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Effects of aging on encoding of walking direction in the human brain 
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A B S T R A C T   

Human aging is characterized by impaired spatial cognition and reductions in the distinctiveness of category- 
specific fMRI activation patterns. Yet, little is known about age-related decline in neural distinctiveness of in-
formation that humans use when navigating spatial environments. Here, we asked whether neural tuning 
functions of walking direction are broadened in older versus younger adults. To test this idea, we developed a 
novel method that allowed us to investigate changes in fMRI-measured pattern similarity while participants 
navigated in different directions in a virtual spatial navigation task. We expected that directional tuning func-
tions would be broader in older adults, and thus activation patterns that reflect neighboring directions would be 
less distinct as compared to non-adjacent directions. Because loss of distinctiveness leads to more confusions 
when information is read out by downstream areas, we analyzed predictions of a decoder trained on directional 
fMRI patterns and asked (1) whether decoder confusions between two directions increase proportionally to their 
angular similarity, (2) and how this effect may differ between age groups. Evidence for tuning-function-like 
signals was found in the retrosplenial complex and early visual cortex, reflecting the primarily visual nature 
of directional information in our task. Significant age differences in tuning width, however, were only found in 
early visual cortex, suggesting that less precise visual information could lead to worse directional signals in older 
adults. At the same time, only directional information encoded in RSC, but not visual cortex, correlated with 
memory on task. These results shed new light on neural mechanisms underlying age-related spatial navigation 
impairments and introduce a novel approach to measure tuning specificity using fMRI.   

1. Introduction 

A central goal of aging research is to understand how aging-related 
neurobiological changes affect computational functions of the brain. 
One important approach has been to investigate how aging changes the 
representation of sensory information in the brain (Voss et al., 2008; 
Carp et al., 2011; Schmolesky et al., 2000), which in turn might affect 
cognitive operations that rely on these representations (Baltes and Lin-
denberger, 1997; Li et al., 2001). A prominent finding in this regard is 
that neural patterns are less specific to the category of sensory infor-
mation in older adults, a phenomenon commonly referred to as neural 
dedifferentiation (e.g. D. C. Park et al., 2004; Koen and Rugg, 2019, for 

recent reviews). Here, we studied age-related neural dedifferentiation in 
the domain of spatial navigation. 

In particular, in this study we asked if aging changes how brain areas 
sensitive to visual and spatial information encode angular walking di-
rection during navigation (Cullen and Taube, 2017; Blair and Sharp, 
1996). In young animals, electrophysiological recordings of visually 
sensitive neurons in primary visual cortex (V1) (De Valois and De Valois, 
1980) and direction-sensitive neurons in the thalamus (Taube et al., 
1990a, 1990b) have revealed that although most neurons have a 
preferred stimulus, they are not firing in an all-or-none fashion. Rather, 
cells tend to fire proportionally to the similarity between the observed 
stimulus and their preferred stimulus, exhibiting response properties 
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that are well approximated by a so-called Gaussian ‘tuning function’ 
centered around the preferred stimulus. Modelling work has also shown 
that a population of cells with those tuning properties will optimally 
encode an approximately Gaussian likelihood function of the stimulus 
given the population response; and suggested that this likelihood func-
tion is read out, or decoded, by downstream populations that compute 
optimal behavior based on sensory input (Jazayeri and Movshon, 2006; 
Averbeck et al., 2006). The focus of the present paper was therefore to 
understand age-related differences in the properties of population-based 
tuning functions that encode directional information, which we here 
broadly define as information used to derive walking direction. 

Understanding age-effects on population-level tuning properties is 
important given the large number of previous investigations that have 
suggested a loss of specificity of neural representations in older animals 
and humans. This originated from reports of fMRI activation patterns in 
inferior temporal cortex losing categorical specificity with increasing 
age, i.e. activity patterns evoked by face-, place- or word-stimuli are 
more similar in older versus younger adults (e.g. D. C. Park et al., 2004; 
Voss et al., 2008; Burianov�a et al., 2013; Carp et al., 2011). Neural 
dedifferentiation has also been linked to memory impairment with older 
age (Zheng et al., 2018; Koen et al., 2019) and related changes to sim-
ilarity of neural representations might play a crucial role in the encoding 
and retrieval of memory content (Koen et al., 2019; Sommer et al., 
2019). Moreover, electrophysiological recordings in V1 of senescent 
Rhesus monkeys have found that tuning curves of visual orientation 
responsive neural populations broaden with age, effectively widening 
the spectrum of orientation angles a single neuron responds to (Leven-
thal et al., 2003; Schmolesky et al., 2000). According to the neural 
broadening hypothesis these changes in firing properties of neural pop-
ulations are a potential mechanism behind neural dedifferentiation, a 
notion which found support in a recent fMRI study (J. Park et al., 2012). 

However, while electrophysiological recordings showed broadening 
within a single, continuous domain (e.g. visual orientation), the fMRI 
evidence is based on increased pattern similarity across distinct domains 
processed in anatomically separate brain areas (e.g., faces vs. houses). 
This is an important difference because the broader tuning functions 
over a continuous domain found in animals likely relate to changes in 
local inhibitory control (Leventhal et al., 2003). The mechanisms un-
derlying cross-category dedifferentiation across areas as found in 
humans, on the other hand, must be non-local and are generally much 
less well understood. Thus, our focus on age-related changes in tuning 
properties of areas sensitive to walking direction, a continuous variable, 
would allow us to build a closer link to animal studies. Moreover, the 
investigation of visual and directional representations that support 
spatial navigation might lead to insights into why age-related memory 
impairments are particularly pronounced in the spatial domain (Moffat, 
2009; Lester et al., 2017), since spatial memory relies on a sense of di-
rection, for instance during path integration (McNaughton et al., 2006; 
Seelig and Jayaraman, 2015). 

We investigated age-related changes in how information underlying 
walking direction is represented in the human brain. As is the case for 
most natural circumstances, walking direction in our task was directly 
related to visual input, and thus visually-independent directional signals 
are difficult to discern from visually-dependent directional signals. 
Therefore, our focus was to understand how any information that could 
be used to determine one’s walking direction was processed in the brain. 
We analyzed fMRI data from a previous study that used a spatial virtual 
reality (VR) navigation paradigm (Schuck et al., 2015). This work has 
shown that the neural underpinnings of different spatial navigation 
strategies are changed, and partly dedifferentiated in older adults (see 
also Schuck et al., 2013). In the present paper we went beyond this work 
by investigating the encoding of walking directional information that is 
involved in any spatial strategy. Our hypotheses were threefold: first, we 
expected that fMRI signals stemming from directionally- and 
visually-tuned neural populations will allow us to decode walking di-
rection above chance (directional and visual similarity were linked in 

the present data, as they are in daily life). Second, the similarity of two 
representations arising from different walking directions should be 
inversely proportional to the angular difference between these di-
rections. Because our focus was on representational structure from the 
perspective of downstream areas which read out population level tuning 
functions (Jazayeri and Movshon, 2006; Averbeck et al., 2006), we 
investigated the probability of a decoder in confusing similar patterns, 
rather than the similarity directly. A tuning function-like signal should 
lead to systematically more confusions between neighboring directions, 
effectively taking the shape of a Gaussian tuning function as seen in the 
analysis of electrophysiological recordings in animals (Mazurek et al., 
2014). Using backwards walking periods and computational analyses of 
input similarity, we also explored to what extent directional signals were 
visually dependent. Finally, our most central hypothesis was that older 
adults should show decreased specificity of walking directional repre-
sentations, which we tested by comparing the width of the fMRI-derived 
tuning functions. 

