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We examined whether older adults differ from younger adults in how they learn from rewarding and aversive outcomes. Human partic-
ipants were asked to either learn to choose actions that lead to monetary reward or learn to avoid actions that lead to monetary losses. To
examine age differences in the neurophysiological mechanisms of learning, we applied a combination of computational modeling and
fMRI. Behavioral results showed age-related impairments in learning from reward but not in learning from monetary losses. Consistent
with these results, we observed age-related reductions in BOLD activity during learning from reward in the ventromedial PFC. Further-
more, the model-based fMRI analysis revealed a reduced responsivity of the ventral striatum to reward prediction errors during learning
in older than younger adults. This age-related reduction in striatal sensitivity to reward prediction errors may result from a decline in
phasic dopaminergic learning signals in the elderly.

Introduction
Human aging is characterized by a substantial decline of presyn-
aptic and postsynaptic markers of the dopamine system (Li et al.,
2010). Recent theoretical accounts suggest that these deficits in
dopaminergic neuromodulation lead to impairments in reward-
based learning in older adults (Eppinger et al., 2011). However,
the computational and neurophysiological mechanisms underly-
ing age-related impairments in learning are unclear.

Electrophysiological findings in monkeys suggest that reward-
based learning is driven by reward prediction errors—that is, dis-
crepancies between actual and expected outcomes. These reward
prediction errors can be captured by reinforcement learning (RL)
models and seem to be coded in phasic changes of neuronal activity
in the midbrain (Schultz et al., 1997; Niv and Schoenbaum, 2008).
Recent studies using combinations of RL models and functional
neuroimaging (model-based fMRI) in humans showed correlations
between reward prediction errors and BOLD activity in the mid-
brain, ventral striatum (vStr), and ventromedial PFC (Pessiglione et
al., 2006; D’Ardenne et al., 2008; Jocham et al., 2011).

Only a few fMRI studies to date have investigated age differ-
ences in reward processing. Two of them reported age differences

in striatal activation during reward anticipation, but no age dif-
ferences or greater striatal activity in older adults during outcome
processing (Samanez-Larkin et al., 2007; Schott et al., 2007).
However, these studies did not involve learning from outcomes
and focused on dissociating reward anticipation from outcome
processing. Two other studies looked at age differences in the
BOLD response to different outcomes and revealed mixed results
(Cox et al., 2008; Mell et al., 2009). Cox et al. (2008) used a
probabilistic guessing task and found no substantial age-related
changes in outcome-related activity in the striatum when out-
comes were unrelated to performance. In contrast, Mell et al.
(2009) applied a reversal-learning paradigm in which the out-
comes were critical for performance adjustments and found
greater learning-related BOLD signal change in the vStr in
younger compared with older adults. These findings point to
age-related impairments in learning when reward representa-
tions need to be updated to adjust behavior. These impairments
may be due to a decline of dopaminergic prediction error signal-
ing (Eppinger et al., 2011).

In contrast to previous studies, which used conventional fMRI
approaches, here we examined age differences in reward-based
learning using model-based fMRI. We applied a task in which
participants could learn to choose actions that lead to reward
(positive learning) and also learn to avoid actions that lead to
aversive outcomes (negative learning; Fig. 1). Consistent with
previous findings, we expected that older adults would be im-
paired in learning from reward (Eppinger and Kray, 2011; Ep-
pinger et al., 2011). Based on the literature in younger adults, we
predicted that activity in dopaminergically innervated areas such
as the vStr and ventromedial PFC should be correlated with re-
ward prediction error (Pessiglione et al., 2006; Klein et al., 2007;
Jocham et al., 2011; Niv et al., 2012). Furthermore, consistent
with the dopamine hypothesis of aging, we expected that age-
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related impairments in learning should be associated with re-
duced prediction-error-related activity in these areas.

