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Abstract

Surprise is a key component of many learning experiences, and yet its precise computa-

tional role, and how it changes with age, remain debated. One major challenge is that sur-

prise often occurs jointly with other variables, such as uncertainty and outcome probability.

To assess how humans learn from surprising events, and whether aging affects this pro-

cess, we studied choices while participants learned from bandits with either Gaussian or bi-

modal outcome distributions, which decoupled outcome probability, uncertainty, and sur-

prise. A total of 102 participants (51 older, aged 50–73; 51 younger, 19–30 years) chose

between three bandits, one of which had a bimodal outcome distribution. Behavioral analy-

ses showed that both age-groups learned the average of the bimodal bandit less well. A

trial-by-trial analysis indicated that participants performed choice reversals immediately fol-

lowing large absolute prediction errors, consistent with heightened sensitivity to surprise.

This effect was stronger in older adults. Computational models indicated that learning rates

in younger as well as older adults were influenced by surprise, rather than uncertainty, but

also suggested large interindividual variability in the process underlying learning in our task.

Our work bridges between behavioral economics research that has focused on how out-

comes with low probability affect choice in older adults, and reinforcement learning work

that has investigated age differences in the effects of uncertainty and suggests that older

adults overly adapt to surprising events, even when accounting for probability and uncer-

tainty effects.

Author summary

Learning is a skill that requires a finely adjusted process of extracting just the right infor-

mation from past experiences to benefit future choices. As we age, this process begins to

alter, changing how we react to ambiguity, risk or uncertainty. One challenging aspect of

learning is that sometimes we will encounter very surprising consequences of our actions,

raising the question whether we should assign more or less weight to these events. We

know relatively little about how humans react to these surprises and how age affects learn-

ing from surprising outcomes. To learn more about this question, we asked 51 older and
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51 younger adults to play a reinforcement learning task that confronted them with sur-

prising outcomes and analyzed their choices. We found that both age groups showed

heightened sensitivity to surprising outcomes that resulted in distinctive behavioral

adjustments. Notably, older adults weighted these surprising events more than younger

adults. Comparing the choices of participants with computational models that incorpo-

rated surprises in different ways, we found a model that modulated its learning with the

amount of surprise to mimic participants’ choices best. The results help to better under-

stand the role of past surprising events during learning in older and younger adults.

Introduction

Aging changes how humans learn and decide in ways that can affect important life choices,

such as monetary or health decisions [1–4]. Older adults for instance differ in how their deci-

sion making incorporates risk [5, 6], ambiguity [2], uncertainty [3], feedback [7–9], or explicit

memory [10, 11]. Two common factors that play a role in all of these findings are how rare

events are, and how much they differ from events encountered otherwise.

How humans react to rare events has been the focus of much interest. Seminal work on

prospect theory [12, 13] has for instance shown that college-aged adults overweight events

with low probabilities during decision making, and perceive relatively less gains with larger

outcomes, which could explain why people are often uncertainty-averse in the gain domain

[14]. Differential processing of rare outcomes can also influence decision making informed by

past events, since memory tends to be better for values at the edges of distributions [15–17].

Memory for events associated with less expected outcomes (which are often rare too) also

appears to be better [18, 19].

Past aging research has studied related but not identical aspects of decision making [3, 5,

20]. Nassar et al. [3], for instance, investigated learning of older and younger adults in chang-

ing environments characterized by so called non-stationary bandits, i.e. a scenario in which

the rewards associated with different actions change over time. They specifically focused on

how participants modulated their learning rates in response to outcome deviations that

reflected a true shift of the bandit mean (due to an environmental change point) versus merely

a random deviation due to variability around each bandit’s mean, which represent a mix of

outcome probability and deviation from previous events. Nassar et al. suggested that in this

setup uncertainty processing, but not surprise processing, is impaired in older relative to youn-

ger adults [3]. These effects might arise from a simplified learning strategy that reduces cogni-

tive resource expenditure, making older adults less sensitive to smaller prediction errors that

can be attributed to uncertainty compared to larger and more surprising prediction errors

[21]. However, this line of work leaves open the question of how surprise affects learning in

older adults when the surprising event does not signal a fundamental change point and, there-

fore, dictates a lower learning rate [22].

Other work in the domain of decisions from description suggests that older adults over-

weight low probability events in the gain domain (i.e. show more risk-seeking behavior), com-

pared to younger adults [20]. This work has focused purely on how the stated probability of

events affects decision making. In contrast, when decisions are based on learned probabilities,

referred to as decisions from experience [23, 24], age-related differences in choice behavior

and risk-taking often differ compared to decisions from description, where age differences in

risk preferences depend on the exact choice scenario [5].
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Therefore, we aimed to examine age-related learning and decision making differences in an

experience-based choice task with stationary outcome probabilities. We specifically studied

the effects of outcomes that are highly surprising, i.e. differ significantly from most previous

outcomes. We stipulated that surprise could affect the learning rate with which participants

update their expectations in a trial and error setting, even when dissociated from the effects of

probability. In line with previous work, we expected that surprise would have a greater effect

on older adults, as compared to younger adults. Taking a reinforcement learning (RL) perspec-

tive [25, 26], we conceptualized surprise as the absolute prediction error (PE), i.e. the deviation

of an observed outcome from the current expectation. While standard RL theory assumes that

prediction errors are weighted by a constant learning rate parameter α 2 [0, 1], we hypothe-

sized that learning rates are modulated by the absolute PE, i.e. surprise of a given trial. Our

idea specifically predicts that surprise impacts learning immediately, i.e. affects the update on

the very same trial that caused the surprise. In turn, this is akin to a process that gives more

weight to an event not based on its probability, but on its associated surprise which dissociates

our proposal from previous work where learning rates only ramp up future, but not current,

learning [27], and prediction error magnitude is often confounded with outcome probability

[27–31].

We designed a novel task in which participants learned from outcomes drawn from a sta-

tionary bimodal distribution (a non-changing distribution with two peaks) that yielded a num-

ber of benefits when studying the effects of surprise on learning. First, compared to changing

environments [3], stationary bandits reflect a much simpler case that arguably occurs quite

often in everyday life, and allowed us to work with much simpler formulations of surprise and

uncertainty (see below). Second, a bimodal distribution has a second peak of outcomes that

are far from the mean, but still relatively probable, which makes it possible to decouple an

event’s probability from its surprise. In unimodal Gaussian distributions, prediction errors,

outcome probabilities, and magnitude are correlated. However, this correlation is lessened or

absent in long-tailed or bimodal distributions, where outcomes with a relatively small differ-

ence from the mean can have a probability as low as outcomes much further from the mean.

Using this setup also makes it possible to simultaneously differentiate surprise from uncer-

tainty. We defined uncertainty according to Platt & Huettel [14] as the absence of knowledge

about which choice will produce which outcome. To differentiate surprise from uncertainty,

we hence contrasted the trialwise fluctuating absolute PE with the trailing average of surprise,

which reflects how much uncertainty participants experienced in the past [3, 27, 32]. Finally,

using our task we could also investigate whether any form of asymmetric learning from posi-

tive versus negative prediction errors [33, 34], which often has been observed in an aging con-

text [7, 35], played a role in explaining age differences in learning.

Materials and methods

Ethics statement

All participants provided informed consent and the study was approved by the ethics commit-

tee of the Max Planck Institute for Human Development (approval number: N-2020-01).