2. Materials and methods 

2.1. Participants 

This study is a re-analysis of data from 26 younger (21–34) and 22 
older (56–74) male participants, as reported in Schuck et al. (2015). In 
addition to the exclusion criteria used in the original study (insufficient 
task performance, signal loss), we excluded participants with an un-
suitable distribution of walking direction events that resulted in too little 
data for at least one direction to train the classifier (three participants, 
one younger, two older; for details see supplementary material section 
one). Additionally, one younger and one older participant had to be 
excluded due to missing directional information or excessive motion 
during the task, respectively. Therefore, 43 participants (24 younger, 
21–34 years, ¼ 27.87, σage ¼ 4.01 ; 19 older, 56–74 years, ¼ 67, σage ¼

3.93μage ¼ 67; σage ¼ 3:93) entered the analysis. Additional subject 
characteristics can be found in (Schuck et al. (2015)). 

2.2. Virtual reality task 

Participants performed a desktop-based virtual environment (VE) 
spatial memory task while they underwent fMRI. The task was pro-
grammed using UnrealEngine2 Runtime software (Epic, https://www. 
unrealengine.com) and participants were familiarized with all proced-
ures before entering the MRI scanner, for details see Schuck et al. 
(2015). The VE displayed a grass plane surrounded by a circular, 
non-traversable stone wall with a diameter of 180 virtual meters (vm; 1 
vm ¼ 62.5 Unreal Units). Beyond the stone wall distal orientation cues, 
including multiple mountains, clouds, and the sun, were projected at 
infinite distance. Inside the arena a landmark was placed in the form of a 
traffic cone, see Fig. 1. Participants were able to freely move around the 
arena. All movements were controlled using an MR-compatible joystick 
(NAtA Technology, Coquitlam, Canada) and exhibited constant speed. 
Right and left tilts of the joystick led to corresponding rotations of the 
player’s viewing direction. Forward and backward tilts controlled 
walking. Note that due to the experimental setup participants could not 
experience vestibular rotations and navigation therefore had to rely 
mainly on visual input. A full crossing of the environment took 
approximately 15 s. Location and viewing direction of the player were 
recorded every 100 ms. 

Participants were first asked to encode the locations of objects that 
were shown within the arena. Afterwards, the participants’ main task 
was to navigate to the locations of these objects after a cue was displayed 
(see Fig. 1; 5 objects, 6 trials per object, maximum time to relocate an 
object was 120s, for details see Schuck et al., 2015). The analyses pre-
sented in this paper are solely concerned with directional signals inde-
pendent of task condition. Thus, we considered all periods of fMRI 
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recording that involved free navigation in a known environment. 
Encoding and transfer trials mentioned in the original publication were 
excluded since in encoding trials the environment was novel and 
movement was directed by cues and transfer trials involved changes to 
the environment that could potentially lead to direction remapping (e. 
g., Taube et al., 1990b). 

2.3. Image acquisition 

A 3 Tesla Siemens Magnetom Trio (Siemens, Erlangen, Germany) 
research-dedicated MRI scanner was used for MRI data acquisition. An 
MP-RAGE pulse sequence (1�1�1 mm voxels, TR ¼ 2500 ms, TE ¼ 4.77 
ms, TI ¼ 110 ms, acquisition matrix ¼ 256 � 256 � 192, FOV¼256 mm, 
flip angle ¼ 7�, bandwidth ¼ 140 Hz/Px) was used to collect T1- 
weighted structural images before and after the full task. Functional 
data was acquired using a T2*-weighted echo-planar imaging (EPI) 
pulse sequence (3 � 3 � 3 mm voxels, slice thickness ¼ 2.5 mm, distance 
factor ¼ 20%, TR ¼ 2400 ms, TE ¼ 30 ms, image matrix ¼ 72 � 72, FOV 
¼ 216 mm, flip angle ¼ 80�, 43 axial slices, GRAPPA parallel imaging, 
acceleration factor ¼ 2, interleaved acquisition). Slices collected during 
the EPI sequence were rotated to approximately � 30�� 30� relative to 
the anterior-posterior-commisure plane to reduce signal drop-out in 
areas of the MTL. The task was split into two functional runs, each taking 
between ten and 40 min depending on participant performance. 

2.4. Image preprocessing 

All imaging data were preprocessed and analyzed using SPM12. The 
pipeline for each subject consisted of spatial realignment, slice timing 
correction, coregistration to the anatomical scan and segmentation of 
the structural scan. Grey- and white-matter segmented anatomical im-
ages were used to create age-group specific MNI templates using SPM’s 
DARTEL (Ashburner and Friston, 2009) to avoid age effects resulting 
from normalization to a template based on younger adults. Anatomical 
regions of interest (ROIs) were defined in MNI space using the 
Harvard-Oxford Cortical Atlas, Talairach Atlas, and Juelich Histological 
Atlas. Probabilistic atlas masks were thresholded at 50 percent proba-
bility and binarized. Hemishpere-specific ROIs were combined to a 
single bilateral ROI. Afterwards, all ROIs were transformed into the 
participant’s individual functional space using the inverse of the 
participant-specific transformation matrix to the DARTEL template. All 
further analyses were conducted within-subject. 

2.5. fMRI analyses 

Participants could determine their orientation by attending to the 
visually displayed distal orientation cues and tracking their own 

rotation. The analysis was therefore focused on the following set of ROIs 
that had previously been related to (head) directional signals or visual 
processing: the retrosplenial complex (RSC, combination of Brodmann 
area 29 and 30), the subiculum, a joint hippocampus and entorhinal 
cortex ROI, the thalamus (Taube, 2007; Shine et al., 2016), and the early 
visual cortex (EVC), given by a mask of the primary visual cortex (V1). 
Although joystick movements resulted in relative direction changes 
which were independent of the travelled direction (a left tilt resulted in a 
left rotation relative to the direction before joystick movement), a ROI of 
the primary motor cortex (M1) was used to capture potentially spurious, 
motion-related effects on decoding and served as a baseline. Using a 
control ROI as our baseline also avoids issues inherent to performing 
population inference based on t-tests of decoding results against a nu-
merical baseline (Allefeld et al., 2016). 

