constant) and color of 

M&Ms for Cue D (where color was held constant). Similarly, we did not find across-

subject correlations between OFC activity and overall improvement for predicting 

number of M&Ms on Cue D (for which the subjects behaviorally showed, on average, a 

failure to improve). 
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Figure 6. Within-subject, trial-by-trial correlations of OFC activity with learning from recent outcomes, 

for Cue A and B trials. Mean slope term from logistic regression of % signal change in OFC subregion at 

previous outcome (for the most recent trial with the same image cue) vs. probability of predicting the 

same outcome, fitted for each subject separately, and also separately for trials where the previous 

outcome was the common outcome or where the previous outcome was the uncommon outcome. Bars 

indicate mean slope terms across subjects ± SEM. 

 

 

3.7  Trial-by-trial correlations of OFC activity with learning from the most recent 
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Given that subjects’ behavior demonstrated learning from the most recent outcome for 
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improvement (described in the previous section), this analysis also indicated an 

involvement of OFC in learning about transitions, and again in a way that was 

inconsistent with a straightforward interpretation of OFC activity as reflecting a state 

prediction error.  

 

Based on a prediction-error account of OFC, we would expect that the slope term of the 

logistic regression would be positive for both the common and uncommon outcomes—

greater OFC activity at the time of an outcome would indicate a larger prediction error 

and more learning, and therefore should lead to a greater probability of the subject 

predicting the same outcome on the next trial. Instead, we found that the fitted slope 

terms were positive for trials where the most recent outcome was the common 

outcome, and negative for trials where the most recent outcome was the uncommon 

outcome. In other words, no matter the outcome (common or uncommon), greater 

BOLD activity in OFC at the time of an outcome was correlated with greater probability 

of subjects predicting the common outcome on the next trial with the same cue (Fig 6). 

In other words, greater OFC activity at an outcome was related to a higher likelihood of 

subjects’ predicting optimally on the subsequent trial. Noting the sign change between 

this trial-by-trial result and the previous across-subjects result, this result is nonetheless 

reminiscent of the relationship that we found between OFC BOLD activity and overall 

improvement in learning. Thus, while the general suppression of OFC activity may 

support task engagement via inhibition of the default mode network, our results suggest 
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a more specific involvement of trial-by-trial activity in the OFC in learning task 

contingencies. 

 

4  Discussion 

The orbitofrontal cortex has previously been shown, through lesion and inactivation 

studies, to be particularly important for model-based decision-making. However, prior 

work implicating OFC in the representation of expected values does not necessarily 

explain why this area should be important for model-based decision-making. Here, we 

have shown that OFC activity is related to learning about the transition structure of a 

task (the tendencies of certain states to lead to other states), which is necessary for 

accurate planning, shedding new light on the question of why the OFC is critical for 

model-based decisions.   

 

Using an experimental design that permits constant updating of (probabilistic) 

transitions between states, we showed that activity in the OFC is correlated with 

behavioral measures of learning about transition structure, both within and across 

subjects. Across subjects, average OFC activity at the time of outcomes was negatively 

correlated with an improvement in optimally predicting state transitions. OFC activity 

was not correlated with mean performance, but rather only with performance 

improvement, thus indicating a specific role in the learning of transition structure. 

Within subjects, on a trial-by-trial basis, OFC activity at the time of an outcome was 

positively correlated with a greater likelihood of optimally predicting the outcome on 
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the next trial with the same image cue, also supporting the hypothesized involvement of 

the OFC in learning of transition structure. In contrast, none of our results suggested a 

role for the OFC in signaling the state prediction errors that have been postulated to 

drive this learning process. 

 

State-transition learning in our experiment was distinct from value-based learning that 

is thought to be implemented in the dopaminergic system (Jocham et al, 2011; Kravitz et 

al, 2012), because the trials of interest always led to a predictable number of 2 M&Ms. 

Our analyses also combined conditions (Cue A and Cue B trials) in which the identities 

(M&M colors) of the common and uncommon outcomes were reversed, so that any 

potential differences in value for different M&M colors would cancel out. Therefore, our 

results positively identify a role for the OFC in learning a non-value-related quantity, 

namely, state transitions.    

 

Previous work, which implicated the OFC in learning about transition structure in rats, 

concentrated on the lateral OFC (McDannald et al, 2010), and work in humans also 

specifically implicated the lateral OFC in this type of process (Boorman et al, 2016). We 

tested our hypotheses in the entirety of the OFC, using a previously determined 

functional connectivity-based parcellation of OFC into medial and lateral subregions 

(Kahnt et al, 2012). Medial and lateral OFC showed very similar results across all our 

analyses. Of course, this does not rule out the possibility that there may exist a different 

parcellation of OFC that would lead to differing results across subregions. We note also 
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that the homology of OFC between rodents and humans is currently unclear, and OFC 

subdivisions are particularly complex given observed considerable anatomical variability 

within individuals (Wallis et al, 2011; Chiavaras and Petrides, 2000).  We should also 

take care in interpreting the negative BOLD response in OFC – this negative BOLD 

response has been previously observed (e.g. Boorman et al, 2009), but is not yet fully 

understood. 