Participants

Participants were recruited using Prolific (www.prolific.co). We collected data of 64 younger

(18–30 years, mean age 24.42) and 56 older adults (50–73 years, mean age 57.18). Eighteen par-

ticipants (13 younger, 5 older) were excluded from all analyses due to insufficient task perfor-

mance across both runs; 17 participants (12 younger, 5 older) did not show significant above-

chance performance in the easiest task condition (using a binomial test against chance in low
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vs. high bandit trials, see below), and one young adult had a disproportionate amount of errors

in guided choice trials compared to the rest of the sample (more than three SDs from mean of

distribution). The effective sample of choice trials therefore consisted of 102 participants (51

younger, 51 older).

To ensure high data quality in the analyses of the estimation trials, of which only 16 existed

per run (see below), we applied additional exclusion criteria exclusively for these analyses. Spe-

cifically, data from runs in which a participant did not show any overall difference in estimates

of the low versus high bandit, or did not show any variance in their estimates, were excluded.

This resulted in the exclusion of 12 runs from 10 participants for indistinguishable low vs. high

estimates (no sig. difference in paired t-test) and of 2 runs from one participant due to no vari-

ance in submitted answers. Estimation-based analyses therefore included data of 99 partici-

pants (49 younger, 50 older), out of which 8 participants had only one remaining run.

The experiment lasted about 60 minutes, participants were remunerated with a baseline

payment of 7.5 GBP plus a performance based bonus of up to 3 GBP (see below).

Value-based learning task

The task consisted of two runs of a value-based choice task. In each run participants learned

about three different bandits that provided rewards drawn from distributions with a low,

medium or high mean (outcome range 1–100 points, details see below). We will refer to these

bandits as the low, mid, and high bandit, respectively (see below for details, and Fig 1B). Each

bandit was indicated by a different Japanese Hiragana symbol (randomly assigned across par-

ticipants). Participants had to learn about each bandits’ value through trial and error and did

Fig 1. Task and design. A: Schematic of task procedure. The first three steps show the procedure of a free choice or guided choice trial. After a brief

inter trial interval of 1000 ms participants were confronted with a choice between two bandits. In free choice trials participants could freely choose

either of both bandits. In guided choice trials participants were instructed to choose the framed option. After a choice was made the outcome of said

choice was displayed for 1000 ms. Occasionally, participants had to complete estimation trials in which they had to estimate how many points they will

get when choosing each bandit as well as the range in which the points may vary. B: Schematic of reward distributions. Each bandit was linked to one of

three reward distributions: one with a low, medium, and high average reward. Means of subsequent distributions were equidistant (16.66). While the

low and high distribution were Gaussian the mid distribution was bimodal with the two modes being 35 points apart. The smaller mode was always to

the left of the greater mode and made up 20% of possible rewards. The absolute means of distributions varied between runs while the distance between

distributions and distance between modes of the mid distribution never changed.

https://doi.org/10.1371/journal.pcbi.1012331.g001

PLOS COMPUTATIONAL BIOLOGY Influence of surprise on reinforcement learning in aging

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012331 August 14, 2024 4 / 25

https://doi.org/10.1371/journal.pcbi.1012331.g001
https://doi.org/10.1371/journal.pcbi.1012331


not receive any information about reward distributions or reward schedules besides the

obtained points. Points collected were translated into a monetary bonus of up to 3 GBP at the

end of the experiment. Prior to the task all participants went through identical, text-based

instructions and a short training period that conveyed information about the different trial

types (see below), but not the differences in the underlying distributions.

Reward distributions. To answer our main question about how participants learn from

surprising outcomes characterized by a large PE, we manipulated the reward distributions of

the different bandits (see Fig 1B). Rewards of the low and high average bandit were drawn

from regular Gaussian distributions with a standard deviation of 5.55 points. The means of

both Gaussians were fixed within each run and always chosen in a way that they were 33.33

points apart. The rewards of the mid bandit followed a bimodal mixture distribution com-

posed of two Gaussians (each sd = 5.55 points): a main mode (80% of outcomes) and a smaller

mode (20% of outcomes) with a distance of 35 points. The total mean of the mid bandit was

equidistant from the means of the low and high bandits, 16.66 points away. Notably, the

smaller mode of the mid bandit was in fact lower than the mean of the low bandit (despite the

general mean of the mid bandit being higher). This asymmetrical outcome distribution of the

mid bandit was central to the idea of the task: while the medium bandit delivered higher out-

comes than the low bandit on average, in 20% of choices it produced a low outcome that was

sampled from the lower mode of the distribution. We therefore expected that over- or under-

weighting of surprising outcomes would specifically bias participants’ decisions between and

estimations of the low and medium bandit.

At the start of a the second run a separate set of three bandits was introduced. The absolute

means of each distribution changed between runs by up to 14.8 points, while their relative

structure (distance between means, distribution shapes) remained the same. Participants were

made aware that outcomes and symbols were changed at the start of the new run, and that

rewards were constrained to lie between 0 and 100 points.

Free/guided choice trials. On each choice trial participants had to decide between two

bandits, ensuring that all pairwise bandit combinations (low-mid, mid-high, and low-high)

appeared with equal frequency within each run. In free choice trials (192 of 240 trials per run),

participants could freely chose between the offered bandits within a maximum of 3000 ms.

After a choice, the outcome was displayed for 1000 ms, followed by a fixation cross (1000 ms)

to allow for preparation for the next trial. Not responding within the maximum of 3000 ms

resulted in 0 points and a hint to respond faster. To make sure all bandits were sampled regu-

larly, the remaining trials consisted of guided choice trials (48 of 240 trials per run). In these

trials, participants were instructed to choose the bandit that was marked with a frame. Choices

of the unmarked bandit resulted in no points and a reminder to choose the framed option

without displaying the bandit’s outcome before participants moved on to the next trial. All

other task aspects were kept the same and correct choices awarded points as usual. Choice tri-

als are illustrated in Fig 1A at the top.

Estimation trials. Each run also included 16 estimation trials in which participants were

asked to estimate how many points would be obtained from a bandit, and to which degree the

outcomes may vary (Fig 1A, bottom). Estimates were collected for all three bandits and had to

be provided by adjusting two independent sliders that ranged between 0 and 100 points for the

average estimate and from −50 to +50 for the range estimate (with a step-size of 1, and a maxi-

mum decision time of 10 seconds). No feedback about their estimation was provided and par-

ticipants could not earn points for accurate estimations. Estimation trials occurred at pseudo-

random times within the run, assuring that there were no estimation trials within the first 10

choice trials, all estimation trials were at least 10 choice trials apart (on average, estimation tri-

als were separated by 14.98 choice trials), and 4–5 estimation trials occurred immediately after
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a guided choice trial of the mid bandit that produced an extreme, low outcome drawn from

the smaller mode of the bimodal distribution (see below).