2.5.1. Univariate estimation of directional fMRI signals 
Participants’ behavior was characterized by their walking direction. 

Walking direction could be derived from the angle of the vector con-
necting consecutively logged locations in the VE. Continuous navigation 
of each participant was segmented into separate periods (events) during 
which walking direction stayed within one of six, discrete, 60� bins for 
longer than 1 s. Stopping continuous movement or shifting walking di-
rection beyond the border of a bin marked the end of an event. Viewing 
direction of the player was logged directly by the task program and 
matched the walking direction during forward walking. Backward 
walking periods were identified by marking periods during which 
viewing and walking direction differed by 180� (�20�)). These events 
were excluded from the main analysis and considered separately (see 
below). The resulting direction events were then used to construct 
general linear models (GLMs) for univariate estimation of direction 
specific fMRI activation signals. 

Since successive directions might be auto-correlated during free 
navigation (participants change more often from 30� to 60� than to 
180�, etc.), performing a GLM on temporally auto-correlated fMRI sig-
nals can result in biased pattern similarities (Cai et al., 2019). This effect 
can lead to spurious similarities between neural patterns of similar 
walking directions. We reduced this estimation bias by temporally and 
directionally separating adjacent events on the analysis level. Specif-
ically, we separated odd and even numbered forward walking events 
and modelled them in two distinct GLMs. This separation of odd and 
even events ensured that events within the same GLM were separated by 
at least the minimal duration of another event (1 s) and resulted in an 
average of 5.1 TRs between two events, which corresponds to 12.25 s 
(SD ¼ 9.68 s). Such temporal separation exponentially reduced noise 
correlations between events, as can be illustrated by considering a 1-step 
autoregressive model of the form 

Fig. 1. Trial structure of the VR task during feedback trials. After an object was cued it had to be placed at the remembered location. After replacing the object 
feedback was presented in the form of the true object location where it had to be picked up to start the next trial. Maximum time window for replacing and collecting 
was 120 s. Free movement during all parts of the feedback trials were used for further analysis. Figure adapted from Schuck et al. (2015). 
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Xt∝ϕ1Xt� 1; (1)  

whereby ϕ1, known as the AR(1) coefficient, expresses the relation be-
tween the signal X at time t and the same signal during the previous 
measurement time-point t � 1 (constant and error terms are left out for 
simplicity). The relation between the signal two time steps apart can be 
found by substituting Xt� 1 in Eqn. (1) by its own auto-regression model, 
Xt� 1∝ϕ1Xt� 2, and is thus described by Xt∝ϕ2

1Xt� 2. The now quadratic AR 
(1) term shows that the autocorrelation between the two measurements 
drops exponentially as a function of the number of ‘time steps’ between 
the measurements, i.e. the AR(1) coefficient of the signal recorded p time 
steps apart is an exponential function of the AR(1) coefficient ϕ1 

ϕp¼ϕp
1: (2) 

The value of ϕp comprises a signal component (similarity of direc-
tional representations) and a noise component (effects of previous noise 
components on following ones, e.g. caused by the slow nature of the 
hemodynamic response function). It therefore presents an upper bound of 
noise autocorrelation between consecutive events as some of the cor-
relation might be due to similarities in directional representations. 
While the average AR(1) coefficient was 0.361 in RSC and 0.442 in EVC, 
the correlations induced by temporal proximity between events in our 
GLMs were reduced to only 0.033 (SD ¼ 0.046) and 0.063 (SD ¼ 0.072) 
respectively. Note that these are average values over more detailed 
analyses which also revealed higher auto correlation in EVC for younger 
adults (for details see supplementary material section two). In addition 
to reducing temporal noise correlations, the separation of neighboring 
directions into more distant events ensured that temporally adjacent 

events mostly did not reflect neighboring directions, also reducing cor-
relations among regressors (for details see supplementary material sec-
tion three). 

Directional GLM regressors were built to model data in each half run. 
Because the experiment contained two runs, events were split in four 
equal sets for each of the directions. This resulted in 24 direction re-
gressors in total that were later used to perform cross-validated decod-
ing. Direction regressors reflected onsets and duration of events as 
described above. The average event duration was 3.05 s (SD ¼ 2.12 s). 
On average there were 114.98 events per subject (SD ¼ 27.70). In 
addition, six run-specific motion and two run-wise intercept regressors 
were included, resulting in 38 regressors per GLM. 

For an overview of the analysis pipeline see Fig. 2. 

2.5.2. Classification of directional fMRI patterns 
For all classification analyses, a multi-class linear support vector 

machine was trained on data from three folds and used to predict di-
rections in the hold-out fold. Decoder training/testing was conducted 
using sciKit-learn (version 0.19.1, Pedregosa et al., 2011), nibabel 
version 2.3.0, available at https://github.com/nipy/nibabel; Brett et al. 
(2018), and nilearn version 0.4.1, available at https://github.com/ 
nilearn; Abraham et al. (2014) packages in Python 3.6 (Python Soft-
ware Foundation, version 3.6, available at http://www.python.org). 
Default settings (L2 penalty, penalty parameter C ¼ 1, one-vs-rest mul-
ti-class strategy) and a maximum of 105 iterations were used for clas-
sifier training. 

Our main classification analyses were performed on direction-related 
beta maps and conducted separately for each GLM and ROI. Cross 

Fig. 2. Schematic of analysis procedure. A: Individual navigation patterns during fMRI recording were separated into events corresponding to six possible angular 
walking directions. B: Odd (black) and even (blue) numbered events were analyzed identically but as separate data sets to minimize confounds. C: Events entered a 
GLM yielding beta maps as representations of each walking direction in a four-fold structure. D: A classifier was trained on three of the four folds and predicted the 
walking direction for each beta map in the left out fold (exemplary numbers). E: Differences between predicted and true walking directions gave a direction invariant 
Confusion Matrix (CM). Confusion matrices were pooled over both data sets and normalized. F: Hypotheses concerning the predictive pattern of the classifier were 
tested by fitting two models: A uniform model assuming all false predictions are equally likely (H0; red) and a Gaussian model assuming errors to be less likely the 
more they diverge from the correct walking direction (H1; green). The Gaussian pattern should arise if the similarity of beta maps is a function of their angular 
difference, a prediction of a tuning function-like signal. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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validated decoding results obtained from odd and even GLMs were 
averaged afterwards. In addition to testing the classifier on beta maps, 
we also applied it directly to data from single events. For each individual 
event, we calculated the precise average direction. This allowed us to 
relate classifier predictions to higher resolved direction labels of 10� per 
bin. Furthermore, the classifier was applied to backwards walking 
events. Because visual and walking direction diverged during backwards 
walking, this allowed us to quantify the influence of the visual scene on 
classification accuracy in different ROIs. 

