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Abstract

Humans sometimes have an insight that leads to a sudden and drastic performance im-
provement on the task they are working on. The precise origins of such insights are unknown.
Some evidence has shown that sleep facilitates insights, while other work has not found such
a relationship. One recent suggestion that could explain this mixed evidence is that different
sleep stages have differential effects on insight. In addition, computational work has suggested
that neural variability and regularisation play a role in increasing the likelihood of insight.
To investigate the link between insight and different sleep stages as well as regularisation, we
conducted a preregistered study in which N=90 participants performed a perceptual insight
task before and after a 20 minute daytime. Sleep EEG data showed that N2 sleep, but not N1
sleep, increases the likelihood of insight after a nap, suggesting a specific role of deeper sleep.
Exploratory analyses of EEG power spectra showed that spectral slopes could predict insight
beyond sleep stages, which is broadly in line with theoretical suggestions of a link between
insight and regularisation. In combination, our findings point towards a role of N2 sleep and
aperiodic, but not oscillatory, neural activity for insight.

1 Introduction

Having an insight, or aha-moment, is a unique learning phenomenon that has attracted researchers’
interest for a century (Köhler, 1925). The cognitive and neural mechanisms that underlie insight
are still debated (Stuyck, Aben, Cleeremans, & Van den Bussche, 2021; Weisberg, 2015), and have
for instance been described as a restructuring of existing task representations (Wertheimer, 1925;
Kounios & Beeman, 2014; Ohlsson, 1992). On a behavioural level, insight is often characterised by
three features: an abrupt, non-linear increase in task performance (Haider & Rose, 2007; Durstewitz,
Vittoz, Floresco, & Seamans, 2010); a variable delay before the insight occurs ’spontaneously’
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(Ohlsson, 1992); and selective occurrence in only some, but not all participants (see also: Schuck
et al., 2015; Löwe et al., 2023).

An important milestone along the path to understanding insight will be to define the factors that
facilitate its occurrence. One such potential factor is sleep, which is linked to memory consolidation
(Rasch & Born, 2013) and restructuring of memories (Cowan et al., 2020), suggesting that it could
be a facilitating factor for the incubation of insight. The evidence that sleep supports insight,
however, is inconclusive. Work by Wagner, Gais, Haider, Verleger, and Born (2004) suggests a
beneficial effect of a full night’s sleep on insight, finding that more than twice as many subjects
gained insight into a hidden task rule after sleep, compared to wakefulness. Another study reported
similar findings after a daytime nap Lacaux et al. (2021). Other investigations, in contrast, did not
find any benefits of sleep for insight, or reported no difference between sleep and awake rest (Cordi
& Rasch, 2021; Schönauer et al., 2018; Brodt, Pöhlchen, Täumer, Gais, & Schönauer, 2018).

One possibility to explain divergent findings is that particular sleep stages affect insight in
different ways. Lacaux et al. (2021) investigated this question by letting participants have a daytime
nap in between sessions of a mathematical insight task, where discovering a hidden rule allowed
to solve the task much more efficiently. In this case, a beneficial effect of sleep on insight was
associated exclusively with sleep stage 1 (N1) (Lacaux et al., 2021), which led to a 83% probability
to discover the hidden rule, compared to 30% in participants who stayed awake and 14% in those
how reached deeper N2 sleep.

Given the diverging findings on the impact of sleep on insight, we conducted a preregistered
daytime nap intervention study based on procedures by Lacaux et al. (2021), but used a different
task (pregregistration link: https://osf.io/z5rxg/resources). We first aimed to replicate the above
mentioned finding that N1 sleep compared to wakefulness after task exposure would lead to a higher
number of insight moments about a hidden strategy during the post-nap behavioural measurement,
while N2 sleep would lead to a reduced number of insight moments. A second major interest was
to understand which features of the sleep-EEG signal best predict insight. Past work has focused
on power in individual frequency bands (Lacaux et al., 2021). However, our own computational
work (Löwe et al., 2023) has suggested that a combination of regularisation and noise had beneficial
effects for insight. While a direct mapping between noise or regularisation in neural networks and
electrophysiological signals is unknown, the concepts of noise (Voytek et al., 2015) and regularisation
(as in synaptic downscaling, (Lendner et al., 2023)) have been indirectly linked to aperiodic activity.
Additionally, aperiodic activtiy has been shown to decrease with an increase in sleep depth (Lendner
et al., 2020, 2023; Ameen, Jacobs, Schabus, Hoedlmoser, & Donoghue, 2024). Hence, we also asked
whether aperiodic activity of the EEG signal might have additional effects on insight, over and
above the hypothesised relations to sleep stages.

Instead of the Number Reduction Task (NRT) employed by Lacaux et al. (2021), we employed
the Perceptual Spontaneous Strategy Switch Task (PSSST) that also features a hidden task regular-
ity, and which our previous works has shown to invoke insight-based spontaneous strategy switches
(Löwe et al., 2023; Schuck et al., 2015; Gaschler, Schuck, Reverberi, Frensch, & Wenke, 2019).
Similarly to the NRT, participants initially learned a functional, but suboptimal, strategy, which
was replaced by some participants with a more optimal solution through an insight (Schuck et al.,
2015, 2022; Gaschler et al., 2019; Allegra et al., 2020).

