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a b s t r a c t 

Previous studies indicate a role of dopamine in spatial navigation. Although neural representations of direction 
are an important aspect of spatial cognition, it is not well understood whether dopamine directly affects these 
representations, or only impacts other aspects of spatial brain function. Moreover, both dopamine and spatial 
cognition decline sharply during age, raising the question which effect dopamine has on directional signals in 
the brain of older adults. To investigate these questions, we used a double-blind cross-over L-DOPA/Placebo 
intervention design in which 43 younger and 37 older adults navigated in a virtual spatial environment while un- 
dergoing functional magnetic resonance imaging (fMRI). We studied the effect of L-DOPA, a dopamine precursor, 
on fMRI activation patterns that encode spatial walking directions that have previously been shown to lose speci- 
ficity with age. This was done in predefined regions of interest, including the early visual cortex, retrosplenial 
cortex, and hippocampus. Classification of brain activation patterns associated with different walking directions 
was improved across all regions following L-DOPA administration, suggesting that dopamine broadly enhances 
neural representations of direction. No evidence for differences between regions was found. In the hippocampus 
these results were found in both age groups, while in the retrosplenial cortex they were only observed in younger 
adults. Taken together, our study provides evidence for a link between dopamine and the specificity of neural 
responses during spatial navigation. 

Significance Statement: The sense of direction is an important aspect of spatial navigation, and neural representa- 
tions of direction can be found throughout a large network of space-related brain regions. But what influences 
how well these representations track someone’s true direction? Using a double-blind cross-over L-DOPA/Placebo 
intervention design, we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction 
selective neural representations in the human hippocampus and retrosplenial cortex. Interestingly, the effect of 
L-DOPA was either equally present or even smaller in older adults, despite the well-known age related decline 
of dopamine. These results provide novel insights into how dopamine shapes the neural representations that 
underlie spatial navigation. 
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. Introduction 

A role of dopamine (DA) in spatial navigation is well established.
natomically, spatial cognition depends on a network of brain regions
entered around the hippocampus (HC) and retrosplenial cortex (RSC)
 Burgess et al., 2002; Chersi and Burgess, 2015 ), both of which are tar-
ets of dopaminergic innervation ( Berger et al., 1985; McNamara and
upret, 2017 ). Behaviorally, spatial navigation abilities are influenced
y DA functioning in younger as well as older animals and humans ( El-
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hundi et al., 1999; Granado et al., 2008; Kentros et al., 2004; Thurm
t al., 2016 ). 

Much less is known about how DA might change the neural represen-
ations that support spatial navigation. Particularly interesting for hu-
an neuroscience are direction selective representations ( Taube, 2007 ),
hich have been found, amongst others, in the HC, the RSC and vi-

ual cortex ( Cacucci et al., 2004; Flossmann and Rochefort, 2021; Gui-
chounts et al., 2020; Shine et al., 2016 ), and can be decoded from
uman fMRI signals ( Koch et al., 2020 ). We hypothesized that DA af-
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ects direction encoding in the human brain and tested this idea using
 double-blind placebo controlled intervention design. Specifically, we
redicted that oral administration of L-DOPA, a dopamine precursor,
ould influence how accurately walking direction can be decoded from
ulti-voxel fMRI patterns in the above named ROIs. 

Next to its role in spatial navigation, DA has also received much at-
ention in the context of aging, where reduced DA functions are preva-
ent and are thought to underlie age-related cognitive declines ( Bäckman
t al., 2006; Chowdhury et al., 2013; Li et al., 2010; Volkow et al.,
998 ). Computational models have shown that declining neuromodu-
atory effects of DA lead to losses in the signal-to-noise ratio of neural
esponses ( Cohen and Servan-Schreiber, 1992; Servan-Schreiber et al.,
990 ), which in the aging brain can lead to neural representations that
re less specific or “dedifferentiated ” ( Li et al., 2001; Li and Rieckmann,
014 ). In line with these models, dedifferentiation has repeatedly been
bserved in older adults (OA) at the behavioral and neural levels ( Carp
t al., 2011a,b; Koch et al., 2020; Li et al., 2004; Park et al., 2004 ).
eural dedifferentiation, in turn, has been linked to decreased memory
erformance ( Koen et al., 2019; Sommer et al., 2019; St-Laurent et al.,
014 ), establishing an explanatory link between DA, neural representa-
ions and cognitive aging. 

These roles of DA in spatial navigation and aging might contribute
o the pronounced decline in spatial cognition with age ( Lester et al.,
017; Moffat, 2009; Schuck et al., 2015; Wolbers et al., 2014 ), and to
he neural dedifferentiation of direction-selective ( Koch et al., 2020 ) and
ippocampal signals ( Schuck et al., 2015 ) in the aging brain. Moreover,
ince the sharp decline of DA with age should lead to lower baseline
vailability of DA in OA, the effects of DA might be stronger in OA rel-
tive to younger adults (YA) – reflecting DA’s inverted-U-shape relation
o cognitive performance ( Cools and D’Esposito, 2011; Li et al., 2010;
013; Vijayraghavan et al., 2007 ). Indeed, one previous study found age-
elated effects of the DA receptor agonist bromocriptine on dedifferen-
iation in the HC ( Abdulrahman et al., 2017 ). Moreover, HC-dependent
pisodic memory, spatial navigation, and learning have been found to
e affected by genetic polymorphisms related to dopamine D2 receptor
vailability (COMT Val158Met, C957T CC; Li et al., 2013; Papenberg
t al., 2014 ) or hippocampal function (KIBRA SNP rs17070145; Schuck
t al., 2013; Schuck et al., 2018 ) in OA, but not YA. Based on these
ndings, we therefore also tested whether L-DOPA effects on walking
irection decoding would be stronger in OA relative to YA. 

Finally, we expected that DA could also influence the shape of
opulation-based tuning functions of direction. Although direction-
ensitive cells often have a preferred direction, they also fire in re-
ponse to non-preferred directions in proportion to their similarity to
he preferred direction ( Taube, 2007 ). Hence, encoding of direction in-
ormation seems to follow a Gaussian tuning function, in particular on a
opulation level ( Averbeck et al., 2006 ). Research has also shown that
ge-related neural dedifferentiation results in increased width of such
uning functions with age ( Leventhal et al., 2003; Liang et al., 2010;
chmolesky et al., 2000 ), which we too have reported previously us-
ng fMRI ( Koch et al., 2020 ). We therefore also investigated whether
-DOPA has effects on the precision of fMRI-derived tuning functions of
irection information and whether such effects may interact with age. 

. Materials and methods 

.1. Participants 

This study was part of a larger project in which the same participants
erformed multiple tasks, including a sequential decision making task
nd a virtual reality spatial memory task inside the scanner and other
ecision tasks outside of the scanner. 

Here, we only report results from the MRI analysis of the VR
ask described below. Specifically, following our previous publication
 Koch et al., 2020 ), our analyses were specific to neural representations
f direction signals during the spatial memory task performed while un-
2 
ergoing fMRI. Other data from the same participants was not within
he purview of this study and was therefore not investigated. Data of
02 participants which were recruited for two MRI sessions and ran-
omly assigned to one of the two drug intervention groups (i.e., L-DOPA
Placebo or Placebo – L-DOPA) was available for investigating our re-

earch question. Eighty-eight of these participants (43 OA, 45 YA) suc-
essfully completed both sessions without technical errors. Four addi-
ional OA were excluded from further analyses because they did not
espond in at least a third of the trials in at least one of the two ses-
ions. Decoding analyses of the L-DOPA effects introduced additional
equirements for the distribution of walking direction (see Materials and
ethods) that were not met for four participants (2 OA, 2 YA). Thus, the
nal effective sample for these analyses also excluded these participants
nd comprise of a total of 37 OA (age 65–75, 6 female) and 43 YA (age
6–35, 16 female). 