To test if classification accuracies exceeded chance level, accuracy 
levels in each ROI were compared to results from a permutation test 
(distribution of 1000 classification accuracies arising from training with 
randomly permuted labels) and to classification accuracy obtained in 
primary motor cortex (M1), using one-sided paired t-tests. P-values were 
Bonferroni-corrected for multiple comparisons across ROIs. 

2.5.3. Influence of directional similarity on representational overlap of 
fMRI 

To test whether fMRI patterns that reflect similar walking directions 
are more overlapping than patterns associated with less similar walking 
directions, we analyzed the confusion matrix of the fMRI decoder. The 
confusion matrix reflects how often each category was decoded given a 
neural representation associated with each single category, e.g. how 
often did the classifier predict 120� although the walking direction was 
actually 60�, etc. In a first step, we aligned the average proportions of 
classifier predictions around the true direction, and derived an average 
distribution of predictions around the true category, i.e. at � 120�, � 60�, 
0�, þ60�, þ120� and �180�, relative to the target (averaged over folds 
and odd/even GLMs). This offered a confusion function, reflecting rep-
resentation similarity/confusibility between two categories as a function 
of their angular difference (see Fig. 2). We then quantified whether the 
confusion function reflected a tuning function by fitting a Gaussian bell 
curve to the data that peaks at the target direction, as done in electro-
physiological animal research (Mazurek et al., 2014). The Gaussian 
curve is described by 

gðxÞ¼
1
Z

e�
1
2 τx2

; (3)  

where x is a given direction relative to the target, τ reflects the precision 
of the Gaussian (1=σ2), and Z ensures normalization. This model had 
only one free parameter, the precision τ that reflects the width of the 
tuning function. Note that the precision of the Gaussian bell curve rep-
resents the inverse of its variance. While both of these quantities are 
directly transformable into each other, we chose to use the precision due 
to its behavior for potentially wide curves where it approaches zero 
rather than infinity. We compared this model to a null model that 
assumed evenly distributed off-target predictions independent of di-
rection. According to this model, off-target predictions should be 
described by 

uðx:0Þ¼
100 � a

5
; (4)  

which uniformly distributes the percentage remaining after subtraction 
of the value at the target direction, a, a free parameter. 

Both models thus had only one free parameter and were compared 
based on the sum of squared errors (SSE) between the model predictions 
and the confusion function. Decoding at the correct category (the center 
of the confusion function) was excluded from the curve fit analysis in 
order to make the tuning function analysis independent from overall 
decoding accuracy and avoid a bias towards the uniform model, where 
model prediction at the center is always matched to the data via the free 
parameter a. For each ROI, participants’ SSE differences between both 
models were entered into a one-sided t-test to test for a better fit of the 
Gaussian vs uniform model. We also derived a tuning function from the 
classifier predictions when applied to single forward or backward events 

by quantifying how often each of the 60� labels from the training set was 
predicted for each of the 10� bins in the test set. 

We then compared the fitted precision parameters between age 
groups and ROIs, testing our hypothesis that directional information is 
encoded with higher precision in younger compared to older adults 
(one-sided t-test). Since the precision parameter was non-normally 
distributed for some cases, tests for group comparisons were chosen 
accordingly. 

2.5.4. Effects of ROI and Age group on classification 
To evaluate differences and interactions between ROIs and age 

groups, we used a model comparison between nested linear-mixed ef-
fects (LME) models. All models included a random intercept per 
participant. Fixed effects were entered in a stepwise inclusion approach: 
Model 1 included fixed effects of the intercept and the ROI, Model 2 
included fixed effects of intercept, ROI and age group, and Model 3 
included an additional interaction between ROI and age group. The 
three models were compared using a likelihood ratio test and followed 
up by post-hoc t-tests. 

Using GLM derived beta maps for classification ensured fully 
balanced training sets. Yet, imbalances could still exist on the level of 
events from which regressors were constructed. To check for potential 
group differences in the number of direction events, a ’class balance 
score’ was calculated that reflected the deviation of the event distribu-
tion from uniform (root mean squared error between the measured 
relative number of events belonging to each class and the corresponding 
uniform distribution). The number of events and balance score of each 
fold and subject entered a set of nested LME models similar to the ones 
described above. The models included intercept and age-group (Model 
1). No differences between age groups in balance score were found 
(χ2(1) � .745, p � .388χ2ð1Þ � :745, p � :388). Likewise, no difference 
between age groups in number of events were found (χ2(1) � .150, p �
.698χ2ð1Þ � :150, p � :698). 

2.5.5. Differentiation of viewing and walking direction 
The classifier was trained on forward walking events, during which 

viewing and walking direction were identical. During backwards 
walking, however, viewing and walking directions are opposed (180�

shifted). Thus, the more a classifier depends on visual information, the 
more it will predict 180� shifted directions during backward walking. 
We therefore quantified the influence of visual information on decoding 
accuracy, as well as on the shape of the confusion function, by 
comparing classifier predictions for forward versus backwards walking 
events. Backwards walking events on average made up 26.8% (SD ¼
13.4%) of all events. Note that in both cases the classifier was trained on 
forward direction beta maps so the amount of backwards walking events 
did not influence the classifier’s predictions. Visual influence on direc-
tion signals was measured by calculating the relative differences in 
predictions at the target (0�) and opposed (180�) directions between the 
backward and the forward test set. Additionally, we asked whether the 
influence of visual information was different in younger and older 
adults. This would hint towards a broader form of dedifferentiation 
compared to changes in the similarity structure of neural responses to a 
continuous stimulus. In each ROI, visual influence scores of both age 
groups were therefore compared using a Welch two sample t-test. 

Finally, in a descriptive analysis we assessed how strongly the clas-
sifier confusions between different direction bins are related to the 
similarity of the visual scene associated with each bin. To this end, the 
360� visual scene present during the experiment was captured by 72 
partly overlapping screenshots (5� increments). Visual similarity be-
tween all 72 screenshots was determined using an HMAX model (Rie-
senhuber and Poggio, 1999; Serre and Riesenhuber, 2004), a 
biologically plausible computational model of the ventral visual stream 
(C1 layer, scale band of 5). Analogous to the classifier’s confusion 
function, for each 5� increment a similarity function was created 
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consisting of the similarity between a screenshot and the screenshots 
shifted by � 120�, � 60�, 0�, þ60�, þ120�, and �180�. A similarity 
function for each of the six directional bins was given by averaging all 
5�5� increment similarity functions centered within the same directional 
bin (e.g. 0� to 60�). Classifier confusion functions for each directional 
bin were derived for each age group by pooling and standardizing par-
ticipants’ confusion matrices for each classifier category within an age 
group. To avoid artificially high correlations between the similarity and 
confusion function of a directional bin, the average respective function 
over the other five direction bins (reflecting shared any general structure 
such as a peak at the center) was subtracted from the HMAX-derived and 
the decoded confusion functions. The resulting similarity and confusion 
functions of each direction bin were correlated and the resulting six 
correlation coefficients averaged within each age group. 