Materials and Methods
Participants
Fifteen younger adults and 15 older adults from the Princeton University
(Princeton, NJ) community participated in the study. Two younger
adults were excluded because of excessive head motion. One older adult
was not able to stay in the fMRI scanner for the entire experiment. An-
other older participant was excluded because she performed at chance
level in both learning conditions. The effective sample consisted of 13
younger adults (mean age � 28.8, SD � 3.3, 7 male) and 13 older adults
(mean age � 70.0, SD � 4.6, 7 male), all of whom were right-handed.
Participants gave written informed consent and the study was approved
by the institutional review board of Princeton University. During the
screening session, participants completed a biographical questionnaire
and several psychometric tests: (1) the Digit–Symbol Substitution test
(DSS; (Wechsler, 1982), (2) Raven’s Progressive Matrices (Raven et al.,
1998), and (3) the Spot-the-Word test (Baddeley et al., 1992). The psy-
chometric data showed lower scores on the DSS test and Raven’s matrices
for older compared with younger adults ( p � 0.001, � 2s � 0.36). In
contrast, older adults reached higher scores compared with younger
adults on the Spot-the-Word test ( p � 0.02, � 2 � 0.22). Consistent with
previous findings, these results suggest age-related reductions in fluid
intelligence and age-related improvements in crystallized intelligence (Li
et al., 2004).

Task
The stimuli were 20 colored images of objects (Snodgrass and Vander-
wart, 1980). The feedback stimuli indicated a loss of 50 cents, a gain of 50
cents, or a neutral outcome (i.e., 0 cents). If participants missed the
response deadline, the words “too slow” were presented. The participants
were asked to make a two-choice decision upon presentation of a stim-
ulus using one of two response buttons (left or right). They were in-
structed to learn the stimulus–response assignments based on the
feedback and to maximize their wins and minimize their losses. The
experiment consisted of five learning blocks. Each block involved four
stimuli (two per learning condition) that were presented 12 times in
random order (48 trials per block). Two stimuli (A and B) of each block
were associated with the positive learning condition (Fig. 1). If partici-
pants responded with a left button press to A, they won 50 cents; if they
responded with the right button, they received a neutral outcome (and
vice versa for B). The other two stimuli (C and D) were associated with
the negative learning condition. If participants responded with a right
button press to C, they received a neutral outcome; if they responded
with the left button, they lost 50 cents (and vice versa for D). Stimulus-
response assignments were counterbalanced across learning blocks and
subjects. Feedback was deterministic.

Procedure
The participants performed two sessions. In the first session, they were
screened for MR eligibility and performed the psychometric tests and
questionnaires. If they were eligible for MR imaging they were invited
back for a second session in which they completed the learning task in the

MR scanner. Before entering the scanner, participants performed a prac-
tice block in which they practiced the task until they reached an average
accuracy of 65% or a total number of 150 trials. In the scanner, the
participants performed 240 trials (120 per condition). For the fMRI ses-
sion, subjects received $20.00 as compensation for participation and
could win a performance-dependent bonus of $7.50. Participants also
performed a delay-discounting experiment in the scanner. These data are
reported in Eppinger et al., (2012).

The trial procedure started with the presentation of a fixation cross for
500 ms, followed by presentation of the stimulus for 500 ms. After the
stimulus, a blank screen was presented for a variable interval (3.5–7.5 s).
After the blank screen, the feedback stimulus was displayed for 500 ms,
again followed by a blank screen displayed for a variable interval (3.0–7.0 s).
The interstimulus intervals were jittered in 1 s steps according to a long-
tailed exponential distribution (� � 4.0), yielding a mean interstimulus
interval (ISI) of 5.0 s (Hagberg et al., 2001). Accordingly, the range of the
intertrial interval (ITI) was 8 –16 s with a mean of 11.0 s.