Note that the relatively low number of female OA reflects difficulties
n recruitment after the onset of the COVID-19 pandemic. 

.2. Virtual reality task 

During each session of fMRI data collection participants had to com-
lete a similar variant of a spatial memory task that was used in previous
tudies ( Schuck et al., 2015; Thurm et al., 2016 ). Analyses of the present
ork are mainly concerned with directional signals obtained during free
avigation, and hence focus on the corresponding task phases. Specif-
cally, to avoid effects of changed environmental cues on directional
ignals (e.g. Taube et al., 1990 ) or initial learning, we considered only
ata from the feedback phase for this study (see below). On average, the
ncluded data reflected a period of 17.36 min from free navigation per
ession. 

Briefly, participants were placed in a virtual, circular arena in which
hey could move around freely using a custom-made MRI-compatible
oystick. The arena consisted of a circular grass plane surrounded by a
all. Participants could also see distal cues (mountains, clouds) as well
s a local cue (traffic cone) to aid orientation (see Fig. 1 ). We asked par-
icipants to remember the location of five objects within the 360 ◦ arena.
irst, an initial encoding phase took place in which participants could
ee and walk to the locations of all objects appearing one after the other.
earning of object location then continued in a feedback phase: partici-
ants were placed close to the center of the arena with a random heading
irection. After the brief presentation of a grey screen and fixation cross,
 picture of the first object was shown. Participants were asked to navi-
ate as closely as possible to the location of this object and indicate their
nal position with a button press within a maximum of 60 s. To provide

eedback, the true object location was shown to participants following
heir response, and they were then asked to navigate to and walk over
he shown location. After the feedback, participants were shown an-
ther object and the procedure repeated without placing the player in
he center of the arena until all five objects were completed. The order
n which the five objects were shown was pseudo-randomized. Once all
ve objects were completed, participants were again placed close to the
rena’s center and had to navigate to all five objects in the same manner
or a total of six repetitions (i.e., 5 × 6 = 30 feedback trials). In a final
ransfer phase of the task (data not analyzed in this study, see above),
ither the arena size or the location of the traffic cone were altered, and
articipants‘ object location memory was tested again as above. For the
econd session participants had to learn the location of five different
bjects, but the trial structure and procedures were identical otherwise.
ompleting one session took participants between 14 and 49 min. 

.3. Drug administration 

Following a double-blind drug administration design, participants
ere given either a total of 225 mg of L-DOPA (Madopar, Roche, Lev-
dopa/Benserazid, 4:1 ratio) or a placebo (P-Tabletten white 8 mm
ichtenstein, Winthrop Arzneimittel) before each MRI session in the
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Fig. 1. Task procedure during feedback phase. Each trial started with a fixation cross on a grey background for two seconds. Afterwards a cue was presented showing 
the object to which participants needed to navigate (object locations were learned during encoding phase). The participant then had 60 s to navigate from their 
starting location (cross) to the object location according to their spatial memory. Participants indicated that they had arrived at the remembered location (circle) 
by pressing a response button, after which the object appeared at its true location. Participants could observe the difference between their response and the correct 
location and were required to navigate towards and walk over the correct location, before the cue of the next trial was presented. 
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orm of two orally administered dosages. A first dosage (150 mg L-
OPA/Placebo) was given about 10 min before subjects entered the
RI scanner, roughly one hour before the spatial navigation task began.
o assure high dopamine availability during the task, a second booster
osage (75 mg L-DOPA/Placebo) was administered roughly ten minutes
efore task onset (cf. Kroemer et al., 2019 ). Participants were pseudo-
andomly assigned to one of two groups with different session order,
ither the group that received L-DOPA in the first session and placebo
n the second session (Drug-Placebo group, 40 subjects) or the group
hat started with the placebo in the first session (Placebo-Drug group,
4 participants). 

.4. Image acquisition 

All data was collected on a 3 Tesla Siemens Magnetom Trio
Siemens, Erlangen, Germany) MRI scanner. T1-weighted structural
mages were collected at the beginning of the first session using
 MP-RAGE pulse sequence ( 0 . 8 × 0 . 8 × 0 . 8 𝑚𝑚 voxels , TR = 2400 𝑚𝑠 ,
E = 2 . 19 𝑚𝑠 , TI = 1000 𝑚𝑠 , acquisition matrix = 320 × 320 × 240 , FOV =
72 𝑚𝑚 , flip angle = 8 ◦, bandwidth = 210 Hz 

Px ). At the beginning of the
econd session T2-weighted structural scan was collected ( 0 . 8 × 0 . 8 ×
 . 8 𝑚𝑚 voxels , TR = 3200 𝑚𝑠 , TE = 565 𝑚𝑠 , acquisition matrix = 350 ×
50 × 2630 , FOV = 272 𝑚𝑚 , bandwidth = 744 Hz 

Px ). 
Functional on-task data was collected using a T2 ∗ -weighted

cho-planar imaging (EPI) pulse sequence 3 × 3 × 2 . 5 𝑚𝑚 voxels ,
lice thickness = 2 . 5 𝑚𝑚 , distance factor = 20% , TR = 2360 𝑚𝑠 ,
E = 25 𝑚𝑠 , image matrix = 64 × 64 , FOV = 192 𝑚𝑚 , flip angle = 80 ◦,
8 axial slices , GRAPPA parallel imaging , acceleration factor: 2 ,
nterleaved acquisition ). The sequence lasted until the task was
ompleted and took about 15–50 min. Additional functional scans not
nalyzed in this manuscript included data from the transfer phase, data
rom a decision making task, as well as data from a resting state scan
ollected at the start of each session. 

Quality of all collected functional sequences was assessed using MRI
uality control (MRIQC; Esteban et al., 2017 ). The quality measure of
ramewise displacement (FD, threshold 3 mm), a measure for movement
uring image acquisition ( Power et al., 2014 ), was extracted and used
or statistical control. 

.5. ROIs 

Each ROI was created from anatomical labels obtained from Mind-
oggle’s FreeSurfer-based segmentation of each participant’s individual
1-weighted images ( Klein et al., 2017 ). We investigated three prede-
ned ROIs in light of previous findings indicating direction selective
oding in these regions ( Cacucci et al., 2004; Flossmann and Rochefort,
021; Guitchounts et al., 2020; Koch et al., 2020; Shine et al., 2016;
3 
aube, 2007 ). An early visual cortex (EVC) ROI, consisting of the bi-
ateral cortical masks of the cuneus, lateral occipital cortex, and the
ericalcarine cortex (mean number of voxels: 1480.87). A ROI of the
etrosplenial cortex (RSC) constructed from the bilateral, cortical masks
f the cingulate ishtmus (mean number of voxels: 198.55). A mask of the
ippocampus (HC) was extracted from the respective bilateral masks of
he parcellation (mean number of voxels: 323.64). In addition to these
ore masks, we added a ROI of the left motor cortex, constructed from
he cortical mask of the left precentral gyrus, to serve as a control (mean
umber of voxels: 555.45). Although our resolution was suboptimal to
nvestigate small areas, we included a mask of the entorhinal cortex (EC,
ean number of voxels: 174.09) in order to explore if direction signals

ould be found there as well (see Inline Supplementary Table S1 for all
OI sizes). 