 

What algorithm might underlie the observed relationships between OFC and learning 

about transition structure? Previous work has proposed a state prediction-error 

algorithm for learning state transitions, analogous to learning about state values from 

reward prediction errors observed in dopaminergic neurons. Here, the state prediction 

error signals surprise at the time of an unexpected state (regardless of the state’s value), 

and is used to adjust internal estimates of transition probabilities towards greater 

prediction of the observed outcome. Gläscher et al. (2010) tested for univariate 

correlations with the (unsigned) magnitude of an inferred state prediction error signal, 

and implicated the dorsolateral prefrontal cortex and intraparietal sulcus (but not the 

OFC) in this function. Boorman et al. (2016) found correlations of state prediction errors 

with univariate activity in lateral OFC, but only when the prediction errors were signed 

positively or negatively according to whether the update increased or decreased the 

odds of a preferred outcome (i.e. the expected value of the state transition). They 

further found that these signals in lateral OFC were related to changes in hippocampal 

representations of stimulus-outcome associations. 
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Our results do not uphold the idea that the OFC supports learning about transition 

structure via the local representation of such a state prediction-error signal; at the least, 

this signal did not seem to be encoded in the OFC’s univariate response to outcomes, as 

we did not observe overall differences in OFC activity for common vs. uncommon 

outcomes (corresponding to small vs. large state prediction errors). Further, univariate 

OFC activity at the time of an outcome was not correlated with greater subsequent 

expectations of that particular outcome. Instead, OFC activity was related to greater 

subsequent expectation of the more common outcome (i.e. more optimal prediction by 

subjects), regardless of whether the activity occurred at the time of a common or 

uncommon outcome. Instead, the results implicate OFC in activation and reinforcement 

of an already-learned model (and thus the reinforcement of the more optimal 

prediction), which may be in line with previous work indicating OFC representation of a 

cognitive map of task space (Wilson et al, 2014; Schuck et al, 2016; Chan et al, 2016; 

Schuck & Niv, 2019). It is not clear why the directionality of the relationship between 

OFC activity and learning was reversed for across-subject vs. within-subject analyses, 

although this finding may eventually serve as a useful key to understanding the 

underlying algorithmic functions of OFC. 

 

Our conclusions may differ from those of Boorman et al. (2016) regarding state 

prediction errors in OFC, because our experimental design and analyses for the trials of 

interest removed and averaged over any differences in value for different outcomes, to 
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avoid confounds with reward prediction errors. Indeed, for the trial type where we 

purposefully did not take these measures to minimize conflation with reward prediction 

errors (Cue D trials, where the image cues led probabilistically to varying numbers—

rather than colors—of M&Ms), we did find evidence of univariate differences in 

activation of lateral OFC for uncommon vs. common (i.e. high vs. low value) outcomes, 

similar to Boorman et al. (2016).  

 

It is also important to note that our secondary analyses did provide further support for 

two other mainstream theories of OFC function, in addition to the theory of a role in 

learning transition structure. Using multivariate pattern analysis (MVPA) on BOLD 

activity at the times of the outcomes, we found that we could successfully decode 

representation of outcome identity, as predicted by a recent theory of OFC as 

functioning in the representation of the current state (Wilson et al, 2014), for which 

evidence is increasingly amassing (e.g. Klein-Flügge et al, 2013; Bradfield et al, 2015; 

Chan et al., 2016; Schuck et al, 2016; Nogueira et al, 2017; Howard et al, 2020; Zhou et 

al, 2020). Furthermore, we did find evidence for value sensitivity in univariate BOLD 

responses in lateral OFC in a separate task condition (Cue D), in which the number (but 

not color) of M&Ms was unpredictable, consistent with previous work demonstrating 

that OFC represents the value of rewards (Gottfried et al, 2003; Padoa-Schioppa and 

Assad, 2006; Hampton et al, 2006; Fellows, 2007; Hare et al, 2008; Wallis and Kennerley, 

2011; Monosov and Hikosaka, 2012; though note that value might be construed as just 

one feature in representation of the current state; Lopatina et al, 2015). 
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In conclusion, the present results provide support for an emerging understanding of the 

relationship between the OFC and acquisition of state-to-state transition structure. Our 

findings may suggest a role for OFC in the reactivation and reinforcement of an already 

learned state-transition model, relating to proposals that the OFC stores such a model 

(Wilson et al, 2014). Our findings also build upon previous work showing that rats with 

OFC lesions are unable to learn about changes in state transitions (McDannald et al, 

2011), and that surprise signals in human OFC are related to changes in hippocampal 

representations of state transitions (Boorman et al., 2016). Importantly, while the 

results are not aligned with a simple state prediction error hypothesis, they may serve 

to constrain future models of the particular learning algorithms that may underlie the 

relationship between OFC and learning about transition structure, facilitating a fuller 

understanding of the involvement of OFC in learning and model-based decision making. 
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