As in previous studies, we used an adaptive response deadline proce-
dure in which we adjusted the response deadlines (700 –1300 ms) de-
pending on the number of time-out trials (Eppinger et al., 2009;
Eppinger and Kray, 2011). Mean response deadlines were 1071 ms (SD �
211 ms) for younger adults and 1139 ms (SD � 194) for older adults.
Younger adults (M � 0.06, SE � 0.02) and older adults (M � 0.06, SE �
0.01) did not differ with respect to the number of time-outs ( p � 0.90).

The stimuli were projected on a screen mounted at the rear of the
scanner bore, which participants viewed through a series of mirrors.
EPrime software (PST) was used for stimulus presentation. Manual re-
sponses were registered using an MR-safe button box. A pillow and foam
cushions were placed inside the head coil to minimize head movements.

fMRI data acquisition
MRI data acquisition was performed on a head-dedicated 3 tesla MRI
scanner (Allegra; Siemens) at Princeton University. At the beginning of
the fMRI session, high-resolution (1 mm 3), T1-weighted structural im-
ages were acquired using an MP-RAGE pulse sequence (160 axial slices;
FOV, 256 mm; TR, 2500 ms; TE, 4.38 ms; flip angle, 8°). AC-PC-aligned
functional images were acquired using a T2*-weighted EPI sequence (33
interleaved slices; voxel size 3 � 3 � 4 mm; FOV, 192 mm; TR, 2000 ms;
TE, 30 ms; flip angle, 90°).

Behavioral data analysis
Accuracy and reaction time (RT) data were analyzed using MATLAB
(MathWorks) and SAS (SAS Institute) software. Mean accuracy and RTs
were averaged for each participant and learning condition into six con-
secutive equally sized trial bins (five trials per bin, learning condition and
block). These data were submitted to 2 (age-group) � 2 (condition) � 5
(trial bin) mixed-effects ANOVAs.

Temporal difference learning model
We modeled subject’s choice behavior using a temporal difference
(TD) learning approach (Sutton and Barto, 1998) in a two-step pro-
cess (compare Daw, 2011): First, we used a maximum-likelihood
procedure to find the parameters with which an RL model best de-
scribed the behavior of each subject. In this step, we used a simple RL
model in which the reward prediction of action a in condition c was
updated according to the difference between the outcome r and the
prediction V as follows: V(a) � V(a) � �*(r � V(a)), with � as the
learning rate. The value was translated into choice behavior using a
softmax function: exp(�*V(a))/[exp(�*V(a)) � exp(�*V(b))], in
which � is the inverse temperature parameter regulating competition
between actions a and b. The free parameters � and � were deter-
mined such that the log-likelihood of the observed choice behavior
given the model was maximized. In the second step, we used the
average of the estimated � and � parameters (across all subjects) to
run a full TD model given the subject’s individual choices. We used
this model to extract the reward predictions and prediction errors for
the fMRI analysis. In the TD model, each trial was split into 11 time
steps with stimulus presentation at time step 1 and reward delivery at
time step 6. We modeled the value and the prediction error during
each time step in each trial (Schultz et al., 1997). The prediction error

Figure 1. Schematic of the task. The design involved five learning blocks with 48 trials each
(24 per learning condition, randomly intermixed). Each block involved a new set of four stimuli
(two per learning condition). Feedback was deterministic.
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was then calculated according to the temporal difference rule as
follows:

�t � rt � �Vt � 1 (a) 	 Vt(a)

where t is the current time step. The temporal discount parameter � was
set to 0.9. For the fMRI analysis, the prediction error � and prediction
estimates V were extracted from the model at two time points: the time of
stimulus presentation (time step 1) and the time of reward delivery (time
step 6). The � and V regressors were modeled in the fMRI analysis as
described below.

fMRI data analysis
fMRI data analyses were performed using AFNI (Cox, 1996) and SPM
(SPM8; Wellcome Department of Imaging Neuroscience).