2.6. Univariate fMRI analysis 

In order to compare our results to an univariate approach we used 
the same six directional regressors as in the main analysis to run 
participant-specific first level GLMs. Estimated beta maps were entered 
into six, direction-specific t-contrasts (one for each 60� bin) as well as 
one direction-general F-constrast across all six directions. The resulting 
six t-contrast images were entered into a second-level GLM following a 
full factorial two-factor design with the factors age group (two levels) 
and direction (six levels). The applied contrasts investigated main effects 
of both factors and their interaction. In contrast to the multivariate 
analysis, the data was not split into odd and even directional events 

before entering a first level GLM. Additionally, all functional data was 
smoothed with an 8 mm kernel, normalized, and transformed into MNI 
space in order to conduct analyses across participants. 

2.7. Behavioral analysis 

A detailed analysis of the behavioral results can be found in Schuck 
et al. (2015). Briefly, location memory was quantified as the Euclidean 
distance between the remembered and true location during the feedback 
phase (distance score). Our analyses in the present paper focused on the 
relation between the Euclidean distance and measures for neural spec-
ificity. We therefore used Euclidean distance as the dependent variable 
in two linear models which contained the factors Age and one ROI 
specific measures of neural specificity (either decoding accuracy or 
Gaussian precision). All variables were z-scored before entering the 
linear model and analyses were conducted in R (version 3.6.1, R 
Development Core Team, 2011). 

3. Results 

3.1. Classification of walking direction 

Classification accuracies for each ROI can be found in Fig. 3. One- 
sided permutation tests (104 iterations) indicated above-chance classi-
fication accuracy in the EVC, RSC, and Subiculum (all padj.�.006) but 
none of the other ROIs (padj. � .054). Only decoding accuracy in the RSC- 
and EVC masks, however, exceeded classification level in M1 (both t(42) 

Fig. 3. Decoder performance. A: Classifica-
tion accuracy in each ROI (colored di-
amonds) compared to distribution arising 
from 104 decoder runs with permuted labels 
(white violin plots, single values as black 
dots). Chance-level performance shown by 
grey line. ROIs above dashed line show sig-
nificant above-chance accuracy measured by 
one-sided permutation tests and adjusted for 
multiple comparisons. B: Classification ac-
curacies across investigated ROIs compared 
to M1. Single participant values shown as 
dots. Group means shown by color matching 
diamond. ROIs with significantly higher 
classification accuracies compared to M1 
shown above dashed line. (For interpretation 
of the references to color in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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< 2.58, padj. � .033tð42Þ < 2:58padj: � :033). While EVC classification 
can be expected to be based on visual signals, MRI sensitivity to direc-
tional signals in RSC is in line with other investigations (Shine et al., 
2016). We therefore proceeded with only these two ROIs for which we 
had clear evidence we could measure directional signals in the present 
data set. 

Decoding accuracy tended to be higher in younger adults indicated 
by an increased model fit from including age group (χ2(1) ¼ 10.90, 
p<.001) and was also higher in EVC than RSC (post-hoc t-test, t(41) ¼
� 8.72, padj. < .001tð41Þ ¼ � 8:72padj: < :001). The interaction be-
tween ROI and age did not reach significance (χ2(1) ¼ 2.31, p ¼ .072), 
indicating that differences of age effects between ROIs were not reliable 
(t-tests young vs. old: EVC t(75) ¼ � 3.66, padj. < .001; RSC t(75) ¼
� 1.86, padj. ¼ .066). 

3.2. Tuning function like representations of direction 

To test differences in similarity structure of directional representa-
tions, we fitted a Gaussian and a uniform model to the classifier 
confusion patterns, as described above. A paired t-test of model SSEs 
across groups revealed that the Gaussian curve fitted the classifier 
confusions better than the opposing uniform model in both the RSC and 
EVC (all t(42) > 3.75, padj. < .001). Unlike decoding, tuning function fit 
exhibited a significant Age � ROI interaction (χ2(1) ¼ 4.30, p ¼ .038). 
This reflects the fact that the Gaussian model fitted the data better in 
EVC compared to RSC in younger but not in older adults (post hoc tests: t 
(42) ¼ � 4.07, padj. < .001 and t(42) ¼ � .84, padj. ¼ .812, respectively). 

SSE comparisons can be found in Fig. 4. 

3.3. Differences in tuning width between age groups 

Next, we investigated whether Gaussian precision differed between 
younger and older adults in either RSC or EVC. Because normality was 
violated in at least one case (EVC precision in younger adults was non- 
normally distributed, Kolmogorov-Smirnov test, D ¼ .515, p < .001), we 
used non-parametric Wilcoxon rank sum tests for these analyses. In EVC, 
this test indicated significantly higher precision in younger compared to 
older adults (W ¼ 138.5, padj. ¼ .029, one-sided). In the RSC, no such 
effect was found (t(40.98) ¼ -0.10, padj. ¼ .917, Welch two sample t-test, 
one-sided). ROI-wise comparisons of precision and averaged confusion 
matrices in EVC for both age groups are shown in Fig. 5. 

To achieve higher resolution regarding the similarity of directional 
signals, and better support for our fitted models, we repeated the above 
analyses with classifier results when applied to the single event test set. 
Results of all analyses are shown in Fig. 6. As expected, during forward 
walking events decoding accuracy was higher than in a permutation test 
in RSC as well as EVC (all padj.<.001; see Fig. 6A). Average high- 
resolution confusion functions can be found in Fig. 6B. Applying the 
Gaussian and uniform models to the confusion functions indicated 
Gaussian like pattern similarites as expected in the RSC and EVC (t(42) �
� 5.82, padj. � .001, paired t-tests of SSEs associated with each model; see 
Fig. 6C). Similar to the classifier tested on beta maps, age-group dif-
ferences in precision of the fitted Gaussians only showed a higher pre-
cision in younger adults compared to older adults in the EVC (t(29.95) �

Fig. 4. Quantification of tuning function-like signal A: Comparison between models fitted to confusion functions of RSC and EVC decoder. Depicted are within 
participant changes in SSE between models (violin plots as in Fig. 3). Individual participant values for both models are connected by grey lines. Top lines with stars 
indicate significantly better fit of Gaussian model (within subject t-tests, one-sided, adjusted). B: Difference in model evidence when comparing RSC and EVC for both 
age groups. Evidence for Gaussian model is given by SSEUniform � SSEGaussian, so values above 0 indicate a better fit of the Gaussian model. Top line with star indicates 
significant differences in a post-hoc t-test after correction for multiple comparisons. C: Depiction of confusion functions of RSC and EVC decoder. Participant specific 
confusion functions shown as thin lines. Thick line shows mean confusion function over all participants. 
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� 3.47, padj. ¼ .001) but not in the RSC (t(35.82) ¼ � .63, padj. ¼ .531, two 
sample t-tests, assumption of normality not violated; see Fig. 6D). 