.6. Image preprocessing 

Copyright Waiver 

Results included in this manuscript come from preprocessing per-
ormed using fMRIPrep 20.0.6 ( Esteban et al., 2018a; Esteban et al.,
018b ; RRID:SCR_016216), which is based on Nipype 1.4.2 ( Gorgolewski
t al., 2011; Gorgolewski et al., 2018 ; RRID:SCR_002502). The boiler-
late text in this section (2.6) was automatically generated by fMRIPrep
ith the express intention that users should copy and paste this text into

heir manuscripts unchanged . It is released under the CC0 license. 
Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for inten-
ity non-uniformity (INU) with N4BiasFieldCorrection
 Tustison et al., 2010 ), distributed with ANTs 2.2.0 ( Avants et al.,
008 ; RRID:SCR_004757), and used as T1w-reference throughout the
orkflow. The T1w-reference was then skull-stripped with a Nipype

mplementation of the antsBrainExtraction.sh workflow
from ANTs), using OASIS30ANTs as target template. Brain tissue
egmentation of cerebrospinal fluid (CSF), white-matter (WM) and
ray-matter (GM) was performed on the brain-extracted T1w us-
ng fast (FSL 5.0.9; RRID:SCR_002823; Zhang et al., 2001 ). Brain
urfaces were reconstructed using recon-all (FreeSurfer 6.0.1;
RID:SCR_001847; Dale et al., 1999 ), and the brain mask estimated
reviously was refined with a custom variation of the method to
econcile ANTs-derived and FreeSurfer-derived segmentations of the
ortical gray-matter of Mindboggle (RRID:SCR_002438; Klein et al.,
017 ). Volume-based spatial normalization to two standard spaces
MNI152Lin, MNI152NLin2009cAsym) was performed through non-
inear registration with antsRegistration (ANTs 2.2.0), using
rain-extracted versions of both T1w reference and the T1w template.
he following templates were selected for spatial normalization:
inear ICBM Average Brain (ICBM152) Stereotaxic Registration Model

 Mazziotta et al., 1995 ; TemplateFlow ID: MNI152Lin), ICBM 152

https://creativecommons.org/publicdomain/zero/1.0/
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onlinear Asymmetrical template version 2009c ( Fonov et al., 2009 ;
RID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym). 

Functional data preprocessing 

For each of the 4 BOLD runs collected per subject (two task re-
ated runs reported here and 2 resting state runs not reported here),
he following preprocessing was performed. First, a reference volume
nd its skull-stripped version were generated using a custom methodol-
gy of fMRIPrep . Susceptibility distortion correction (SDC) was omitted.
he BOLD reference was then co-registered to the T1w reference using
bregister (FreeSurfer) which implements boundary-based registra-

ion ( Greve and Fischl, 2009 ). Co-registration was configured with six
egrees of freedom. Head-motion parameters with respect to the BOLD
eference (transformation matrices, and six corresponding rotation and
ranslation parameters) are estimated before any spatiotemporal filter-
ng using mcflirt (FSL 5.0.9; Jenkinson et al., 2002 ). BOLD runs were
lice-time corrected using 3dTshift from AFNI 20160207 ( Cox and
yde, 1997 ; RRID:SCR_005927). The BOLD time-series were resampled
nto the following surfaces (FreeSurfer reconstruction nomenclature):
snative, fsaverage . The BOLD time-series (including slice-timing correc-
ion when applied) were resampled onto their original, native space by
pplying the transforms to correct for head-motion. These resampled
OLD time-series will be referred to as preprocessed BOLD in original

pace , or just preprocessed BOLD . The BOLD time-series were resampled
nto standard space, generating a preprocessed BOLD run in MNI152Lin

pace . The first step in this process was that a reference volume and
ts skull-stripped version were generated using a custom methodology
f fMRIPrep . Several confounding time-series were calculated based on
he preprocessed BOLD : framewise displacement (FD), DVARS and three
egion-wise global signals. FD and DVARS are calculated for each func-
ional run, both using their implementations in Nipype (following the
efinitions by Power et al., 2014 ). The three global signals are extracted
ithin the CSF, the WM, and the whole-brain masks. Additionally, a

et of physiological regressors were extracted to allow for component-
ased noise correction ( CompCor ; Behzadi et al., 2007 ). Principal com-
onents are estimated after high-pass filtering the preprocessed BOLD

ime-series (using a discrete cosine filter with 128s cut-off) for the two
ompCor variants: temporal (tCompCor) and anatomical (aCompCor).
CompCor components are then calculated from the top 5% variable
oxels within a mask covering the subcortical regions. This subcortical
ask is obtained by heavily eroding the brain mask, which ensures it
oes not include cortical GM regions. For aCompCor, components are
alculated within the intersection of the aforementioned mask and the
nion of CSF and WM masks calculated in T1w space, after their pro-
ection to the native space of each functional run (using the inverse
OLD-to-T1w transformation). Components are also calculated sepa-
ately within the WM and CSF masks. For each CompCor decomposi-
ion, the k components with the largest singular values are retained,
uch that the retained components’ time series are sufficient to explain
0 percent of variance across the nuisance mask (CSF, WM, combined,
r temporal). The remaining components are dropped from considera-
ion. The head-motion estimates calculated in the correction step were
lso placed within the corresponding confounds file. The confound time
eries derived from head motion estimates and global signals were ex-
anded with the inclusion of temporal derivatives and quadratic terms
or each ( Satterthwaite et al., 2013 ). Frames that exceeded a threshold
f 0.5 mm FD or 1.5 standardised DVARS were annotated as motion
utliers. All resamplings can be performed with a single interpolation

tep by composing all the pertinent transformations (i.e. head-motion
ransform matrices, susceptibility distortion correction when available,
nd co-registrations to anatomical and output spaces). Gridded (volu-
etric) resamplings were performed using antsApplyTransforms

ANTs), configured with Lanczos interpolation to minimize the smooth-
ng effects of other kernels Lanczos (1964) . Non-gridded (surface) re-
amplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2
RRID:SCR_001362; Abraham et al., 2014 ), mostly within the func-
4 
ional processing workflow. For more details of the pipeline, see the
ection corresponding to workflows in fMRIPrep’s documentation . 

.7. fMRI analyses 

Classification of walking direction 

All classification of walking direction was performed in
ython (Python Software Foundation; Python Language Refer-
nce, version 3.7.8; available at http://www.python.org ) and re-
ied on scikit-learn ( Pedregosa et al., 2011 ) and nilearn
 Abraham et al., 2014 ). Statistical analyses and plotting was per-
ormed in R (version 4.0.3, R Core Team, 2021 ), using the packages
me4 ( Bates et al., 2015 ), emmeans ( Lenth, 2021 ) and ggplot2
 Wickham, 2016 ). All conducted post-hoc tests, if not specified other-
ise, were corrected for multiple comparisons using Tukey correction. 

Functional data was prepared for classification by smoothing images
ith a 3 mm FWHM kernel. Next, nilearn ’s signal.clean func-

ion was used to detrend, high-pass filter ( 1 128 Hz ), de-noise (using 10
omponents of aCompCor) and z-standardize the time courses. 

Participants’ walking direction was extracted from navigated paths
ithin the virtual environment. The complete 360 ◦-space of direction
as binned into six equally spaced bins of 60 ◦. Classifier training ex-
mples were then constructed by taking fMRI multi-voxel patterns in
esponse to consistent walking within one binned direction for at least
ne second. Hence the number of classifier examples for each participant
nd direction were dependent on the travelled paths and the number of
irection changes (for more detail on the number of classifier examples,
ee SI Section 3 ). If the same example spanned multiple TRs (i.e., was
onger than 2.36s) all TRs spanned were averaged to assure a single
oxel-pattern per example. Voxel responses were taken two TRs (4.72s)
fter the event to adjust for hemodynamic lag. A multinomial logistic
egression classifier (L2 regularization, C = 1, tolerance = 10 -4 , 1000
aximum iterations; as implemented in scikit-learn ) was applied

o the resulting activation patterns in order to test whether walking di-
ection could be classified. Cross-validation was done separately for L-
OPA and placebo sessions. 