Spatial normalization. To account for age differences in brain mor-
phology, the fMRI images were registered to a study-specific gray matter
template using the DARTEL toolbox in SPM8 (Ashburner, 2007). The
motivation for this procedure was to avoid a normalization bias toward
the anatomy of younger adults (Samanez-Larkin and D’Esposito, 2008).
In an initial step, we registered the functional images to the high-
resolution T1 image (within each subject) in AFNI using a local Pearson
correlation cost function (Saad et al., 2009). Functional and structural
images of each participant were then manually aligned with the SPM
tissue probability maps and segmented into their tissue components us-
ing the unified segmentation procedure (Ashburner and Friston, 2005).
The resulting gray and white matter images were used during the DAR-
TEL procedure to create the study-specific gray matter template (Ash-
burner, 2007; Harris et al., 2009). In addition to the template, the
procedure results in so-called flow fields that parameterize the nonlinear
deformations that are applied to match each individual image to the
template. These flow fields were used to normalize the smoothed
(Gaussian FWHM 8 mm) EPI data to an MNI-registered version of
the template.

Preprocessing. The functional data were slice-time corrected to the
second volume using Fourier interpolation and realigned using rigid-
body 3D motion correction as implemented in AFNI. Transient spikes in
the EPI data were removed using the AFNI program 3dDespike. Percent-
age signal change was calculated for each voxel with respect to the mean
activation across the time series.

Statistical analyses. For condition-based analysis, we performed a gen-
eral linear model (GLM) analysis for each participant’s fMRI data using
eight experimental regressors. For the stimulus-locked analysis, two of
those regressors modeled the onset of stimuli that were followed by re-
ward (�50 cents) and neutral (�00 cents) feedback (positive learning
condition). Another set of two regressors modeled the onset of stimuli
that were followed by negative (�50 cents) and neutral (�00 cents)
outcomes (negative learning condition). For the outcome-locked analy-
sis, two regressors modeled the onset of reward (�50 cents) and neutral
feedback (�00 cents) (positive learning condition). Two other regressors
modeled the onset of loss outcomes (�50 cents) and neutral feedback
(�00 cents) (negative learning condition). These regressors were con-
volved with a canonical hemodynamic response function (HRF). To
control for potentially confounding effects of RT, we included RT as a
regressor of no interest in the analyses. We modeled baseline drifts in the
data using a fourth-degree polynomial and included the motion correc-
tion parameters into the GLM. For the model-based analysis, we used the
parameter estimates from the TD model to examine correlations of
BOLD activity with prediction error (� t) and expected value (V t). To
analyze correlations with expected value, we created parametric regres-
sors separately for the two learning conditions by modulating the
stimulus-related amplitude of the canonical HRF with the expected value
(V t). To analyze correlations with prediction error, we created paramet-
ric regressors separately for the two learning conditions by modulating
the outcome-related amplitude of the canonical HRF with prediction
error (� t). Motion parameters and RT were added as regressors of no
interest to the model.

For the outcome-locked analyses, the �-coefficients from the single-
subject GLM analysis were subjected to a whole-brain mixed-effects
ANOVA with fixed-effect factors of age group (younger vs older adults)

and outcome type (�50, �50, �00, �00) plus the random factor of
subjects. To examine age group � learning condition interactions, we
focused on two contrasts: reward (�50) � neutral feedback (�00) (pos-
itive learning) and loss outcomes (�50) � neutral feedback (�00) (neg-
ative learning). The regression coefficients from the parametric
prediction error analysis were analyzed using a whole-brain mixed-
effects ANOVA with the fixed-effect factors of age group (younger vs
older adults) and learning condition (positive, negative) plus the random
factor of subjects. Unless stated otherwise, we used the AFNI program
AlphaSim to correct for multiple comparisons. We determined that a
corrected (family-wise) p-value of 0.05 was achieved with a minimum
cluster size of 52 voxels, each significant at p � 0.001.