3.4. Influence of visual scene processing on decoding accuracy 

Backwards walking events in the test set allowed us to investigate the 
influence of viewing direction on classification accuracy in each of the 
ROIs, since walking and viewing direction are opposite to each other. 
Visual influence on the directional signal was quantified as a decrease in 
(correct) predictions of walking direction combined with a simultaneous 
increase in 180� shifted predictions (in line with viewing direction) for 
backward relative to forward walking events. This measure of visual 
influence was then compared between ROIs. 

A comparison of visual influence scores can be seen in Fig. 7A. Visual 
influence scores were significantly different from 0 (zero would indicate 
the complete detachment from the visual scene) in both, the RSC (t(42) 
¼ 2.53, p ¼ .015), and the EVC (t(42) ¼ 13.84, p < .001). A paired t-test 
showed a significant difference of visual influence between the EVC and 
the RSC ROI with lower visual influence in the RSC (t(42) ¼ � 7.15, p ¼
.001), indicating qualitative differences in the nature of the decoded 
representations in RSC versus EVC. 

We next asked whether the influence of visual information was 
different in younger and older adults, hinting at a broader form of 

dedifferentiation. Visual influence scores were lower in older adults 
compared to younger adults in EVC (t(33.28) ¼ � 3.95, padj.<.001) but 
not RSC (t(37.51) ¼ � .345, padj. > .999). See Fig. 7B for an age group 
comparison of visual influence scores. Confusion functions of the 
decoder trained on forward walking and tested on backward walking are 
shown in Fig. 7C. 

To check if any genuine direction information could still be encoded 
despite contradicting visual signals, we tested classification accuracy 
during backwards walking events against chance (permutation test) 
separately in the EVC (0.139, SD ¼ .040) and RSC (0.151, SD ¼ .034). In 
both cases accuracy was in fact significantly below chance (0.167, 
p � :003), reflecting the strong effect of visual input that lead to sys-
tematic confusions. 

Finally, we quantified the extent to which classifier confusions were 
related to characteristics of the visual scene. To this end, we calculated 
the average correlation between the bin-specific confusion functions and 
the similarity of the visual scenes associated with each bin, separately 
for each age group. As expected, the correspondence between visual 
scene similarity and the decoder confusions was generally higher in the 
EVC compared to the RSC (see Fig. 7D). Interestingly, the correspon-
dence between EVC decoder confusions and visual scene similarity was 
stronger in younger than in older adults, in line with the decoder per-
formance during backwards walking (see Fig. 7B). The opposite was the 
case for the RSC where decoder confusions of older adults were stronger 
related to characteristics of the visual scene. This means that in effect 
EVC and RSC decoder confusions were both influenced by visual scene 
similarity in older adults, while in younger adults the informational 
nature of these two areas was more distinct. 

3.5. Univariate fMRI analysis 

A significant main effect of direction (p ¼ .001, extent threshold 68 
voxels) could be detected in two clusters, one in the visual cortex (peak 
at x ¼ 6, y ¼ � 76, z ¼ 2, cluster extent: 2417 voxel, Z ¼ ∞) and one in 
the left parietal cortex (peak at x ¼ � 42, y ¼ � 52, z ¼ 41, cluster extent: 
68 voxel, Z ¼ 3.75). The age group � direction interaction contrast 
revealed three significant clusters (p ¼ .001, extent threshold 53 voxels). 
These included the RSC (peak at x ¼ 0, y ¼ � 52, z ¼ 29, cluster extent: 
436 voxel, Z ¼ 5.13), the left angular gyrus (peak at x ¼ � 48, y ¼ � 61, z 
¼ 29, cluster extent: 324 voxel, Z ¼ 5.17), and the right angular gyrus 
(peak at x ¼ 51, y ¼ � 52, z ¼ 23, cluster extent: 52 voxel, Z ¼ 4.09) 
indicating differences in the influence of walking direction on voxels 
between both age groups. No significant main effect of age group was 
revealed by the respective contrast. 

To gather additional information about the nature of the interaction 
in the RSC mask, voxel-specific F-scores from the first level, direction- 
specific F-contrast for each participant were transformed into adjusted 
R2 values and entered into a Welch two sample t-test for differences 
between age groups. This revealed no significant differences between 
adjusted R2 values (t(36.30) ¼ 1.78, p ¼ .083). 

3.6. Behavioral results 

The group comparison showed that older adults had significantly 
worse performance (showed larger distance errors) compared to 
younger adults (t(26.91) ¼ 12.27, p < .001tð26:91Þ ¼ 12:27; p < :001, 
two-sided Welch two sample t-test). Furthermore, we explored relations 
between task performance and measures for neural specificity in each 
ROI, predicting distance scores by age group and either decoding ac-
curacy or Gaussian precision. Both measures of neural specificity 
stemming from a decoder trained and tested on directional beta maps. 
Predicting distance scores using the predictors age group and decoding 
accuracy in the RSC showed a negative relation with distance score in-
dependent of the age group, indicating worse task performance with less 
decoding accuracy (r ¼ � .172, p ¼ .015, ryounger ¼ � .542, rolder ¼ � .279). 
Other linear models did not show any relation between distance score 

Fig. 5. Tuning width of confusion function A: Group comparison of precision of 
Gaussian model fit to confusion function for RSC and EVC, plots as in Fig. 3. Top 
line with star indicates significantly higher precision in younger adults (one- 
sided t-test, adjusted). One high precision outlier (young participant) is not 
displayed in the EVC plot. B: Visualization of averaged best fitting Gaussian 
models of confusion functions for both age groups. Dotted lines and shaded area 
indicate standard error of the mean. Models were normalized to represent the 
percentage classified at the six measurement points of the confusion function. 
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and measures of neural specificity that was independent of the age 
group. Relations between either decoding accuracy or Gaussian preci-
sion and distance score are shown in Fig. 8A and B., respectively. The 
normality assumption of the investigated bahavioral variable distance 
score was not violated in either group, as indicated by a Kolmogoroff- 
Smirnoff-Test (D > .142, p > .664). 