Each session was split into into three folds, and cross-validated de-
oding was performed across these folds from the same session. We en-
ured a balanced number of training examples for each class by upsam-
ling underrepresented classes if necessary. A balanced accuracy score
as calculated for each test set and results were pooled across all cross-
alidation runs. To asses above-chance classification accuracy the re-
ulting scores were tested to exceed a chance baseline (16.66%) using
ne-sided, one-sample t-tests and one-sided comparisons to permutation
istributions. Said distributions resulted from repeating individual clas-
ification procedures 1000 times with randomly permuted class labels
n the training set. A permutation distribution of sample means was ob-
ained by following the same averaging procedure as for the true values,
ust for each iteration of the permutation. To test whether classification
ccuracy was influenced by the various design factors (most notably,
-DOPA and age), linear mixed models (LMM) were used to asses possi-
le main effects and their interactions. Specifically, the model included
xed main effects of intervention (L-DOPA vs. Placebo), age group (OA
s. YA), ROI (EVC, RSC, HC), and session order (L-DOPA – Placebo vs.
lacebo – L-DOPA), as well as their interaction. The random effects in-
luded a participant wise intercept and random slope of intervention.
or models including data only from one ROI, the random slope of inter-
ention had to be dropped to avoid singularity (same number of random
ffects as there are data points). 

Additionally, we included several control factors in our models: A
rug dosage relative to body weight and dosage/kg × intervention in-
eraction tested for potential effects of body weight; and an effect of
ramewise displacement (FD) and an FD × intervention interaction were
ncluded in the model as a nuisance variable to capture possible effects
f drug-related head motion. 

Influence of spatial angular difference on fMRI pattern similarity 

https://fmriprep.readthedocs.io/en/latest/workflows.html
http://www.python.org
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To test if neural representations of walking direction show the same
ircular similarity structure as directions in geometrical space, we anal-
sed the structure of classifiers predictions as in Koch et al. (2020) . If
he similarity of two fMRI patterns of two different directions is asso-
iated with their angular distance in space, this should be reflected in
he probability distributions over all possible directions. Specifically, we
xtracted the probability estimates of each of the six classes for each ex-
mple of the testing set as calculated by the logistic regression classifier.
hese estimates were aligned with regard to relative angular difference
rom the target class ( −120 ◦, −60 ◦, 0 ◦, 60 ◦, 120 ◦, 180 ◦) and then aver-
ged over all examples, resulting in a single curve for each participant
hich we refer to as the confusion function . A simple Gaussian curve in

he form of 

( 𝑥 ) = 

1 
𝑍 

𝑒 
− 1 2 𝜏𝑥 

2 
, (1)

as used to determine tuning specificity, where 𝑥 denotes the angular
ifference and 𝜏 the precision (the inverse of the variance, 1 

𝜎2 
). Fur-

hermore, 𝑍 normalizes the curve. This model captures an inverse rela-
ionship between the angular difference of two walking directions and
he confusability of their associated neural patterns. Models were fitted
eparately within each participant and ROI. 

The Gaussian model allowed us to assess age-differences in direc-
ional tuning specificity, which were captured by the precision param-
ter 𝜏. A LMM identical to the one modelling classification accuracy
escribed in the previous section was used to analyze differences in pre-
ision. 

.8. Behavioral analysis 

Task performance during the feedback phase was measured by the
istance error: the Euclidean distance between the true location of an
bject and the location the participant placed the respective object (mea-
ured in virtual meters; vm; 1vm = 62.5 Unreal units). Performance for
ach trial was given by the average distance error across all five pre-
ented objects within a trial (missing responses due to exceeding the
ime limit were excluded). Kolmogorov–Smirnov tests indicated that
erformance scores of YA were not normally distributed ( 𝐷 = 0 . 169 ,
 = 0 . 010 , 𝐷 = 0 . 064 , 𝑝 = 0 . 881 , for YA and OA, respectively; tested for
erformance on the last trial). To assure normality, the average dis-
ance errors in each trial were log-transformed ( 𝐷 = 0 . 054 , 𝑝 = 0 . 941 ,
 = 0 . 106 , 𝑝 = 0 . 323 after transform for YA and OA, respectively). To
ssess the process of learning during the feedback phase of the task, we
ompared the difference between the first and last trial. Note that in
ight of non-linear learning curves we did not use a linear model across
ll trials on purpose. The difference between the two log-transformed
easures was modeled using an LMM including the fixed effects of in-

ervention (L-DOPA vs. Placebo), age group, and session order (L-DOPA
Placebo vs. Placebo – L-DOPA) as well as a random intercept of partic-

pant. Additionally, we compared performance after learning (last trial)
ith an identical LMM. Furthermore, group-level performance was com-
ared to chance given by the average distance error assuming random
esponses for every object. To this end, we uniformly sampled 10 5 pos-
ible locations within the circular arena. The task was then simulated
000 times while each response of each participant was randomly drawn
rom the pool of possible locations. This yielded a distribution of 1000
roup-means assuming random performance over a given trial and al-
owed a comparison of trial-specific group-means 

Finally, we aimed to quantify the relationship between the speci-
city of direction signals and task performance to see if more specific
irection signals allow better performance on the given task. To this
nd, we used previous LMMs of classification accuracy but added the
egressor of performance in the last trial of the experiment. To assure
ormally distributed values the log-transformed performance variable
as used. Furthermore, performance values were demeaned to elimi-
ate a possible confound between age group and task performance. The
D-related nuisance regressors as well as the interaction between dosage
5 
er body weight and intervention were dropped from the model. To see
f L-DOPA enhanced signal specificity in proportion to its enhancement
f task performance the above model was adapted to predict the dif-
erence between sessions in classification accuracy (L-DOPA – Placebo).
he increase in task performance was given by the session difference
L-DOPA – Placebo) of the log-transformed performance in the last trial
f the task. 

. Results 

.1. Behavioral results 

We first asked whether age group and intervention (L-DOPA vs.
lacebo) affected participants’ object location memory, as expressed in
istance errors on the last trial after learning. This this end, we ran a
inear mixed model with fixed effects of interest for intervention and
ge group and a random effect of participant. This analysis showed a
ignificant main effect of age group ( 𝜒2 (1) = 167 . 010 , 𝑝 > 0 . 001 ; 𝜒2 val-
es reflect likelihood ratio tests, see Methods). Post-hoc tests showed
hat OA had higher distance errors compared to YA at the end of learn-
ng ( 𝑡 (80) = 12 . 811 , 𝑝 < 0 . 001 ). The model did not display any significant
ain effect of L-DOPA intervention ( 𝜒2 (1) = 1 . 479 , 𝑝 = 0 . 224 ) or L-DOPA
age interaction. Results are displayed in Fig. 2 . 
We next investigated performance increases, i.e. log distance er-

ors on the first minus the last trial, and again found only a main ef-
ect of age group ( 𝜒2 (1) = 61 . 054 , 𝑝 > 0 . 001 ), but no main effect of L-
OPA or L-DOPA × age interaction. A control analysis showed that

he nuisance variable session order had no main effect in either end-
f-learning performance ( 𝜒2 (1) = 0 . 1784 , 𝑝 = 0 . 673 ) or in performance
hanges ( 𝜒2 (1) = 0 . 948 , 𝑝 = 0 . 330 ), and also revealed no session order ×
ntervention effect in performance changes. Unexpectedly, we found a
ignificant interaction of intervention × session order in end-of-learning
erformance ( 𝜒2 (1) = 13 . 744 , 𝑝 < 0 . 001 ), reflecting a negative effect of L-
OPA if given in the first session ( 𝑡 (80) = 3 . 368 , 𝑝 = 0 . 002 ) while no effect
as found if L-DOPA was given in the second session ( 𝑡 (80) = −1 . 693 ,
 = 0 . 180 , Ŝ idák corrected). 