Results
Behavioral results
Accuracy data
The analysis of the accuracy data revealed a significant interaction
between age group and learning condition (F(1,24) � 8.24, p � 0.008,
�2 � 0.25). Separate analyses for the two learning conditions re-
vealed significant age differences in accuracy in the positive learning
condition (p � 0.01, � 2 � 0.24), but not in the negative learning
condition (p � 0.35). As shown in Figure 2A, older adults exhib-
ited impairments in learning from monetary rewards, but not
monetary losses. The analysis also revealed a significant interac-
tion between age group and trial bin (F(5,120) � 8.13, p � 0.0001,
� 2 � 0.05, 
 � 0.54), which reflects the fact that, across learning
conditions, the younger adults learned somewhat faster than the
older adults (Fig. 2A). These results show impairments in learn-
ing from positive but not negative feedback in older compared
with younger adults (Fig. 2A).

RT data
The analysis of the RT data showed a significant main effect of
learning condition, reflecting longer latencies in the negative
than the positive learning condition (F(1,24) � 10.04, p � 0.004,

Figure 2. A, Accuracy in proportion correct ( y-axis) averaged into six equally large trial bins
(x-axis) displayed separately for the positive learning condition (left) and the negative learning
condition (right). Younger adults are shown in black, older adults are shown in gray. Error bars
reflect the SEM. B, RTs in milliseconds ( y-axis) averaged into six equally large trial bins (x-axis)
displayed separately for the negative learning condition (left) and the positive learning condi-
tion (right). Younger adults are shown in black, older adults are shown in gray. Error bars reflect
the SEM.
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� 2 � 0.29; Fig. 2B). Furthermore, we obtained a significant main
effect of trial bin (F(5,120) � 11.05, p � 0.001, � 2 � 0.30, 
 �
0.59). As shown in Figure 2B, RT decreases as function of learn-
ing. No significant main effect or interactions involving the factor
of age group were obtained (p � 0.17). Therefore, across age
groups, avoiding actions that lead to aversive outcomes is associ-
ated with longer RTs than approaching reward.

fMRI results
Neural systems involved in learning from positive and
negative outcomes
For the positive learning condition (positive � neutral out-
comes), we found significant activations in the ventromedial PFC
(vmPFC), the dorsal anterior cingulate cortex (dACC), and the
posterior cingulate cortex (PCC) across groups (all t � 4.5, p �
0.05; Fig. 3A). For the negative learning condition (negative
�neutral outcomes), we found significant activations in the
dACC, inferior parietal cortex, dorsolateral PFC (dlPFC), the
insula, the PCC, the bilateral putamen, and motor areas (all t �
5.4, p � 0.05; Fig. 3B). In the whole-brain analysis, a significant
interaction between age group and learning condition was ob-
tained in the vmPFC (F(1,24) � 13.17, p � 0.05). Separate analyses
for the two learning conditions showed greater BOLD activity in
the vmPFC for younger than older adults in the positive, but not
in the negative learning condition (t � 3.6, p � 0.001, cluster size
�20 voxels; Fig. 3C). Time courses for activity in the vmPFC,
vStr, SMA/ACC, and dlPFC are shown in Figure 4.

Correlations between BOLD activity and reward
prediction error
To examine correlations between prediction error estimates and
BOLD activity, we performed a parametric regression analysis. As
shown in Figure 5A, this analysis revealed significant positive
correlations between prediction error estimates and BOLD activ-
ity in the positive learning condition (across age groups) in the
vmPFC, dACC, PCC, bilateral putamen, bilateral insula, and the
thalamus (all t � 4.9, p � 0.05). Therefore, these areas show

greater activity the more positive the prediction error. For the
negative learning condition, we found significant negative corre-
lations with prediction error in the dACC, the PCC, the left pu-
tamen, and the right middle temporal gyrus (all t � 3.6, p � 0.05,
Fig. 5B). Therefore, the more negative the prediction error, the
higher the activity in these areas. Most interestingly, we also ob-
served a significant interaction between age group and learning
condition in the vStr (F(1,24) � 9.46, p � 0.005, cluster size �20
voxels). Separate analyses for the two learning conditions re-
vealed reduced prediction-error-related activity in the positive
learning condition for older compared with younger adults in the
vStr and vmPFC (all t � 3.6, p � 0.001, cluster size �20 voxels).
No significant age differences were obtained for the negative
learning condition. As shown in Figure 5C, older adults show
reduced correlations between activity of limbic and paralimbic
areas (vStr and vmPFC) and prediction error during learning
from reward compared with younger adults. No effect of age
group was observed for the negative learning condition.