Statistical analyses

Behavioral analyses were done using linear mixed effects (LME) models with fixed effects of

interest, such as bandit comparison (which bandits were presented to choose from, 3 levels,

low-mid, mid-high, low-high), run number (2 levels), and age group (2 levels: older vs. youn-

ger adults). Models also included a random effect (intercept) of participant. The first of these

models investigated overall performance (percentage of correct free choice trials) taking the

form of

Performancefree ¼ b0 þ g0;k þ b1 GroupAge þ b2 Run þ b3 CompBandit þ

b4 GroupAge∗Run þ b5 GroupAge∗CompBandit þ

b6 Run ∗CompBandit þ b7 GroupAge ∗Run ∗CompBandit ;

ð1Þ

where β0 and γ0,k denote global and subject-specific intercepts, β1 to β3 represent the fixed

main effects of age group, run number, and bandit comparison, and β4 to β7 their respective

interactions. A similar model was used to investigate choice speed (reaction times; all reaction

times were collected in milliseconds and log-transformed before entering any analyses, equa-

tion identical to right hand side of Eq 1). To investigate the effect of large prediction errors, we

analyzed free choices in low-mid trials before and after participants encountered a surprising

outcome of the mid bandit’s lower mode (below the distributions 20th percentile, on average

n = 4.71 and n = 4.44 choices per run/participant, respectively). This was compared to choices

in low-mid trials following less surprising outcomes from the 20th to 40th percentile of the dis-

tribution. The model for this analysis was specified as

pðChoicemidjTriallow-midÞ ¼ b0 þ g0;k þ b1 Position þ b2 GroupAge þ b3 Run þ

b4 Position ∗GroupAge þ b5 Position ∗Run þ

b6 GroupAge ∗Run þ b7 Position ∗GroupAge ∗Run

ð2Þ

and included a fixed effect of position relative to the large surprise, i.e. absolute PE (pre vs.

post, β1), in addition to the fixed effects of age group (β2) and run (β3), their interaction terms

(β4 to β7) as well as a global and participant-specific intercept (β0 and γ0,k, respectively).

Statistical inference was done through χ2 likelihood ratio tests to determine whether the

inclusion of a particular fixed effect in the model provided a significantly better fit (R package

lme4 [36]). Posthoc test were done using the emmeans package for R [37] and were cor-

rected for multiple comparisons applying Šidák correction.

Analyses of estimation trials. To check if estimates of each bandit deviated from their

true average outcome, participant responses were compared to the running mean of collected

outcomes of each bandit. Differences between a bandit’s true average and participants’ esti-

mates were calculated to provide a measure of under- or over-estimation. Since learning in the

initial trials will cause the estimated averages to fluctuate (in ways that could depend on partic-

ipants unknown a-priori expectations of average outcomes), we considered only the second

half of estimation trials for further analysis. Over- or underestimations were assessed using

one-sample t-tests separately for each bandit and age group. P-values were Bonferroni-Holm

corrected.
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We also compared the difference in estimates of two bandits in regard to their objective

running average difference. Because our main hypothesis concerned biases in the mid bandit,

we focused on the estimated differences between the low and mid bandits, and mid and high

bandits. Subtracting the estimated differences from the corresponding objective differences

yielded a measure of distortion in perceived distance between bandits for each comparison,

whereby values lower than zero represent an underestimation of distance. This measure of dis-

tortion was analyzed using a LME model specified as

DistortionEstimate ¼ b0 þ g0;k þ b1 GroupAge þ b2 Run þ b3 Option þ

b4 GroupAge∗Run þ b5 GroupAge∗Option þ

b6 Run ∗Option þ b7 GroupAge ∗Run ∗Option

ð3Þ

with fixed effects of age group (β1), run (β2), and available options (low-mid vs. mid-high, β3)

as well as the respective interaction terms (β4 to β7) and a global and participant-specific inter-

cept (β0 and γ0,k, respectively).

Computational models

We applied four different RL models, plus two combination models, to participants’ choice

data, (details see below in the Results section). All models were based on a delta-rule updating

mechanism that yielded a recency-weighted value estimate of each bandit, but differed with

respect to the assumptions about the learning rate and the influence of uncertainty on choice.

Rescorla-Wagner model. As a baseline model we used a standard Rescorla-Wagner
model (RW model, [38, 39]), in which the value of each bandit is the recency-weighted average

of associated rewards, as described in the Results section below (Eq 8). We used a logistic

regression approach for fitting the RW value predictions to participants choices. Specifically,

the probability to chose bandit k over bandit l, given the model values was:

pðkjV�;tÞ ¼
1

1þ e� ðb0þb1Vl;tþb2Vk;tÞ
¼ s b0 þ b1Vl;t þ b2Vk;t

� �
; ð4Þ

where σ(�) indicates the logistic function and the parameters β0, β1 and β2 reflect the intercept

and the influence of the values of bandits k and l, respectively, determined using maximum

likelihood estimation, as implemented in function glm in R (R stats; [40]).

We performed some sanity checks to confirm that our baseline RW model worked in prin-

ciple and participants’ choices conformed with reinforcement learning mechanisms. As

expected, the probability of choosing the right bandit was positively influenced by the value of

the right bandit calculated by the RW mechanism in both age groups (avg. β younger: 0.16 [CI:

0.12–0.20], t(50) = 7.99, p< .001; older: β = 0.18 [0.15–0.22], t(50) = 10.40, p< .001), while

the reverse was true for the left bandit (both t(50) < –8.96, p< .001). The betas of the right

and left bandit values correlated with the average percent of correct choices in low-mid bandit

comparisons at r = .26 (t(100) = 2.74, p = .015) and r = – .22 (t(100) = – 2.26, p = .026, Bonfer-

roni-Holm corrected), for the right and left bandit, respectively. Hence, participants per-

formed the task in a manner generally consistent with reinforcement learning models.

Valence model. Previous studies have presented compelling evidence for differences in

the way humans learn from positive and negative feedback [41–43] such as positivity or nega-

tivity biases [44–46]. Older age has been shown to influence this difference [35, 47]. Since the

form of the bimodal distribution of the mid bandit introduced large prediction errors that

were predominantly negative and we investigated different age groups we wanted to quantify

the influence of prediction error valence on choices. An additional model therefore resulted
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from modifying Eq 8 so that the learning rate could differ depending on the valence of the pre-

diction error, as specified in the results section (Eq 9).

Value estimates are related to choices in the same manner used for the RW model (Eq 4).

Uncertainty model. To test whether recently experienced uncertainty also influenced

choices (in addition to values), we constructed the Uncertainty model, updating the recency-

weighted uncertainty of each bandit [27] as described in the Results section below (Eq 10).

Note that the PE associated with a particular bandit only gets updated when that bandit was

sampled, while the trial counter t refers to all trials. In the Uncertainty model, the uncertainties

U were then added to the logistic regression:

pðkÞ ¼ sðb0 þ b1Vl;t þ b2Vk;t þ b3Ul;t þ b4Uk;tÞ ð5Þ

Surprise model. This model asked whether observing surprising outcomes would influ-

ence participants’ learning rates, compared to observing less surprising outcomes. The core of

the model is the variable learning rate α*, which is reported in the Results section (Eq 11). This

PE dependent learning rate was used to update values in the standard fashion, i.e.

Vk;tþ1 ¼ Vk;t þ a∗ PE t

¼ Vk;t þ l þ
2

1þ cPE
� s ðu � lÞ

� �

PE t

ð6Þ

Note that in case l> u the function specifies a decreasing function and v.v. if u> l, and the

slope parameter allowed to accommodate a wide range of relationships between the learning

rate and the predictions error. cPE reflects an absolute PE term defined as

cPE ¼
2

1 þ e� 0:1j PEj
� 1 ð7Þ

and scaled by the maximal possible PE value of 60. The updating detailed in Eq 11 altered the

estimated values. These values were then used to predict choices as in the baseline model (Eq

4).