.2. Influence of L-DOPA intervention on direction decodability 

We used within-session cross-validation to investigate the decod-
bility of walking direction (see Methods). A first analysis revealed
hat, averaged across sessions, decoding in our main areas of inter-
st EVC (23.6%), RSC (18.4%) and HC (17.3%) was above chance
aseline (16.6%, one-sided t-tests against chance, 𝑡 (79) = 11 . 783 , 𝑝 <
 . 001 , 𝑡 (79) = 4 . 627 , 𝑝 < 0 . 001 , 𝑡 (79) = 2 . 011 , 𝑝 = 0 . 047 , respectively),
hile it was at chance in the entorhinal cortex (16.9%, 𝑝 = 0 . 257 , all
𝑠 Bonferroni-Holm corrected for 4 ROIs). These results were largely
onfirmed by a permutation test, although the HC effect was borderline
fter correction (EVC: 𝑝 < 0 . 001 , RSC: 𝑝 < 0 . 001 , HC: 𝑝 = 0 . 058 , Entorhi-
al Cortex: 𝑝 = 0 . 236 , Bonferroni-Holm corrected). 

Surprisingly, decoding in the left motor cortex was also above chance
aseline, and significantly higher than in the HC ( 𝑡 (608) = −3 . 672 , 𝑝 =
 . 002 ) and entorhinal cortex ( 𝑡 (608) = −4 . 504 , 𝑝 < 0 . 001 ). The high de-
oding score in the motor cortex was unexpected because participants
sed the same forward movement on the joystick to walk forward, re-
ardless of the direction they traveled in. While we did not anticipate
his effect, it indicates that this brain area cannot serve as a useful con-
rol ROI. The results of the motor cortex are depicted in greater detail in
nline Supplementary Figure S1, and will not be detailed further here.
ote that correction for five instead of four ROIs does not qualitatively
ffect the results reported above. 

Importantly, we next investigated whether classification accuracy
as affected by dopamine, and indeed found a significant main effect of
-DOPA in a corresponding LMM ( 𝜒2 (1) = 6 . 796 , 𝑝 = 0 . 009 ). This effect
eflected that direction signals were generally stronger under L-DOPA
han placebo (post hoc test: 19 . 5% vs. 18 . 6% , 𝑡 (74) = 2 . 556 , 𝑝 = 0 . 013 ), in
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Fig. 2. Behavioral results. Average error in object placement for all six trials for OA and YA. Error was measured as the Euclidean distance in vm between the true 
location of an object and the participants’ placement. Reduction in error shows better task performance. All values of the placebo session depicted in black, all values 
of the L-DOPA session depicted in white. Small dots indicate individual values of participants. Average over participants in each trial shown by the large dots. Shown 
on the upper left are session-specific distributions of 10 3 average performance values in a trial assuming random placement of objects. Note that, in turn, only the 
trial averages (large dots) can be compared to this chance-distribution. 
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ine with our main hypothesis (see Fig. 3 A). Figure 3 B shows permuta-
ion tests against chance baseline within the L-DOPA and placebo condi-
ions. These permutation tests showed that decoding was above chance
n both conditions in the EVC and RSC (EVC: 𝑝 < 0 . 001 & 𝑝 < 0 . 001 , RSC:
 < 0 . 001 & 𝑝 = 0 . 036 for L-DOPA and placebo, respectively) while in
he HC decoding was above chance only under L-DOPA ( 𝑝 = 0 . 010 ), but
ot under placebo ( 𝑝 = 0 . 884 , all 𝑝 s Bonferroni-Holm corrected). Control
nalyses testing the influence of nuisance regressors (FD, session order,
osage) in the LMM showed no main effects or interactions with the L-
OPA intervention (all 𝑝 s > 0 . 08 ). The LMM also indicated a number of
ther effects, in particular of age group ( 𝜒2 (1) = 6 . 273 , 𝑝 = 0 . 012 ), ROI
 𝜒2 (4) = 271 . 674 , 𝑝 < 0 . 001 ), as well as an age group × ROI interaction
 𝜒2 (4) = 60 . 970 , 𝑝 < 0 . 001 ). But no L-DOPA × ROI or L-DOPA × age in-
eractions were found ( 𝑝 = 0 . 427 and 𝑝 = 0 . 506 ). 

The main effect of ROI reflected that the classification achieved
n EVC was significantly higher than decoding in the RSC ( 𝑡 (608) =
0 . 837 , 𝑝 < 0 . 001 ), HC ( 𝑡 (608) = 13 . 108 , 𝑝 < 0 . 001 ), left motor cor-
ex (19.1%, 𝑡 (608) = 9 . 436 , 𝑝 < 0 . 001 ), and entorhinal cortex (16.9%,
 (608) = −13 . 940 , 𝑝 < 0 . 001 ). In addition, decoding in the RSC signifi-
antly outperformed that in the entorhinal cortex ( 𝑡 (608) = −3 . 104 , 𝑝 =
 . 017 ). 

Post-hoc comparisons of the age group main effect and the age group
ROI interaction showed that decoding was overall better in YA com-

ared to OA, but this age difference was only significant in the EVC
 𝑡 (359) = −7 . 424 , 𝑝 < 0 . 001 ) but not in any other ROI ( 𝑝 s ≥ 0 . 833 , Ŝ idák
orrected) as displayed in Fig. 3 C. Note that the EVC also showed age
ifferences in the size of the ROI, as reflected in significantly lower voxel
umbers in OA compared to YA ( 𝑝 < 0 . 001 , 1583 voxels vs. 1361 voxels
n average, respectively, 𝑝 < 0 . 001 ). However, repeating the decoding
nalysis in a subsample of participants matched for ROI size showed
qually strong age differences in decoding, indicating that age differ-
nces in decoding found in the EVC are not explained by the larger EVC
OIs in YA (see Supplementary Materials Section 1 for details). 
6 
As noted above, no L-DOPA × ROI interaction was found. Our re-
ults therefore indicate that L-DOPA impacts the neural encoding of di-
ection signals across a variety of brain regions. The following analy-
es therefore need to be seen as strictly exploratory. These exploratory
ollow-up analyses showed that the L-DOPA effect was strongest in the
C ( 𝑡 (603) = 2 . 153 , 𝑝 = 0 . 032 ), while post-hoc test in RSC and EVC re-
ealed only marginal ( 𝑡 (603) = 1 . 916 , 𝑝 = 0 . 055 ), or non-significant ef-
ects ( 𝑡 (603) = 1 . 447 , 𝑝 = 0 . 148 ), respectively (all 𝑝 s uncorrected). Nei-
her the left motor cortex nor the entorhinal cortex did show any ef-
ects of L-DOPA ( 𝑡 (603) = − . 211 , 𝑝 = 0 . 833 , 𝑡 (603) = 0 . 710 , 𝑝 = 0 . 478 , both
ncorrected). To further explore trends in region-specific effects of L-
OPA, and interaction with age group therein, analyses were run sep-
rately for each ROI. These ROI-specific models reproduced the main
ffects of intervention within the HC ( 𝜒2 (1) = 5 . 263 , 𝑝 = 0 . 022 ) and the
SC ( 𝜒2 (1) = 4 . 868 , 𝑝 = 0 . 027 ). In addition, we found an intervention ×
ge group interaction within the RSC ( 𝜒2 (1) = 3 . 877 , 𝑝 = 0 . 049 ), but no
uch interaction in HC ( 𝜒2 (1) = 1 . 518 , 𝑝 = 0 . 218 , see Fig. 3 D). Post-hoc
omparisons showed that the effect in RSC was driven by higher de-
odability of walking direction in the L-DOPA compared to placebo ses-
ion in young adults ( 𝑡 (75 . 6) = 2 . 879 , 𝑝 = 0 . 010 ), but not in OA ( 𝑡 (75 . 4) =
 . 161 , 𝑝 = 0 . 984 , Ŝ idák corrected). Within the EVC, only a main effect
f age group ( 𝜒2 (1) = 16 . 350 , 𝑝 < 0 . 001 ), but no effect of L-DOPA inter-
ention ( 𝜒2 (1) = 2 . 038 , 𝑝 = 0 . 153 ) was found. 