Discussion
The present behavioral results suggest that older adults learn as
well as younger adults to avoid actions that lead to aversive out-
comes. In contrast, they perform worse than younger adults
when learning to approach reward. Our results are consistent
with findings that point to age-related impairments in learning
(Nieuwenhuis et al., 2002; Eppinger et al., 2008). Furthermore,
the current findings support the idea that a decline in dopamine
function with age may lead to an asymmetry in learning from
positive and negative outcomes (Frank and Kong, 2008). Similar
to the behavioral data, age differences in the fMRI data were only
obtained for the reward-based learning condition. As shown in
Figure 3C, older adults had reduced activity in the vmPFC for
rewarding than neutral outcomes compared with younger adults.
Moreover, consistent with impairments in learning, older adults
showed reduced reward prediction-error related activity in the
vStr and vmPFC than younger adults (Fig. 5C). No such effect
was observed for loss prediction errors in negative learning con-

Figure 3. A, Significant activations (t statistics) for the positive learning condition across age groups. BOLD activity is time locked to feedback onset. Activations are significant at p � 0.05,
corrected for multiple comparisons. B, Significant activations (t statistics) for the negative learning condition across age groups. BOLD activity is time-locked to feedback onset. Activations are
significant at p � 0.05, corrected for multiple comparisons. C, Significant main effect of age group in the positive learning condition in the ventromedial PFC (Talairach coordinates: �6, 39, 0,
t statistics, significant at p � 0.001, cluster size �20 voxels).
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dition. Therefore, the present findings indicate that in older
adults, limbic and paralimbic areas (such as the vStr and vmPFC)
are less responsive to reward prediction errors. These findings are
consistent with the idea of an age-related decline of dopaminergic
projections from the midbrain to the vStr and vmPFC (Häm-
merer and Eppinger, 2012).

It should be noted that our interpretation does not imply that
older adults cannot represent positive prediction errors. In both
conditions, positive and negative prediction errors contribute to
learning. The distinction we would like to make is between the
absolute versus the relative value of outcomes. In the positive
learning condition, positive outcomes have both positive abso-
lute value (a reward) and positive relative value (compared with
the neutral outcome). In contrast, in the negative learning con-
dition, positive (neutral) outcomes have a positive relative value
(compared with a loss), but they do not have absolute positive
value (no reward). Insofar as age-related impairments were only
observed in the positive learning condition, we interpret this as
evidence of a reduced sensitivity to prediction errors during

learning from reward, which may result
from deficient dopaminergic input to the
vStr and vmPFC in older adults (Eppinger
et al., 2012). Furthermore, according to
this interpretation, the absence of age dif-
ferences in the negative learning condi-
tion is due to the fact that a reduced
sensitivity to prediction errors does not
affect learning in this condition.

Our findings are consistent with evi-
dence indicating that suboptimal financial
decision-making in older adults is associ-
ated with increased variability of vStr activ-
ity (Samanez-Larkin et al., 2010). The
current data add to these results by suggest-
ing that a reduced coupling between reward
prediction errors and striatal activity may
contribute to age-related decision-making
deficits. Whether this effect is due to noisier
dopaminergic signaling or if it results from
impaired regulatory input from the vmPFC
is an open issue (Takahashi et al., 2011).
Support for the latter interpretation comes
from a diffusion tensor imaging study
showing that reduced white matter integrity
in corticostriatal pathways accounts for age
differences in reward-based learning
(Samanez-Larkin et al., 2012).