4. Conclusions 

In this study we used fMRI to investigate age-related changes in the 
specificity of walking direction-sensitive neural signals. More specif-
ically, we asked a set of three hierarchically structured questions: 
whether it is possible to decode angular walking direction during free 
movement, if the similarity of neural patterns associated with these di-
rections declines gradually with larger angular differences, as predicted 
by directional tuning functions, and whether older adults show broad-
ened directional representations. 

Using a VR paradigm in which walking direction was mostly 
informed by visual cues, our results revealed that directional informa-
tion could be decoded from fMRI patterns in the RSC and EVC, in line 
with previous investigations (Shine et al., 2016). Classical MVPA ana-
lyses revealed age differences in decoding accuracy. Going beyond mere 
accuracy, we introduced a novel method that allowed us to characterize 
tuning function-like signals during decoder readout, while minimizing 

effects of autocorrelations. This analysis demonstrated that, indepen-
dent of overall classification accuracy, decoder confusions in both ROIs 
were approximated best by a Gaussian tuning function – indicating a 
gradual decline of pattern similarity and following the predictions of a 
tuning-function like signal as found in animal research. Analyzing the 
width of the fMRI-level tuning function indicated broadened tuning of 
visual representations in EVC in older relative to younger adults. Un-
expectedly, however, no evidence for age differences in tuning width 
was found in RSC. The changes in visual cortex provide evidence for 
neural dedifferentiation when specified in terms of broadening of tuning 
functions, as previously observed in animal studies and suggested by the 
neural broadening hypothesis (J. Park et al., 2012). Analyses for single 
trial events confirmed our results and showed that the Gaussian simi-
larity structure persisted when directional signals were resolved at 10�
instead of 60�. As walking direction is inextricably linked to a specific 
visual scene we also quantified the impact of visual information on 
walking direction decoding by using two different analyses. One focused 
on analyzing backwards walking events and found that, as expected, 
RSC signals were less contingent on the visual scene present than EVC, 
but still exhibited sensitivity to the shown visual input. Interestingly, 
sensitivity to visual input of EVC decoding during backward walking 
was less pronounced in older adults. This result was also supported by 
analyzing classifier predictions during forward walking. Quantifying the 
visual similarity between scenes displayed when walking in different 

Fig. 6. Analysis of decoders tested on single events. A: Classification accuracies of EVC and RSC decoders when tested on single events instead of beta maps. 
Depiction as in Fig. 3B. Top lines with stars indicate significant above-chance classification accuracy given by a permutation test (104 permutations, one-sided, 
adjusted). B: High resolution confusion functions of RSC and EVC decoder with a bin-width of 10�. Depicted as in Fig. 4C. C: Comparison between models fitted 
to high resolution confusion functions of RSC and EVC decoder. Depicted as in Fig. 4A. Top lines with stars indicate significantly better fit of Gaussian model (paired 
t-test, one-sided, adjusted). D: Group comparison of precision of Gaussian model fit to high resolution confusion function for RSC and EVC. Plots displayed as in 
Fig. 5A. Top line with star indicates significantly higher precision in younger adults (one-sided t-test, adjusted). 
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directions showed that the EVC decoding in younger adults had 
numerically stronger relations to these visual aspects than in older 
adults. The reverse was true in RSC, where decoder confusions seemed 
more related to visual input in older than in younger adults. Finally, a 
univariate fMRI analysis showed that EVC but not the RSC activity was 
modulated by the current walking direction, presumably reflecting dif-
ferences in visual input that existed between different directions (main 
effect of direction). The fact that univariate analyses did not indicate 
directional modulation of RSC signals highlighted the superior ability of 
the multivariate approach in finding voxels carrying directional infor-
mation. A age group � direction interaction in the RSC revealed age 
differences in direction-specific responses in the RSC (i.e. which di-
rections they showed more or less activation for). 

To the best of our knowledge, this is the first study to investigate 
potential age-related changes in tuning functions defined over a 
continuous domain, rather than using discrete categories (J. Park et al., 
2012; Koen et al., 2019). This is a notable distinction from previous 
research since mechanisms of age-related changes are likely different in 
these two cases: dedifferentiated responses within local circuits, which 
code the same continuous quantity, are related to changes in local 
inhibitory control, such as GABAergic interneurons (Leventhal et al., 
2003); cross-areal dedifferentiation conceivably reflects a range of 
different mechanisms, including changes in long range connectivity or 
task strategies (Reuter-Lorenz and Lustig, 2005; Reuter-Lorenz and 
Cappell, 2008). Moreover, investigating continuous encoding of direc-
tion allowed us to test the claims made by the neural broadening hy-
pothesis more directly: does a tuning function defined over continuous 
space change with age? Our findings in EVC converge with previous 
findings, but the apparent lack of evidence for a similar process in the 
RSC represents a notable deviation from previous findings and warrants 

further investigation. 
While it is likely that the measured signal in the RSC or thalamus 

contains directional information influenced by head direction cells 
(Shine et al., 2016), effects in the EVC are likely to be based on visual 
inputs drawn from a continuous visual scene. Note, however, that nav-
igation in our task, as in daily live, was largely based on visual input. 
Hence, even genuine direction signals must have been derived from 
visual input. This aspect was reflected in the fact that even RSC signals 
were somewhat sensitive to the opposing visual input during backward 
walking. Our results suggesting neural broadening in the early visual 
system converge with findings in single cell recordings demonstrating 
wider tuning functions in senescent monkeys confronted with a visual 
stimulus of various orientations (Leventhal et al., 2003). Because visual 
orientation signalling occurs earlier in the visual hierarchy than scene 
detection, it is possible that this process drives the present findings in 
EVC and suggests that the introduced method to investigate neural 
broadening might be sensitive to tuning curve related changes. 

While not necessarily exclusive, there are other possible explanations 
for the findings in the early visual cortex. One includes altered periph-
eral processing of visual information of older adults. Although partici-
pants were only included in case they reported normal or corrected to 
normal vision, differences in neural specificity and directional tuning 
could be due to differences in the perceptual system (e.g. more blurry 
vision in older adults). This could impede the specificity of representa-
tions in the early visual cortex from the bottom up without any age- 
related differences in the responsible neural systems. Also behavioral 
differences related to perception, e.g. differences in saccadic eye 
movements are possible factors to consider in this regard. Note, how-
ever, that univariate analyses of the same dataset from our earlier work 
did not indicate age differences in basic visual processing (see Schuck 

Fig. 7. Influence of visual scene on direction predic-
tion for RSC and EVC. A: Comparison of visual influ-
ence score of RSC and EVC decoder. Plots as in Fig. 3. 
Higher values above zero indicate a stronger tendency 
to predict the viewing direction while walking back-
wards. Dashed line indicates no visual influence. Top 
line with star shows a significant difference in visual 
influence score between ROIs. B: Comparison of vi-
sual influence score between younger and older age 
group in each ROI. Solid line with star indicates sig-
nificant comparison. C: Individual (thin lines) and 
average (heavy line) confusion function for RSC and 
EVC decoders tested on backwards walking events 
where walking and viewing direction are opposite to 
each other (180� divergence, indicated by labeled 
arrows). Functions peaking at 180� correspond to 
high visual influence. D: Average correlation between 
RSC and EVC decoder confusions for each bin and the 
visual similarity of the associated visual scene.   
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et al., 2015, supplementary material, 3. fMRI Results). While this 
question cannot be answered conclusively with the present study, the 
consequences for downstream areas trying to read out from the visual 
cortex will be identical: less precise representations. To see if our find-
ings are specific to the investigated domains, the method should, how-
ever, also be applied to other continuous variables, e.g. the perception of 
motion and spatial frequency (Liang et al., 2010; Yang et al. 2008). 