Control analyses found no impact of dosage per body weight on the
ntervention effect in any ROI ( 𝜒2 (2) < 3 . 578 , 𝑝 ≥ 0 . 167 , for the inter-
ction). Investigating the movement related variable FD, we found no
ignificant main effects of FD ( 𝜒2 (1) ≤ 1 . 448 , 𝑝 ≥ 0 . 229 ) or an interac-
ion between FD and intervention ( 𝜒2 (1) ≤ 0 . 644 , 𝑝 ≥ 0 . 422 ) in HC or
SC. A significant main effect of FD was found in the EVC, however
 𝜒2 (1) = 4 . 935 , 𝑝 = 0 . 026 ). This reflected worse classification accuracy
ith higher movement during image acquisition (linear regression relat-

ng classification accuracy to FD: 𝑏 = − . 118 , 𝑡 (158) = −6 . 302 , 𝑝 < 0 . 001 ).
 final control analysis within the left motor cortex did neither identify a
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Fig. 3. Effect of L-DOPA on decoding of neural walking direction signals. A : Intervention-specific decodability of walking direction within each ROI. Black dots 
show values of participants and violin plots depict intervention-specific distribution. Means are represented by white diamonds. Chance-level is shown by dashed 
line and based on the total number of classes (6 classes, 16.6% chance). B : Intervention-specific decodability of walking direction compared to chance baseline. Mean 
decodability in the sample shown as white diamonds. Distributions of 1000 sample means given shuffled labels during classifier training serve as chance baseline. 
Chance-level is shown by dashed line. C : Age group-specific decodability of walking direction. Dots show individual values of participants and bars show group 
averages. Error bars depict standard error of the mean. D : Influence of drug intervention on decodability ( L-DOPA − Placebo ) shown for the RSC and hippocampus 
and split by age groups. Values higher than zero indicate higher decoding accuracy in the L-DOPA condition. Bars reflect group means and error bars reflect SEM. 
Black dots show individual values of each participant. 
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ain effect of intervention ( 𝜒2 (1) = 0 . 027 , 𝑝 = 0 . 869 ) nor any other main
ffects. Post-hoc tests confirmed that direction decodability in motor
ortex under L-DOPA was not significantly different from decodability
nder placebo, regardless of session order ( 𝑡 (74 . 9) = −1 . 519 , 𝑝 = 0 . 133 ,
nd 𝑡 (74 . 1) = 1 . 202 , 𝑝 = 0 . 233 , L-DOPA – Placebo and Placebo – L-DOPA,
espectively). 

.3. Relations between task performance, L-DOPA and direction decoding 

Following up on the above results, we asked whether neural direction
ncoding was related to task performance, and whether this relation was
ffected by L-DOPA. We therefore investigated the link between session-
pecific decoding accuracy and task performance (spatial distance error)
n the last trial, in addition to age group and intervention. Because per-
ormance on the last trial was highly confounded with age group (see
ig. 2 ) performance values were demeaned within each age group to
nvestigate effects unrelated to age-specific performance differences. 

A model within the EVC revealed a significant main effect of dis-
ance error on the last trial on direction decoding ( 𝜒2 (1) = 7 . 594 , 𝑝 =
 . 006 , 𝑏 = 0 . 040 ; see Fig. 4 A), pointing towards better decoding ac-
uracy with better task performance. The relation between task per-
ormance and EVC decoding also interacted with age group ( 𝜒2 (1) =
7 
 . 921 , 𝑝 = 0 . 048 ), reflecting that the above mentioned relationship was
resent in YA ( 𝐹 (1 , 111 . 03) = 11 . 912 , 𝑝 < 0 . 001 , 𝑏 = 0 . 033 ) and absent in
A ( 𝐹 (1 , 121 . 83) = 0 . 066 , 𝑝 = 0 . 798 , 𝑏 = 0 . 006 , both uncorrected). As ex-
ected the model of EVC decoding accuracy also displayed a main ef-
ect of age group ( 𝜒2 (1) = 40 . 244 , 𝑝 < 0 . 001 ; see results for influence of
-DOPA on decoding accuracy). No effects related to task performance
ere found in the RSC or the HC ( 𝑝 s ≥ 0 . 053 ). 

We next investigated change-change relations, asking whether L-
OPA-related changes in decoding were related to L-DOPA-related
hanges in task performance (see Fig. 4 B). Linear regressions revealed
hat in YA L-DOPA-related changes in direction decoding in EVC were in-
eed positively related to changes in task performance ( 𝐹 (1 , 72) = 6 . 730 ,
 = 0 . 011 , 𝑏 = − . 053 , uncorrected, negative slopes since performance in-
rease means less errors). In OA, this was not the case ( 𝐹 (1 , 72) = 0 . 049 ,
 = 826 , 𝑏 = 0 . 006 , uncorrected). Linear models within the RSC and HC
id not show any significant effects in change-change relations. Hence,
ur results reveal that in EVC better direction decoding was related to
etter task performance. Moreover, the more L-DOPA improved direc-
ion decoding in EVC, the more participants improved on the task from
he place to the L-DOPA session, in particular among younger adults. 

A analysis of nuisance variables in EVC showed that there was
o main effect of session order ( 𝜒2 (1) = 0 . 009 , 𝑝 = 0 . 922 ), although
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Fig. 4. Relationship between decoding accuracy and behavioral performance. A : Relationship between decoding accuracy and log-transformed and demeaned 
distance errors. Shown for the EVC, RSC, and hippocampus separately for both age groups. Dots represent individual participants where OA are shown in white. 
Lines represent linear models of represented subset and are colored according to the ROI and shown in dashed for OA. B : Drug-related change-change relationship 
between decoding accuracy and behavioral performance. Axes show influence of L-DOPA administration by showing the difference in values between the L-DOPA 

session and placebo session. Depiction accordingly to A. Please note that in both, A and B, the slope lines were extended beyond the data points purely to aid visibility. 
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 interaction between task performance and session order emerged
 𝜒2 (1) = 4 . 332 , 𝑝 = 0 . 037 ). A post-hoc test revealed a trend towards dif-
ering slopes depending if L-DOPA was given in the first or second
ession ( 𝑡 (132) = 1 . 904 , 𝑝 = 0 . 059 ) but separate tests within each ses-
ion order did not display any significant relationships between per-
ormance and classification accuracy ( 𝐹 (1 , 143 . 83) = 0 . 607 , 𝑝 = 0 . 437 ,
 (1 , 118 . 80) = 3 . 164 , 𝑝 = 0 . 078 , for L-DOPA – Placebo and Placebo – L-
OPA, respectively). 