Combined models. Finally, we tested for the combined influence of uncertainty and pre-

diction-based learning on choices by entering the new values as estimated by either the

Valence model or the Surprise model jointly with the uncertainties into the logistic regression

(as in Eq 5) to explain choices. This resulted in two additional models (Unc+Valence and Unc
+Surprise) that jointly considered the influence of uncertainty and the two different models of

learning specified in Eqs 11 and 9. We also implemented an additional model that combined

the functionality of the Surprise model with that of the Valence model potentially capturing if

surprise from positive or negative prediction errors differently affects learning. This model did

not provide any superior fits compared to the winning models reported here. Details can be

found in the SI.

Model fitting

Parameter fitting consisted of fitting the β coefficients of the logistic choice model, and the

parameter(s) of the learning rate function and, if included, the uncertainty function. Fitting

minimized the negative log-likelihood of each models’ choices using a nested approach akin to

a coordinate descent approach, see [48]. Specifically, the parameters of the learning rate func-

tion (simply α in the RW and Uncertainty models, but [αpos, αneg] and [l, u, s] in the Valence
and Surprise models, respectively) were set in an outer loop using a non-linear search method
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[49, NLOPT_GN_DIRECT_L] implemented in the nloptr package [50] in R. The β coeffi-

cients were then set using maximum likelihood estimation in an inner loop, and the resulting

choice likelihood was used to inform the non-linear search for the outer parameters.

Importantly, all models were fit solely to participants’ free choices in low-mid bandit com-

parisons. This was done to specifically capture the behavioral effect in response to the one-

sided bimodal distribution of the mid bandit. Additionally, since the value estimate of each

bandit was initialized with the fixed value of 50, we excluded the first three trials of each bandit

from the likelihood calculation to avoid artificially large unsigned prediction errors during ini-

tial updating that do not reflect surprise. Guided-choice and estimation trials were not used

during the minimization process. Parameters were constrained to lie in the intervals given

above. To avoid overfitting, model fits were compared using corrected Akaike Information

Criterion (AICc, see [51]) scores, a metric that more strongly considers the amount of trials

used.

Model recovery and posterior predictive checks

Following best practices as specified by Wilson and Collins [52] we quantitatively assessed the

model fitting process by conducting full model and parameter recovery (see S1 Text, Figs B

and C in S1 Text). Furthermore, a posterior predictive check was performed to validate the

winning model (see Fig D in S1 Text). First, we used each model to simulate choice behavior

using the reward schedules and fit parameter values of each participant, effectively creating a

full data set as if participants behaved perfectly according to each model. To quantify how well

the model captures individual decision processes and to assess its plausibility, we repeated the

above reported analysis of free choices in low-mid trials before and after the model encoun-

tered a surprising outcome of the mid bandit (see Eq 2), but on the artificial data.

Results

A total of 51 younger (18–30 years, avg.: 24.4) and 51 older (50–73 years, avg.: 57.2) participants

performed a value-based choice task online. All details are described in the Methods, but we

will briefly repeat the core aspects of our task and models here. The task consisted of two runs á

240 trials in which participants were asked to learn about the value of three bandits, each indi-

cated by a different Hiragana symbol (Fig 1A). Outcomes ranged between 0 and 100 and the

averages of the three bandits were set such that one bandit had a low, one a medium and one a

high mean, each differing by 16.6 points on average from its neighbor (Fig 1B). Participants

learned about the average outcomes through free choice trials in which they could select one

out of two offered Hiragana symbols and received an outcome sampled from the corresponding

bandit’s distribution (192 trials/run, Fig 1A). This produced three trial types, which reflect the

pair of bandits participants could choose from: low-mid trials featured bandits with low and

medium means; low-high and mid-high trials offered the other respective bandit pairs.

Bandits not only differed in their mean, but also in their distribution. While the low and

high bandits had symmetrical Gaussian outcome distributions (SD = 5.55 points), the mid

bandit had a bi-modal distribution with a main mode that generated 80% of outcomes and

smaller mode that generated 20% of outcomes (Fig 1B). This crucial manipulation allowed us

to investigate how sensitive learning was to outcomes that had a large deviation from previ-

ously experienced outcomes, but were not the most rare outcomes. To provide enough experi-

ence with each bandit’s outcome, we asked participants on 20% of trials to select a computer-

determined bandit instead of choosing freely (forced choice trials). We also asked participants

to directly provide an estimate of each bandit’s value using a slider (16 trials / run, Fig 1A,

bottom).
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Choices and reaction times in different bandit comparisons

We first asked whether participants learned to make reward-maximizing choices, and whether

the proportion of correct responses in free choice trials differed between available options.

Task performance of participants is displayed in Fig 2A and was consistently above chance

(see Fig A in S1 Text, for additional detail). A corresponding LME model of correct choice

probabilities revealed effects of run (χ2(1) = 12.061, p = .001, post hoc test: t(500) = – 3.473,

p< .001) and bandit comparison (low-mid vs. mid-high vs. low-high, χ2(2) = 155.332, p<

.001), but no main effect of age group (χ2(1) = 3.392, p = .066). This reflected that performance

increased across runs (Fig 2B), and that participants performed best on low-high trials (92.6%

correct choices), followed by mid-high trials (87.2%) and low-mid trials (79.2%, see Fig 2C).

Note that we observed a performance difference between mid-high and mid-low trials (t(500)

= 7.420, p< .001) even though the difference in average reward between both bandit pairs was

the same, and any value compression for numerically higher outcomes [53, 54] should have

the opposite effect (the means in low-mid trials, 30 vs. 50, should be relatively easier to distin-

guish than the means in mid-high trials, 50 vs. 70). While a standard analysis revealed no

group × bandit interaction (χ2(2) = 2.380, p = .304), this was likely caused by two relatively

influential observations in the older age group (see Fig 2D, Cook’s distance > 0.1). A direct

comparison of the difference between low-mid vs. mid-high trials between older and younger

adults using a robust regression approach indicated older participants had a greater perfor-

mance decrease in low-mid relative to mid-high trials (robust regression with bisquare

weights, t(100) = – 2.735, p = .010).

A similar pattern was found in participant’s RTs. An LME model of log-transformed RTs

also showed a main effect of bandit comparison (χ2(2) = 457.891, p< .001). Low-mid trials

were associated with higher RTs compared to mid-high trials (t(500) = 16.121, p< .001),

while the fastest RTs were observed in low-high trials (mid-high vs. low-high: t(500) = 4.126,

p< .001). The same LME model also showed a main effect of age group (χ2(1) = 31.356,

p< .001) as well as an age group × bandit comparison interaction (χ2(2) = 16.360, p< .001).

This reflected that older adults in general reacted slower than younger adults (t(100) = 5.600,

p< .001) and that age differences in log-transformed RTs were more pronounced in low-mid

trials (age difference = .236, t(123) = 6.589, p< .001) compared to mid-high trials (age differ-

ence = .164, comparison of age differences between low-mid and mid-high: t(500) = – 3.639,

p< .001; see Fig 2F) and low-high trials (t(500) = – 3.349, p< .001).