One alternative interpretation of the
current results could be that they reflect
age-related deficits in contextualizing
neutral outcomes—that is, in considering
them relative to the alternative (gain or
loss) in the two conditions (Braver et al.,
2001). For example, older adults might
have perceived the neutral outcomes as
positive across conditions (e.g., experi-
encing relief that nothing worse hap-
pened). This would have reduced the
difference in their experienced value from
reward in the positive learning condition,
which could explain age-related learning
impairments in this condition. However,
it is unclear why such a contextualization

deficit would have been restricted to positive learning. By the
same logic, neutral outcomes could have induced “regret” be-
cause they corresponded to a missed opportunity for reward.
More generally, it is unclear why it should be assumed, a priori,
that there should have been an asymmetry of these effects and/or
why it should have been restricted to older adults. Furthermore,
the outcome-related BOLD data do not provide support for this
idea. As shown in Figure 4, there is no evidence for a positive
BOLD response to neutral outcomes in the vStr and there are no
significant differences in BOLD responses to neutral outcomes
between age groups.

From a broader lifespan developmental perspective, the cur-
rent data support the idea of a nonlinear trajectory of dopami-
nergic function across the lifespan (Cohen et al., 2010; Eppinger
et al., 2012). However, it is possible that factors other than a
decline in dopamine contribute to our results. For instance, it
could be argued that the observed negative learning bias re-
flects a greater focus on accuracy in the elderly (Starns and
Ratcliff, 2010). However, this would imply that older adults

Figure 4. A, Time courses for activity in the vmPFC and vStr (Fig. 3A) for the positive learning condition (�50 and �00
outcomes, left) and the negative learning condition (�50 and �00 outcomes, middle) separately for younger adults (black) and
older adults (gray). Right: Difference in percentage signal change between positive and neutral outcomes (positive learning) and
negative and neutral outcomes (negative learning) separately for younger adults (black) and older adults (gray). B, Time courses
for activity in the SMA/ACC and dlPFC (Fig. 3B) for the positive learning condition (�50 and *00 outcomes, left) and the negative
learning condition (�50 and *00 outcomes, middle) separately for younger adults (black) and older adults (gray). Right: Differ-
ence in percentage signal change between positive and neutral outcomes (positive learning) and negative and neutral outcomes
(negative learning) separately for younger adults (black) and older adults (gray).
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should show enhanced (compensatory)
activity during negative learning to reach
similar performance levels as younger
adults, which does not seem to be the case. It
could also be argued that older adults ap-
proach reward-based learning tasks more
strategically and test hypotheses regarding
the task structure. This may hurt them in a
condition in which the optimal policy is
purely reward driven (Worthy et al., 2011).
As stated above, the data do not support this
idea in terms of enhanced activity during
negative learning in the elderly.

Of course, the current findings have to
be considered cautiously given the small
samples and scarce literature regarding
age-comparative model-based fMRI anal-
yses. Furthermore, valence biases are most
likely context-dependent. Therefore, in a
different experimental context, such as
during retrieval of emotionally salient
events, older adults may (strategically) fo-
cus on positive information (Mather and
Carstensen, 2005). In contrast, in situa-
tions in which negative feedback is impor-
tant for behavioral adjustments, as in the current task, they may
focus on negative outcomes.

Our data also provide support for a second theoretical pro-
posal, namely that reward learning relies on dopaminergic re-
ward prediction errors, whereas negative learning relies, at least
partially, on activity in cognitive control areas such as the dlPFC
and dACC (Hämmerer and Eppinger, 2012). During positive
learning, we found activity in the vmPFC (Fig. 3A). This is con-

sistent with the role of this area in reward valuation (Grabenhorst
and Rolls, 2011). In contrast, for negative learning, we found
activity in cognitive control areas such as the dlPFC, the dACC,
and the inferior parietal lobule (IPL) (Fig. 3B). These findings
support the idea that learning from negative feedback may rely on
structures involved in performance monitoring (Botvinick et al.,
2004). Consistent with this interpretation, we found increased RT
for negative compared with positive learning across groups, indicat-
ing that both groups slow down to avoid negative feedback (Fig. 2B).