.4. Influence of L-DOPA intervention on tuning specificity 

Finally, we investigated whether L-DOPA also affected tuning width,
.e. the how often neural signals encoding nearby directions where con-
used with each other. 

Omnibus analyses across the main ROIs revealed no L-DOPA effect,
 main effect of ROI ( 𝜒2 (2) = 281 . 509 , 𝑝 < 0 . 001 ), and results otherwise
onsistent with those reported below. We therefore immediately report
esults of ROI-specific LMMs. A model of EVC tuning width found no
ain effect of intervention or intervention × age effect. We did find a

ignificant main effect of age group ( 𝜒2 (1) = 20 . 631 , 𝑝 < 0 . 001 ), reflect-
ng lower precision of the fitted Gaussian curves in OA compared to YA
 𝑡 (79 . 7) = −4 . 533 , 𝑝 < 0 . 001 ). The same analyses in RSC and HC showed
o significant main effects of intervention, age, or intervention × age
nteractions. The means of the fitted Gaussian curves in the L-DOPA
ondition are shown in Fig. 5 B. Hence, L-DOPA did not have any effects
n tuning functions in any of the investigated ROIs. 

No nuisance effect of FD, session order, or FD × intervention inter-
ction were found in any ROI-specific model ( 𝜒2 (1) ≤ 0 . 857 , 𝑝 ≥ 0 . 355 ;
2 (1) ≤ 0 . 257 , 𝑝 ≥ 0 . 612 , and 𝜒2 (1) ≤ 0 . 578 , 𝑝 ≥ 0 . 447 , respectively). Ad-
itionally, intervention was not involved in any interaction with dosage
er body weight ( 𝜒2 (2) ≤ 4 . 412 , 𝑝 ≥ 0 . 110 ). Unexpectedly, however, we
ound a significant intervention × session order interaction in the EVC
 𝜒2 (1) = 10 . 713 , 𝑝 < 0 . 001 ; see Fig. 5 A), suggesting that tuning preci-
ion was higher when L-DOPA was administered in the second session
 𝑡 (74 . 0) = 2 . 911 , 𝑝 < 0 . 009 ) compared to when it was administered in the
rst session ( 𝑡 (75 . 2) = −1 . 607 , 𝑝 = 0 . 212 ). No intervention × session order

nteraction was found in any other ROI. 
8 
. Discussion 

In this work we tested the impact of L-DOPA on neural representa-
ions of walking direction in younger and older adults, using a double-
lind, cross-over intervention design. In addition to a classic decoding
pproach, we assessed direction specificity of neural signals, a proxy
or tuning functions, using the relative structure of classifier probability
stimates. Our results revealed that decodability of walking direction
ignals across all ROIs was enhanced following the administration of L-
OPA. Although no interaction between ROI and L-DOPA was found,
ost-hoc analyses hinted numerically at stronger effects in HC and RSC.
nterestingly, however, task performance (spatial distance error) was
elated to EVC direction decoding in younger adults, and L-DOPA re-
ated changes in EVC decoding were related to changes in the same spa-
ial memory measure. Moreover, these results showed that L-DOPA had
omparable effects on HC walking direction signals in both age groups,
ut in the RSC these DA effects were present only in YA. An investiga-
ion of tuning specificity revealed no main effects of L-DOPA or L-DOPA

age group interactions. 
Investigating age group differences, we found higher classification

ccuracy and precision of tuning functions in the EVC of YA compared
o OA, a sign of neural dedifferentiation. No age effects on decoding in
he HPC or RSC were found. These results confirm our previous finding
hat neural representations of walking direction can be found in EVC and
SC, and that strong age-related differentiation is present particularly

n EVC Koch et al. (2020) . We also showed that better EVC classifica-
ion accuracy was related to better performance on task, suggesting an
mportant functional role of this area in our task. 

Importantly, our results also offer a number of novel insights. First,
e show a causal influence of L-DOPA on how walking directions are en-

oded in the brain. No statistical evidence for ROI difference were found,
ut the pattern of results suggests that this effect was mainly driven by
ffects in the HC and the RSC. Hence, further investigations are needed
n this regard. Both areas have been linked to directional and other spa-
ial information ( Burles et al., 2017; Shine et al., 2016; Spiers and Barry,
015 ), and have even been shown to be part of the same dorsal path-
ay involved in visuospatial processing ( Kravitz et al., 2011 ). Addition-
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Fig. 5. Effect of L-DOPA on tuning specificity. A : Precision of Gaussian curves fitted to individual confusion functions in both age groups. Shown separately for 
the L-DOPA and placebo intervention in the EVC, RSC, and Hippocampus. Black dots show values of individual participants. Intervention-specific distributions are 
shown by violin plots. White diamonds depict means. Plots of OA shown in dashed lines for easier distinction. B : Mean Gaussian tuning curves shown separately for 
age groups and intervention (L-DOPA vs. Placebo). ROI separation identical to that of panel A. OA are depicted with dashed lines. Shaded area represents SEM and 
is colored according to ROI. For each participant a Gaussian curve was fitted to the individual confusion function (given by the classifier). The shown mean Gaussian 
curves were obtained by averaging participants’ individual Gaussian curves. 
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lly, both areas display dopaminergic innervation ( Berger et al., 1985;
cNamara and Dupret, 2017 ), and previous reports have linked DA

nd spatial cognition more generally ( El-Ghundi et al., 1999; Granado
t al., 2008; Thurm et al., 2016 ). Notably, hippocampal decoding in the
lacebo session was at chance in both age groups, and only significant
uring the L-DOPA intervention. While the lack of decoding effects un-
er placebo observed here might suggest that the human hippocampus
nder normal circumstances does not bear any information about trav-
ling direction, this interpretation seems unlikely in light of the large
iterature suggesting otherwise (see Spiers and Barry, 2015 , for a re-
iew). We therefore believe that the lack of effect may be due to issues
f statistical power and noise in the data. In contrast to the placebo con-
ition, the significant decoding results in the L-DOPA condition suggests
hat L-DOPA may have amplified existing directional signals in the hip-
ocampus, rather than causing previously non-existent signals to appear
e novo. 

Second, the positive effects of DA on decoding are in line with com-
utational models and empirical findings which suggest that DA affects
euronal gain ( Cohen and Servan-Schreiber, 1992; Li and Rieckmann,
014; Thurley et al., 2008 ). Accordingly, DA’s influence on neural gain
ould lead to a stronger separation between signal and noise, which
ade different stimuli more specific and easier to distinguish for the

lassifier. It should be noted, however, that we did not find any direct
ffects of L-DOPA on neural direction tuning specificity, which measures
ow similar neural patterns are to similar directions. Given the effects of
A on neural gain, we had hypothesized that this measure could be more

ensitive to the effects of our intervention, but this was not the case. One
ossible explanation is that our design lacked the power to fully capture
he neural tuning functions within just one session. Tentative analyses
f EVC and RSC tuning specificity did show DA-related enhancement
nly in participants who received L-DOPA in the second session. We will
iscuss these session-specific effects further below. Third, our study was
et up to ask whether the L-DOPA intervention might reduce age-related
eural dedifferentiation. Virtual walking direction offered a promising
indow to answer these questions since it has previously been shown to
9 
e subject to age-related neural dedifferentiation ( Koch et al., 2020 ) and
he broader domain of spatial cognition has been shown to be highly age-
ensitive ( Lester et al., 2017; Wolbers et al., 2014 ). Age is also known
o cause substantial loss of DA functioning (e.g. Bäckman et al., 2006 ),
nd we speculated that a lower baseline DA availability might magnify
he effects of L-DOPA. Surprisingly, we did not find that the effects of
-DOPA were particularly pronounced in OA. Rather, the HC showed
ge-equivalent effects, and decoding in RSC was in fact enhanced only
n YA. 