Effects of highly surprising events on subsequent choices

To better understand how participants were influenced by surprising outcomes, we investi-

gated the immediate effect of outcomes that elicited large absolute PEs in the low-mid bandit

on subsequent choices. Comparing the proportion of mid bandit choices in low-mid trials

immediately before vs. after a surprising outcome (below 20th percentile of mid bandit, see

Methods) revealed that older participants chose the mid bandit less often following large abso-

lute PEs, which occurred when outcomes where drawn from the second mode of the mid ban-

dit’s bi-modal distribution (pre-post difference in older adults: 17.6%; t(299) = 5.458, p < .001,

see Fig 3A). This was less the case for younger adults (6.6%; t(299) = 2.052, p = .080, Šidák cor-

rected; position × age group interaction: χ2(1) = 5.844, p = .016; main effect pre vs. post across

age groups: χ2(1) = 28.160, p< .001; 82.2% vs. 70.1%). The model of the immediate effect of

surprising outcomes also indicated a significant main effect of run (χ2(1) = 12.438, p< .001)

that reflected a general increase in mid bandit choices in low-mid trials in the second run (t

(299) = – 3.530, p< .001). No evidence of a main difference between age groups in mid-bandit

choices on average was found (χ2(1) = 1.363, p = .243). Given that risk aversion would lead
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Fig 2. Task performance. A: Percentage of correct free choice trials (i.e. choosing bandit with higher average outcome,

y-axis) over trials within run (bins of 40, x-axis). Data shown separately for each condition/bandit combination (low-

mid, mid-high, low-high, see colors/legend). Dashed line indicates chance-level performance and error bars show

standard error of the mean. B: Average free choice accuracy for each run, irrespective of presented bandit

combination. Each dot corresponds to one participant. C: Proportion of correct responses on free choice trials across

runs, separately for condition/bandit combination and for older (blue) vs. younger adults (grey, see legend). White

diamonds represent group averages, each dot one participant. D: Difference between error rates in the low-mid vs.

mid-high trials, separately for each age group. Values larger than zero indicate more errors in low-mid trials compared
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participants to avoid the more variable mid bandit in general, it appears that risk aversion (or

age differences therein) cannot explain the result reported above. We also checked whether the

age difference could reflect a general reaction towards below-average outcomes of the mid

bandit by repeating the same analysis for low-mid trials immediately before and after less sur-

prising outcomes (mid-bandit outcomes between the 20th and 40th percentile). No effects of

either pre vs. post or age group were found (χ2(1) = .541, p = .462 and χ2(1) = .968, p = .975,

respectively, see Fig 3B).

Value estimates

We next checked for systematic biases in estimation trials by asking how accurate participants’

value estimates were relative to the ground truth running average of each bandit. To avoid

effects of non-stationarity during early learning, analyses were restricted to the second half of

each run. Comparing the across-run average estimates vs. ground truth separately for each

to mid-high trials. Colors as in panel C. White diamonds represent group averages, each dot one participant. Note that

average reward of the mid bandit was equidistant to the low and high bandits. E: Average log reaction times on free

choice trials across runs, separately for condition/combination of bandits (low-mid, mid-high, low-high) and for older

(blue) vs younger adults (grey, see legend). White diamonds represent group averages, each dot one participant. F:

Difference between log RTs in the low-mid vs. mid-high trials, separately for each age group. Values larger than zero

indicate slower responses on low-mid trials compared to mid-high trials. Colors as in panel C. White diamonds

represent group averages, each dot one participant. Stars and lines indicate significant statistical tests as described in

the text. Note, this does not include interaction effects to avoid clutter.

https://doi.org/10.1371/journal.pcbi.1012331.g002

Fig 3. Influence of surprising outcomes on choice and value estimation. A: Proportion of mid bandit choices in low-mid trials one trial before and

two trials after participants experienced a surprising outcome from the mid bandit (vertical dashed line). Data shown separately for older (blue) and

younger adults (grey). Each small dot is one participant, large dots depict group means with standard error of the mean shown by error bars. B: Same

analysis, but now time-locked to trials in which moderately low outcomes of the mid bandit (20th to 40th percentile) were experienced. Colors and

other details as on left. C: Difference between reported and true average outcome difference between bandit pairs, separately for both age groups.

Reported values reflect participant responses on estimation trials, while true bandit distances were calculated as the difference between the running

means of experienced outcomes until the time of a given estimation trial. Values lower than zero indicate an underestimation of bandit distance,

perceiving them closer than their true numeric distance. Colors and dots as in panel A and Fig 2.

https://doi.org/10.1371/journal.pcbi.1012331.g003
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bandit and age group did not indicate any significant difference (younger: ps� .111, older: ps

� .625; the largest difference found indicated a non-significant underestimation of the high

bandit in younger adults t(48) = – 2.437, p = .111, Bonferroni-Holm corrected). This indicates

that value estimates of older and younger participants were accurate and unbiased on average.

Notably, we also found that older and younger adults showed selective biases in how well

they estimated the value of the mid bandit relative to either the high or low bandit. Specifically,

comparing the difference in ratings between each bandit pair to the true experienced differ-

ence (difference of running means) revealed older adults perceived the low and mid bandit to

be closer together compared to their true distance (they underestimated the difference by –

3.68 points), more than younger adults did (–1.93 points; comparison of underestimation of

low vs. mid bandit between age groups: t(277) = 2.051, p = .041; interaction bandit pair × age-

group: χ2(1) = 8.280, p = .004; main effect bandit pair: χ2(1) = 34.536, p< .001, see Fig 3C).

Computational modeling

Above we reported that following mid-bandit outcomes with large prediction errors, partici-

pants shifted choice preferences away from the mid bandit in a manner that suggests height-

ened learning from such singular events. Correspondingly, participants performed worse in

low-mid trials compared to mid-high trials, and underestimated the same bandit differences.

This effect was particularly pronounced for older adults.

Building on these behavioral results, we used computational modeling to specifically con-

trast the contributions of surprise, uncertainty and differential learning from positive and neg-

ative prediction errors (as well as combination of these) to behavior. While the behavioral

effect following surprise trials reported above is qualitatively consistent with our hypothesized

mechanism, computational models allow us to test a more precise version of our hypothesis

across the entire sequence of choices. We therefore modeled participants choices specifically

in low-mid trials (see Methods) using the following four main and two combination models:

A Rescorla-Wagner model that assumes a constant learning rate and no effects of uncer-

tainty or surprise (Fig 4A), served as a baseline. Learning in this model followed a standard

delta rule:

Vk;tþ1 ¼ Vk;t þ a ðRk;t � Vk;tÞ

¼ Vk;t þ aPEt;
ð8Þ

where Vk,t denotes the value estimate of bandit k on trial t, and Rk,t is the corresponding reward

obtained at time t after choosing k. The difference between the expected and obtained value is

referred to as the prediction error (PE, here Rk,t − Vk,t), and α 2 [0, 1] is a learning rate fitted as

a free parameter.