Figure 5. A, Significant within-subject correlations (t statistics) between BOLD activity and prediction error estimates for the positive learning condition across age groups. Activations are
significant at p � 0.05, corrected for multiple comparisons. B, Significant within-subject correlations (t statistics) between BOLD activity and prediction error estimates for the negative learning
condition across age groups. Activations are significant at p � 0.05, corrected for multiple comparisons. C, Significant age differences in the correlations between BOLD activity and prediction error
estimates for the positive learning condition in the ventromedial PFC (Talairach coordinates: �7, 42, �1) and vStr (Talairach coordinates: 12, 5, �1; t statistics, significant at p � 0.001, cluster size
�20 voxels).

Figure 6. A, Conjunction analysis for learning conditions. Green: Areas activated in the positive learning condition (contrast:
�50 ��00). Orange: Areas activated in the negative learning condition (contrast: �50 ��00). Red: areas activated in both
learning conditions (conjunction). All activations significant at p � 0.005, cluster size �20 voxels. B, Conjunction analysis for
prediction-error related activity. Green: Areas activated in the positive learning condition (contrast: �50 ��00). Orange: Areas
activated in the negative learning condition (contrast: �50 � �00). Red: Areas activated in both learning conditions (conjunc-
tion). All activations significant at p � 0.005, cluster size �20 voxels.
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Further support for the idea of partially separable neural sys-
tems involved in learning from gains and losses comes from the
model-based fMRI analysis (Fig. 5). This analysis showed positive
correlations between reward prediction error and BOLD activity
in the putamen, dACC, and vmPFC during positive learning. In
contrast, for negative learning, we observed a negative association
between loss prediction error and activity in the putamen and
dACC. Therefore, similar to results from studies on pain condi-
tioning, our findings suggest an inverse coding of reward and loss
prediction errors and point to partially separable systems in-
volved in representing appetitive and aversive prediction errors
(Seymour et al., 2004; Seymour et al., 2005). Moreover, also con-
sistent with findings by Seymour et al. (2005), results of a con-
junction analysis showed that reward and loss prediction errors
correlate (inversely) with activity in the putamen and dACC (Fig.
6). This may indicate that these areas are involved in integrating
information about appetitive and aversive prediction errors.
Therefore, our results provide evidence for a common neural
system involved in prediction error processing, independently of
learning condition, involving the putamen and dorsal ACC (Pes-
siglione et al., 2006; Kim et al., 2006). However, there are also
limbic and paralimbic areas that are uniquely activated during
reward learning, such as the vmPFC (Yacubian et al., 2006; Liu et
al., 2007).

To conclude, the present findings show age-related impair-
ments in reward-based learning, but not in learning from nega-
tive feedback. Across age groups, learning from reward was
associated with greater activity of paralimbic areas such as the
vmPFC. In contrast, during negative learning, we found greater
activity of cortical cognitive control areas, such as the dlPFC,
dACC, and IPL. Consistent with the behavioral results, we ob-
served reduced BOLD activity in the vmPFC in older adults dur-
ing reward-based learning. No age differences were observed
during negative learning. The model-based fMRI results show a
reduced coupling between reward prediction errors and activity
in the vStr and vmPFC in the older adults. No such effect was
observed for loss prediction errors during negative learning.
These age-related changes in reward prediction error activity may
result from a decline of dopaminergic input from the midbrain to
the striatum and vmPFC in older adults. Therefore, the present
findings indicate that reduced dopaminergic prediction error sig-
naling may be one of the mechanisms that underlie age-related
impairments in reward-based learning.
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