Other than individual differences in baseline DA level, task demand
ay also affect the inverted-U function of DA modulation ( Cools and
’Esposito, 2011 ). The spatial navigation task used in our study is quite
emanding, such that YA though have higher baseline DA level could
till benefit from the L-DOPA intervention, whereas in OA the task de-
and may still outweigh the benefit of L-DOPA intervention. While un-

xpected, these results could offer interesting insights into the complex-
ty of how external DA medication might interact with neural differ-
ntiation and compensatory plasticity mechanisms that counteract age-
elated losses. One notable aspect in this regard is that we found no
vidence of age-related dedifferentiation in HC or RSC, which specula-
ively could be a sign of compensatory mechanisms. It seems possible
hat DA interventions might only recover neural specificity in brain ar-
as that are affected by age-related dedifferentiation. Contrary to this
dea, we found no age-related L-DOPA effects in visual cortex, where
edifferentiation was observed – but this might be due to the relatively
ow D2 receptor density in this area ( Lidow et al., 1989 ). Another possi-
ility is that we did not observe age-specific effects of L-DOPA on neural
irection encoding in RSC and HC for the same reasons we did not find
ge-related dedifferentiation in these regions. According to this idea,
ompensatory factors that have mitigated dedifferentiation also affected
he effectiveness of external dopamine administration, for instance be-
ause of changed connectivity. Both ideas remain speculative and fur-
her studies are needed to fully understand how the effects of L-DOPA
nterventions on neural direction encoding interact with age and dedif-
erentiation. 
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Beyond these main implications, a number of interesting observa-
ion arose that warrant further investigation. Although we did not find
ny main effects of session order, we found some indications that ses-
ion order could influence the effect of L-DOPA on neural signals that
nderlie spatial navigation. Age-differences in learning were stronger
hen L-DOPA was administered in the second compared to the first

ession. In addition, we found tuning specificity in EVC and RSC to be
nhanced by L-DOPA only in participants who received the drug in the
econd session. Stronger effects when DA is administered in a second
ession have previously been reported in the context of spatial naviga-
ion ( Thurm et al., 2016 ). The reason why session order effects could
xist in this context are numerous. Garrett et al. (2015) , for instance,
ighlight two possible explanations in the context of DA effects on neu-
al signal variability. One is that previous training may increase the
mount of baseline DA-release, based on findings in rodents ( Owesson-
hite et al., 2008 ). A DA intervention could therefore lead to differing
A-availability depending on whether the participants had already been

rained with the same or a similar task. A second possible explanation
aised by Garrett et al. (2015) is that the environment is either learned
n a state of higher or normal DA-availability. The state of the second
essions will consequently always be mismatched to the first session,
eading to effects of drug administration given the respective session.
elated to the first idea, we speculate that in our case general learning
bout the environment in a first placebo session could have established
eneficial baseline for the effects of L-DOPA in the second session. Un-
ortunately, the present design is unfit to address such explanations and
urther evidence is warranted. 

One open question is why the effect of L-DOPA on decoding in HC
nd RSC was not reflected in task performance, where no L-DOPA effect
as found. In addition to generally small effects on neural representa-

ions, another explanation might be that task performance did not only
epend on direction signals, but also relies on distance estimation and
sing distal and local cues, processes which themselves are affected by
ge ( Schuck et al., 2015 ). The task might therefore have been too com-
lex to provide a suitable behavioral measure. Interestingly, however,
e did find some relationships between behavior and the specificity of
irectional information in visual cortex, indicating that neural markers
ight have different relations to performance in our task. This is shown

y some of our results that also offer insights about age-related changes
n the context of spatial navigation more generally. The results in the
VC showed that OA exhibit lower precision of directional tuning func-
ions. This is a replication of findings reported in an earlier study using
 similar analysis approach ( Koch et al., 2020 ). During natural naviga-
ion and the perception of direction vision plays a major role as it allows
table directional signals ( Goodridge, 1998 ) and corrects and prevents
he accumulation of errors during path integration ( Jeffery, 2007 ). A
ess precise visual signal in OA could therefore influence spatial sig-
als downstream and contribute towards the pronounced difficulties OA
ave in spatial tasks. Interestingly, we also found a relationship between
VC direction decoding in YA and performance on task, suggesting bet-
er spatial memory performance if walking direction could be decoded
ith higher accuracy. While this concurs with previous reports of a link
etween (non-spatial) memory and signal specificity ( Koen et al., 2019;
ommer et al., 2019; St-Laurent et al., 2014 ), previous studies have
ostly reported such links in older adults. Future work is required to

urther understand how age-related loss in specificity of visual signals
ight be involved in spatial cognition. That said, a simple propagation

f less specific visual signals to the retrosplenial complex network seems
nlikely, since there was no evidence for age-related dedifferentiation
n the RSC or HC. 

We would also like to point out a set of limitations that should be
onsidered when interpreting the results of the presented work. While
ur results were statistically significant, and decoding performance com-
ared to chance was broadly in line with previous studies (e.g. Koch
t al., 2020; Shine et al., 2019 ), the reported classification of direction
ignals remained numerically low in all ROIs. The substantial amount
10 
f wrong predictions of the classifiers even in the intervention session
ould indicate that effects of L-DOPA were small. We speculate that
ther factors influenced the BOLD signals that are unrelated to direc-
ion, including aspects related to vasculature, context or learning sen-
itivity of neural signals, and mixed selectivity of neural populations.
n combination with a rather small number of training examples within
ach intervention session, this could explain the weak classifier perfor-
ance. A second limitation is that the reported results come from a

argely male sample, which questions whether our results generalize to
omen. Given the small sample size, the presented data also does not al-

ow to draw conclusions regarding sex differences in spatial navigation,
hich have been reported in some (e.g. Andersen et al., 2012; Spriggs

t al., 2018 ; see Brake and Lacasse, 2018 for a review), but were ab-
ent in other studies ( Bohbot et al., 2012; Levy et al., 2005; Rodgers
t al., 2012 ). Another unexpected result was that we found substantial
ecoding performance in motor cortex. This is surprising given the fact
hat no one-to-one mapping between motor actions (joystick movement)
nd walking direction should exist (participants used the same forward
ovement on the joystick to walk forward, regardless of the direction

hey traveled in). One possible explanation is that joystick tilt was sys-
ematically related to travel direction, which would explain why this
rain area carried direction information. Indeed, given that brain corre-
ates of sensorimotor signals are often stronger and less noisy than cor-
elates of abstracted quantities, the relative strength of decoding seems
ess surprising. In addition, this result may also speak to the fact that
patial navigation is supported by a wide network of brain areas, and
ence a true control area might be less readily available. Of note, this
ecoding does also not seem to reflect an inflated chance baseline, since
ther areas showed no or significantly lower decoding, and no effect of
-DOPA in motor cortex was found (see SI Section 2 ). Future work is
equired to address these limitations and to in turn build a more concise
ramework in which our findings can be embedded. 

In summary, we provide first causal insights into the role of
opamine in the encoding of spatial direction signals in the human
rain. In addition, as suggested by exploratory data analysis, this en-
ancing effect of dopamine on the specificity of neural signals involved
n navigation might mainly be present in the hippocampus and in the
etrosplenial cortex, albeit there exclusively in younger adults. In com-
ination with the replication of our own previous results ( Koch et al.,
020 ), these findings offer insights into the neural processes underlying
patial navigation in the human brain, and how they are affected by age
ore generally. 
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