The Valence model (Fig 4C) assessed if participants choices were best explained by differen-

tial learning from positive versus negative PEs, c.f. [44], which previously has been observed in

the context of aging [35, 47]. This model was also necessary given that the bimodal distribution

of the mid bandit led to predominantly large negative PEs. Hence, we modified Eq 8 to include

two separate learning rates αpos and αneg for positive and negative prediction errors, respec-

tively:

Vk;tþ1 ¼

(
Vk;t þ aposPEt; if PEt � 0

Vk;t þ anegPEt; if PEt < 0
ð9Þ

The Uncertainty model (Fig 4B) tested whether participants’ choices were influenced by the

unsigned magnitude of past prediction errors, i.e. whether they showed less or more
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Fig 4. Illustration of computational models. For each model depicted is the sensitivity of trial-wise instantaneous updates (learning rate) to

the surprise (i.e., unsigned prediction error) associated with an outcome of a bandit choice. For the Valence model (panel B) this is shown

relative to the signed prediction error to display different learning from outcomes lower or higher than expected. Further, via β4 is shown the

influence of the right bandit’s uncertainty (Uk, estimated by the agent) on choice probability of the right bandit (see Eq 4). A: Rescorla-Wagner
model in which updates and choices are insensitive to both, surprise and uncertainty. B: Uncertainty model in which updates are insensitive to

surprise but bandit choices are influenced by uncertainty. Note, how uncertainty in the right bandit can heighten (β4 > 0) or lower the

probability of choosing the right bandit (β4 < 0). Uncertainty estimate of the right bandit is fixed to Uk = 10 for the illustration but in the model

depend on a free parameter π (see Eq 10). The influence of the left bandit’s uncertainty (β3) is left out for simplicity. C: Valence model which is
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preference for bandits that were associated with high/low uncertainty in the past. We adopted

the associability implementation used by Li et al. [27] to keep track of the recency-weighted

uncertainty of each bandit:

Uk;t ¼ ð1 � pÞUk;t� 1 þ p jPE tj ð10Þ

The free parameter π 2 [0, 1] determines the degree of recency-weighting of prediction errors

that form the agent’s current uncertainty estimate. Values close to 1 mean that uncertainty

estimates are driven by recent outcomes while vales closer to 0 mean that the agent considers a

long history of errors.

The fourth main model was the Surprise model (Fig 4D), which assumed that values are

learned with a learning rate that depends on the amount of surprise in a given trial. The core

idea of this model, compared to the Rescorla-Wagner and Uncertainty models, was that how

much change in value results from a particular outcome depends on the absolute prediction

error. The model was designed to incorporate various relationships between absolute predic-

tion error and learning rate, including both higher learning rates for low prediction errors and

the opposite. Moreover, we assumed that the effect of prediction error on learning rate is

instantaneous, i.e. affects updating on the trial immediately, in contrast to the Uncertainty

model, where prediction errors on trial t only come to influence the learning rate on trial t + 1.

To this end, we modified the learning rule given in Eq 8 to include a variable learning rate α*,
which itself was a logistic function of the scaled absolute prediction error cPE (see Methods),

a∗ ¼ l þ
2

1þ cPE
� s ðu � lÞ ð11Þ

and updating followed the same delta rule given in Eq 8, using α* instead of α (see Methods,

Eq 6). The introduction of cPE in the equation of α* was necessary to achieve rescaling into the

range of [0, 1], which is needed for learning rates. The Surprise model included three free

parameters that regulated the influence of prediction error dependent surprise: a lower bound

l 2 [0, 1] that specified the alpha level when the PE was 0, a upper bound u 2 [0, 1] that deter-

mined the learning rate when the PE was maximal, and a slope, s 2 [1, 7] between these two

extremes. Fig 4D illustrates the behavior of this flexible learning rate function under some

parameter variations.

Finally, two additional models, Uncertainty+Valence and Uncertainty+Surprise, combined

the uncertainty mechanism with the updating mechanisms of the Valence and Surprise models,

respectively. The four main models are illustrated in Fig 4. The model predictions were related

to choices using a logistic regression approach and parameters were fit using Maximum Likeli-

hood estimation (Details see Methods). Results of an additional model that combined the

functionality of the Surprise and Valence models can be found in the SI. To fit participants’

choices, value and uncertainty estimates were included in a logistic choice model as predictors.

The corresponding β1−4 parameters represent the influence of value/uncertainty of left and

right bandits on choice (See Methods).

insensitive to surprise and uncertainty but allows for different strength of instantaneous updates depending on the sign of the prediction error.

D: Surprise model which is insensitive to bandit uncertainty, but in which trial-wise updates are influenced by surprise in dependence of the

parameters l, s, and u (see Eq 11). High levels of surprise can either increase (u> l) or decrease the learning rate on a given trial (u< l), here

shown by a variation in u (first graph). A similar variation of the l parameter is left out for simplicity. Lower values of the slope parameter s
indicate that updating is adjusted already for lower levels of surprise (second graph). Not depicted are the Uncertainty+Surprise and Uncertainty
+Valence models which combine the principles of B with those of the C and D, respectively.

https://doi.org/10.1371/journal.pcbi.1012331.g004
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Basic analyses indicated that the RW account of value learning captured core aspects of par-

ticipant behavior (see Methods). Yet, the RW model did not offer the best fit to participants’

choices. Instead, the model comparison showed that the corrected AIC score (AICc, [51]) was

lowest for the Surprise model (AICc: 115.40 vs. 119.56 of the RW model). The next best models

were the Valence (115.76), Uncertainty (116.08), Unc+Valence (116.11), and Unc+Surprise
(116.86) models (see Fig 5A, AICc of RW model: 119.56). A protected exceedance probability

analysis showed the Surprise model as the most likely data-generating process across all partici-

pants (77.0%; via R package bmsR [55]; 105 samples; see [56]), followed by the Valence model

(22.7%, see Fig 5B). Further analyzing the participant-wise differences in AICc scores sepa-

rately for each age group showed that, while the Surprise and Valence models had significantly

lower AICc scores compared to the RW model in both age groups (Surprise Model—older: t

(50) = –3.39, p = .011, younger: t(50) = –3.44, p = .011; Valence model—older: t(50) = –3.10, p

= .022, younger: t(50) = –3.53, p = .009), this was not the case for the Uncertainty or combined

models (all t(50) > –2.08, ps� .254, all ps Bonferroni-Holm corrected). Finally, using partici-

pant-wise AICc comparisons to identify the winning model within each participant (see Fig

5C) also identified the Surprise model as the most frequently winning model across all partici-

pants (30 participants followed by the RW, Valence models, see Fig 5C).

We next performed posterior predictive checks to ask whether the two models with the

highest protected exceedance probability (Surprise and Valence model) showed the main

behavioral observation of interest, i.e. the outsized effect of large absolute PE events on choices

(see Methods). We used the estimated models to generate synthetic data for each model. We

then analyzed the generated data sets in an identical manner to the participant’s data. A graph-

ical comparison can be found in Fig D in S1 Text. Both models showed a significant main

effect of pre vs. post large absolute PEs (χ2(1) = 9.01, p = .003 and χ2(1) = 7.30, p = .007 for Sur-
prise and Valence model, respectively), as found in participant behavior. An LMM of the pre-

vs. post change across age groups indicated a marginally significant age group × model interac-

tion (χ2(1) = 3.53, p = .06). Post-hoc tests of this interaction showed that the Surprise model

qualitatively captured the pattern of results, i.e. older adults showed a larger adaptation than

younger adults (estimate of older vs. younger contrast in Surprise model: .053). This was not

the case for the Valence model, where the effect was reversed (i.e. younger adults adapted more

to large PE events than older adults, –.046). Despite this qualitative match of the age differ-

ences between the real data and the Surprise model, the corresponding post-hoc comparison

did not reach significance (t(189) = 1.23, p = .219; the same was true for the Valence model, t

(189) = –1.08, p = .281). Correspondingly, neither model captured the significant time-

point × age group interaction evident in the behavioral analysis (χ2(1) < 1.55, p> .213).