The observed relationship between a less specific directional signal 
in the RSC and larger errors in the placement of objects to memorized 
locations suggests that neural dedifferentiation might play a role in 
spatial memory performance. Since there was no group difference in 
classification accuracy in the RSC, it remains unclear if this process is 
connected specifically to the aging brain or rather describes a process 
which is happening throughout the adult lifespan (Rugg, 2016). This 
idea was also supported by a study by Koen et al., 2019 where the 
connection between neural dedifferentiation and memory performance 
was also age invariant. 

The reason why no evidence for neural broadening and/or age- 
differences in directional signal specificity could be found in areas 
associated with a less visually dominated signal remains unclear. 
Notably, in light of large performance differences in the same sample, 
this suggests an interesting disconnect between behavioral performance 
in the task we used and directional coding in the RSC. One possible 
explanation for the absence of neural broadening could be that during 
the VR task in the fMRI scanner no matching vestibular information is 
provided to the participant. The vestibular system has been identified as 

a possible source of internal noise during the process of path integration 
(Stangl et al., 2018), a skill heavily relying on HD signal (McNaughton 
et al., 2006) and heavily influenced by older age (Adamo et al., 2012). 
As this error source is eliminated by lying motionless during the task, 
age-differences might diminish. Furthermore, the resulting finding 
could have been limited by the resolution of directional categories. 
Smaller bins of directions when training the decoder would increase the 
resolution and accuracy of the investigated confusion functions. In order 
to exclude the possibility of neural broadening of directional signals in 
the human brain a similar approach with a more specialized paradigm 
should be conducted. It should, however, also be mentioned that, to the 
best of our knowledge, currently no evidence exists that directionally 
tuned cells are subject to neural broadening. Moreover, decoder pre-
dictions in younger adults were more strongly related to the visual input 
in the EVC compared to the RSC, while in older adults visual input had a 
similar influence in both ROIs. One possible interpretation of this 
finding is that with older age, the walking direction signal in the RSC 
becomes more strongly influenced by visual input. In this particular 
task, such a less differentiated signal in the RSC might prove useful due 
to the inherent link between viewing and walking directions. This could 
also explain why we did not find any broadening of tuning functions in 
RSC with increased age. Moreover, the finding that different directions 
evoked high univariate RSC activity in older versus younger adults was 
another hint that relatively maintained RSC function in older adults 
co-occurs with changes in its computational nature. While this is highly 
speculative, the idea that the aging brain changes its functional orga-
nization in the face of losses has previously been proposed by several 
investigations (Reuter-Lorenz and Cappell, 2008; Davis et al., 2008; 
Cabeza et al., 2002; Reuter-Lorenz and Park, 2010; Schuck et al., 2015) 
and also been supported by a number of our own genetic investigations 
in spatial (Schuck et al., 2013a) and non-spatial tasks (Schuck et al., 
2013b, 2018). Yet, note that we did not see higher visual influence 
scores in the RSC in older adults, a central prediction of this idea. 

It is important to note that this paper presents a reanalysis of data 
collected during a task that was not specifically designed for the purpose 
of this study. While the lack of experimental control made navigation 
more naturalistic, the confounded visual and non-visual directional 
signal, autocorrelations between directions, and non-uniform distribu-
tion over travelled directions presented analytical challenges. In this 
paper we show how these challenges can be addressed analytically by 
reducing autocorrelations and characterizing the amount of visual in-
fluence on neural representations. Yet, the introduced limitations would 
be less severe in a tailored experiment which could increase analytic 
sensitivity. 

Another limitation regarding the generalization of these results in-
cludes the solely male participants. While this avoided effects based on 
participant’s sex the findings should not be generalized to female pop-
ulations without further validation. 

With regard to the visual results a few open questions remain. To 
highlight one, it would be of interest to see if EVC-based walking di-
rection classification is primarily driven by foveal or peripheral parts of 
the scene viewed during navigation. An answer to this question could 
help to further understand how visual information is passed on to 
navigationally-relevant regions and in which specific way aging might 
be altering this process. Future studies should therefore aim to include a 
retinotopic mapping of the EVC for more detailed and individual par-
tialisation and the option to compare confusion functions of classifiers 
based on foveal and peripheral voxels. Additionally, this could also help 
to identify a gradient of the reported age-related differences over visual 
areas by comparing confusion functions of different visual levels be-
tween age groups. 

One important open question relates to the relation between our 
confusion function-based measure for neural specificity over continuous 
variables and changes in neurotransmitter systems. Contemporary 
models have linked neural dedifferentiation to less reliable or reduced 
DA-related signalling in the aging brain (Li and Rieckmann, 2014), a 

Fig. 8. Relation between measures of neural specificity and task performance 
measured by distance score. Measures of neural specificity stem from a decoder 
trained and tested on directional beta maps. A: Relation between decoding 
accuracy and distance score. Younger adults shown by solid points and lines. 
Colored and black lines show correlation within and across age group, 
respectively. Star indicates a significant correlation independent of age group. 
B: Relation between Gaussian precision and distance score. Coloring identical 
to figure panel A. 
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dominant aspect of the aging brain that is known to influence learning 
(e.g., Eppinger et al., 2013) and spatial navigation in this task (Thurm 
et al., 2016). The effect of changing DA levels in younger and older 
adults on neural specificity measured over a continuous variable could 
provide more detailed insights towards the mechanisms behind neural 
dedifferentiation and the role of DA in the aging brain. Moreover, un-
derstanding the role of GABA in this process is important given its 
known influence on neural broadening (Leventhal et al., 2003; Lalwani 
et al., 2019). Future studies employing neurotransmitter imaging, 
pharmacological interventions and genetic or pharmacogenetic ap-
proaches therefore promise to shed more light on age-related changes in 
’local’ tuning functions and cross domain dedifferentiation that char-
acterize the human brain. 
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