Given that the evidence overall favored the Surprise model, we lastly analysed its parameters

in more detail. In a first sanity check, we confirmed that the β1 and β2 parameters, reflecting

the influence of estimated left and right bandit value on choices correlated with performance

as expected (β1: r = –.36, t(100) = –3.88, p< .001; β2: r = .35, t(100) = 3.74, p< .001, Bonfer-

roni-Holm corrected). We then investigated the parameters related more specifically to the

surprise effect on learning rate (l, u, and s; see Eq 11). Results are shown in Fig 6. A core inter-

est was on the difference between the upper and lower bound parameters, where positive val-

ues (u − l> 0) reflect relatively faster learning from large prediction errors while negative

values (u − l� 0) reflect relatively faster learning from small PEs. Surprisingly, however, we

did not find any relationship between the main behavior proxy of surprise sensitivity discussed

above (Fig 3A) and the parameter difference u − l (r = –.093). Moreover, the parameter differ-

ence did not indicate any average bias to learn more or less from surprising outcomes, i.e. u—l
was not significantly different from 0 in either age group (younger: u − l = –0.10, t(50) = –1.33,

p = .380, older: u − l = 0.00, t(50) = .020, p = .984, one-sided t-test against 0, Bonferroni-Holm
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corrected, see Fig 6A). Splitting participants into groups based on whether the learning rate

was decreased (u − l< 0) or increased (u − l> 0) for large absolute PEs showed that numeri-

cally more older than younger adults had increased learning rates (25 vs. 18), but a formal

analysis did not indicate any significant difference in age groups (χ2(1) = 1.45, p = .229, see Fig

Fig 5. Model comparison. A: Average difference of AICc scores between candidate models and RW model (AICci—AICcRW). Lower

values indicate a better fit compared to the RW model. Note, that we found substantial interindividual variability in AICc scores, see

panel C and text. B: Protected exceedance probability across all six candidate models and across both age groups. See [56] for details.

C: Number of participants for which each model had the lowest AICc shown across (left) and within age groups (right).

https://doi.org/10.1371/journal.pcbi.1012331.g005

PLOS COMPUTATIONAL BIOLOGY Influence of surprise on reinforcement learning in aging

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012331 August 14, 2024 17 / 25

https://doi.org/10.1371/journal.pcbi.1012331.g005
https://doi.org/10.1371/journal.pcbi.1012331


Fig 6. Analysis of Surprise model. A: Distribution and correlation between Surprise model parameters. On left: Histogram of model parameters l, s, and u
involved in instantaneously adjusting learning rate as a function of surprise (i.e. unsigned prediction error; see Eq 11) for younger and older adults. On

right: Correlation matrix between all model parameters. Brighter colors show stronger positive correlation, darker colors stronger negative correlation. In

each cell is shown the Pearson correlation between the respective parameters. B: Individual relationships between surprise about outcome (i.e., unsigned

prediction error) and trial-specific learning rate α* as specified by the model parameters l, s, and u (see Eq 11). Depicted separately within each age group

are participants whose updating for high levels of surprise is decreased (u − l< 0, left) or increased (u − l> 0, right). C: Number of participants within each

age group showing decreased (u − l< 0) or increased (u − l> 0) updating from higher levels of surprise. D: Age group comparison for parameters

specifying differential updating from surprising outcomes. On left: Difference between u and l parameter. Values above zero indicate increased updating
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6C). A direct comparison of u − l values between both age groups did not reveal any age differ-

ences (t(99.65) = –0.98, p = .330, see Fig 6D). Likewise, the slope parameter s did not differ sig-

nificantly between age groups (t(99.98) = 1.07, p = .285, see Fig 6D).

Taken together, the computational modeling results suggest that participants’ choices in

low-mid bandit comparisons were mainly driven by surprise, as opposed to other candidate

mechanisms such as uncertainty, differential learning from positive or negative prediction

errors, or their combination. This was shown by the best fit of the Surprise model. Posterior

predictive checks indicated that the Surprise model also was best at qualitatively reproducing

the behavioral proxy of surprise-triggered learning, and age differences therein. However, we

also found substantial between-participant variation in model fits, and analyses of the Surprise
model’s parameters did not show any age differences related to the influence of surprising out-

comes in low-mid trials evident in the behavioral analyses. This suggests that on top of a main

age difference in surprise dependent learning, behavior in our task reflects a complex mixture

of different computational strategies engaged by both older as well as younger adults.

Discussion

In this study we investigated over- and underweighting of surprising outcomes during rein-

forcement learning, and asked whether age differences exists in this process. Our main hypoth-

esis was that older adults show greater sensitivity to outcomes that elicit large absolute

prediction errors compared to younger adults. To this end, we analyzed behavior of 51 youn-

ger and 51 older participants in a multi-armed bandit task featuring two bandits with a Gauss-

ian reward distribution of low and high mean, and one bandit with an asymmetric, bi-modal

reward distribution of intermediate value. The asymmetric nature of the mid bandit’s reward

distribution was designed as such that overweighting of surprising outcomes during learning

should result in non-optimal choices when comparing the mid-value (i.e., bimodal) bandit to

the low-value bandit. We found that behavioral accuracy in low-mid bandit choices was signif-

icantly lower compared to mid-high trials despite the fact that both bandit pairs exhibited the

same difference in their mean outcome. This was particularly the case for older compared to

younger adults. This suggests that surprising outcomes are overweighted, relative to ordinary

outcomes, and that this effect becomes more prominent with age. This effect was also present

in explicit value ratings, in which both age groups underestimated the difference in average

rewards of the low and mid bandit, and older adults showed a stronger tendency to do so. An

analysis of detailed choice time courses also found that surprising outcomes had a stronger

influence on consecutive choices in older adults compared to younger adults, suggesting a

greater sensitivity to surprising outcomes in older adults. To explain these findings more for-

mally, we compared six RL models that allowed us to address if participants’ choices in low-

mid bandit comparisons were driven by either uncertainty, differential updating from positive

and negative prediction errors, scaled learning from more surprising outcomes, or a combina-

tion of both. Model comparison indicated that the Surprise model offered the best explanation

of participants’ decisions overall. Yet, a closer inspection also revealed that our data was char-

acterized by large interindividual variability in the model that best explained different partici-

pants’ data, and that fitted model’s parameters did not reflect the age differences evident in the

behavioral analyses. We suspect that these findings are partly caused by issues of model iden-

tifiability, as evidenced by the reduced model recovery (see Fig C in S1 Text).

from surprising outcomes. Dots show individual values, diamonds show group-specific mean. Depicted in the middle are density plots of the respective age

group’s parameter distribution. On right: Slope parameter s. Depiction identical to left plot.

https://doi.org/10.1371/journal.pcbi.1012331.g006
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Our results might appear inconsistent with findings that older adults show stronger over-

weighting of low probability events (i.e., more risk-taking) when confronted with gambles in

the gain and mixed domain [20]. Inspired by cumulative prospect theory [13] and using a

risky decision making paradigm [5], Pachur and colleagues [20] asked participants to choose

between two binary monetary lotteries. Their core finding was that in decisions from descrip-

tion, older adults overestimated the probability of rare events more than younger adults. How-

ever, there are at least three crucial differences between Pachur et al. [20] and our study that

might explain these seemingly contradictory results. First, we examined the domain of deci-

sions from experience, in contrast to description-based choices. We found that older partici-

pants were sensitive to high prediction error events, which in our case resulted in higher risk

aversion. Second, our results suggest that during learning, older adults do not exhibit height-

ened sensitivity to rare events per se, but rather to events that elicited particularly large predic-

tion errors (i.e. surprise, which did not play a major role in Pachur et al. [20]). Finally, in our

case outcomes can less clearly be categorized as gains or losses. That is, although we did not

include punishment per se, participants’ choices were often governed by negative prediction

errors arising from less positive outcomes than expected.

Recently, another body of work modeled the influence of extreme/surprising events on

decisions using sequential sampling tasks [57, 58] which are more closely connected to the

kind of instantaneous trial-by-trial updating we investigated in this study. These tasks present

participants with repeated samples in quick succession from one or more distributions, includ-

ing extreme samples from the distributions edges, and ask for a judgment of the mean over

samples. The results support the idea of selective weighting of extreme outcomes also in the

context of a task that is based on a sequential learning process. We believe that also this work is

extended by our findings. In particular, we show that similar behavioral patterns emerge also

in much slower, single-trial sampling rates and trial-wise choices.

Previous work has also shown that the probability of events that come to mind easily tends

to be overestimated [59, availability bias], and that memory for values at the edges of distribu-

tions is better [15–17]. This might explain the distorted probability weighting functions

described above. Note, however, that although in our task the low, mid and high outcome dis-

tributions differed in their standard deviation, bandits in our task exhibited similar amounts

of low-probability outcomes (see Fig 1B). Hence the choice between bandits was not conflated

by choices between a safe and risky gamble as characterized by different probability profiles.

Our work does speak directly to the above mentioned memory biases, and suggest the here

reported age-differences could be mediated by memory for extreme outcomes.

Our study is also related to work that has focused on how learning rates are adapted in non-

stationary environments, in which the true value of bandits changes over time [31, 60, 61].

Unlike our own experiment in which participants learn from bandits with a stable outcome

distribution, most of these studies investigated how participants infer the environment’s

uncertainty and volatility (rate of change), and adapt their learning rates in response to these

variables. Our Surprise model differs substantially from these accounts in that it assumes no

computation of volatility or uncertainty for future use. Rather, the model captures the possibil-

ity of instantaneous increase in learning rate when outcomes elicit large prediction errors,

with no effects on subsequent learning rates, as would be predicted by uncertainty or volatil-

ity-based accounts. Thus, our models are most informative for understanding if surprising

events get treated differently in reward-based learning in stationary environments. Most rele-

vant for our study is research that investigated the effects of age on the role of uncertainty and

surprise in learning [3]. In this present work, uncertainty was operationalized as a recency-

weighted average of absolute prediction errors. According to previous normative accounts,

uncertainty should be the dominant driver of learning rates in stationary environments.
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Surprise, in contrast, captures the immediate effect of an unexpected outcome, i.e. the

unsigned prediction error. Although the previous work discussed above has largely pointed

out that older adults tend to underestimate uncertainty [3], it also found some evidence to sug-

gest that in response to surprise older adults adjusted their learning rate more than younger

adults. More recent results extend these insights [21], suggesting that older adults often even

completely ignore prediction errors attributable to outcome uncertainty, while showing simi-

lar surprise sensitivity as their younger counterparts. In contrast to these studies, our work

examines surprise-driven learning in stationary environments, where surprise should have

more subtle effects on learning, suggesting that in these circumstances, older adults show

heightened sensitivity.

Computational modeling of participants’ behavior was in line with the idea that surprising

events are treated differently during learning. A model that allowed for altered (i.e. increased

or decreased) updating from surprising events offered the best prediction of participants’

choices in low-mid bandit comparisons. One limitation of this work was the fact that model

parameters did not reflect age differences evident in behavioral analyses. Specifically, the

model did not suggest a heightened sensitivity to surprising outcomes that is more pro-

nounced in older adults. A potential reason for this finding might be that the effects of surpris-

ing outcomes on participants choices can only be reflected in a limited number of trials,

reflecting a problem inherent in the study of surprising events. This holds the potential danger

of model fits that are largely dominated by behavior in which the differential effects of surprise

cannot be reflected in participants’ choices. To counteract this, we made the likelihood of each

model only dependent on the key comparison regarding surprising outcomes. One additional

way to address this issue could be to increase the number of bandits in the task that allow for

large prediction errors. This might, however, lead to increased task difficulty. Due to the online

setting of the task we decided for a more simple paradigm but results have shown that older as

well as younger adults perform adequately on the task. Increasing task difficulty in favor of a

more fine-grained characterization of the effect of surprising events on choices therefore

seems feasible. This could also help the model identifiability. The model recovery test (see S1

Text; Fig C in S1 Text) showed that in the current task choices simulated from more complex

models (e.g. the Surprise model) are sometimes attributed to the RW model. This is likely

explained by the fact that the RW model is a special case of all other, more complex models

(for instance when u = l, the Surprise model and the RW model are identical), but requires a

smaller number of free parameters. By increasing the complexity of the task a larger set of criti-

cal trials could be used to make computational models of participants’ choices more distin-

guishable. This would further help to improve the understanding of choice mechanisms in the

context of surprising events and how they change with age.

There are also additional considerations that concern the fact that our data was collected

online via Prolific. The Prolific platform was specifically build to conduct research and

requires comprehensive profiles of the participants [62], and thus represents an adequate

choice to collect data also for older adults. Nonetheless, concerns may be raised regarding how

representative older age group on Prolific is. Skilled internet use of older adults is more com-

mon in populations with higher income and education [63] as well as better levels of health

and activity [64]. It is therefore likely that the online data collection sampled a slightly differ-

ent, high-performance population of older adults when compared to the population sampled

in an offline setting. In line with this, our data did not show evidence for age differences in

general performance, although older adults tend to perform worse on reward-based learning

tasks [7, 65]. Furthermore, less control of the experimental environment can lead to increased

noise, reflected for instance in lower learning performance [66]. Since it is possible that an
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offline setting might lead to more pronounced age differences in our analyses, it would be ben-

eficial to repeat the same experiment in an in-lab setting.

Taken together, we found behavioral patterns suggesting that overweighting of surprising

events was stronger in the group of older adults. A model that instantaneously adjusted learn-

ing rates based on the surprise of the experienced outcome explained key choices (low-mid

bandit trials) better than other candidate models, including an uncertainty model, and helped

to establish an understanding of the learning from surprising events in the context of station-

ary outcome-based learning. However, since the model parameters fell short of explaining the

behavioral age differences, future research should aim to more clearly identify if surprise-

related alterations of learning present a general mechanism in the context of stationary envi-

ronments, or a principle that only gets applied locally to outstanding outcomes and see if the

model at hand can be improved to accurately mimic the found behavioral choice patterns.

This study provides insight into the differential weighting of surprising events during a rein-

forcement learning task and, more generally, the role of aging in human decision making.

Supporting information

S1 Text. Supporting text. Supplementary information file including additional analyses of

parameter recovery, model recovery and the combined Valence and Surprise model. This file
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Text.
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