We note that while our task has the benefit to allow for tracking insight on a trial basis, it
also differs from other tests in which participants are asked to actively search for a novel problem
solution (e.g. Remotes Associates Tasks (Mednick, 1968) or Compounds Remotes Associates Tasks
(Bowden & Jung-beeman, 2003)).
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2 Results

To study the effect of different sleep stages on insight, 90 participants performed a previously
developed perceptual insight task, (PSSST, Schuck et al., 2015), before and after a 20-minute nap
break. Subjects were presented with a stimulus consisting of dots that were (1) either orange
or purple (colour feature) and (2) moved in one of four possible orthogonal directions (motion
feature, see Fig.1A). Dot motion had a varying degree of noise across trials (5%, 23%, 41%, 59%
or 76% coherent motion), making motion judgement relatively harder or easier on different trials.
Participants were instructed to learn the correct button for each stimulus from trial-wise binary
feedback (see Fig.1A, B). The main task consisted of 9 blocks of 100 trials each in which participants
had to press one of two buttons in response to the shown stimulus, and observe the feedback
afterwards.

In the first three task blocks, only stimulus motion correlated with the correct response, such
that the correct button was deterministically mapped onto the directions of the dots (two directions
for each response). However, starting in the middle of block 4, stimulus colour began predicting
the correct button as well (i.e. the colour was paired with the two directions that predicted the
same response button, see Fig.2A). After block 4, participants were given an opportunity to nap
for 20 minutes in a reclining arm chair. We monitored brain activity and sleep during this phase
using a 64-channel electroencephalography (EEG). Participants then completed 5 more blocks of the
task, during which colour continued to predict the correct response in addition to motion (Fig.2A).
Additional details about the task can be found in the Methods section.

The subtle, unannounced change in task structure after 3.5 blocks provided a hidden opportunity
to improve the decision strategy that could be discovered through insight. Insight was spontaneous
in the sense that participants were not instructed about the hidden rule and did not need to switch
their strategy to perform the task correctly. Only after a participant incidentally discovered the
hidden rule did it become clear that using the colour could make the task easier.

We tracked insight on a trial-by-trial basis by monitoring rapid performance increases on high-
noise (i.e. low motion coherence) trials, on which accuracy prior to the onset of colour predictiveness
was at only 56% (vs. 92% in low noise trials; how accuracy depended on the noise level is shown
in Fig.1D). Performance in high noise trials was stable before the change in task structure (paired
t-test first half of block 3 vs. first half of block 4: 55% vs. 58%, t(157.8) = −1.51, p = 0.13,
d = 0.23, Fig.1C), indicating that improvements do not arise simply due to training. A sudden
change towards high accuracy on high noise trials can therefore be interpreted as indicative of
insight about the colour-based strategy (Schuck et al., 2015; Gaschler et al., 2019; Löwe et al.,
2023).

20 Minutes of Rest Increase Insight

Fifteen subjects had an insight before the nap and were therefore excluded from analysis. In another
7 cases EEG data quality prevented sleep classification, resulting in a total of 68 subjects for post nap
data analysis. 70.6% (48/68) of participants showed abrupt, non-linear performance improvements
after the nap and were thus classified as “insight participants” (Fig.1E). Notably, this percentage is
substantially higher than a baseline of 49.5% (49/99) insight that we observed in our previous study
with closely related experimental procedures, but without a nap period (p = .007, Fisher’s exact
test, see Fig.2B below; N = 99, data from Löwe et al., 2023). By the first half of block 8, insight
participants had significantly higher average accuracy across all trial types (M = 98.2 ± 0.3% vs
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Figure 1: Caption on next page.
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Figure 1: A: Stimuli and stimulus-response mapping of the PSSST. Dot clouds were either coloured in orange or
purple and moved to one of the four directions (NW, NE, SE, SW) with varying coherence. A left response key, ”X”,
corresponded to the NW/SE motion directions, while a right response key ”M” corresponded to NE/SW directions.
B: Trial structure: a fixation cue is shown for a duration that is shuffled between 400, 600, 800 and 1000 ms. The
random dot cloud stimulus is displayed for 2000 ms. A response can be made during these entire 2000 ms, but a
central feedback cue will replace the fixation cue immediately after a response. C: Accuracy (% correct) over the
course of the experiment for all motion coherence levels. The first dashed vertical line marks the onset of the colour
correlation, the second dashed vertical line the instruction about colour predictiveness. Blocks shown are halved
task blocks (50 trials each). N = 90, error shadows signify standard error of the mean (SEM). D: Accuracy (%
correct) during the motion phase increases with increasing motion coherence. N = 90, error bars signify SEM. E:
70.6% of subjects (48/68) were classified as insight subjects based on non-linear increases in performance on the
lowest motion coherence level (5%). F: Distribution of switch points. The first dashed vertical line marks onset of
the colour correlation, the second dashed vertical line the nap period. Blocks shown are halved task blocks (50 trials
each). G: Switch point-aligned accuracy on the lowest motion coherence level for insight (48/68) and no-insight
(20/68) subjects. Blocks shown are halved task blocks (50 trials each). Error shadow signifies SEM. H: Trial-wise
switch-aligned binary responses on lowest motion coherence level for an example insight subject.

M = 86.4± 0.9%, t(22.86) = 12.28, p < .001, d = 4.26), and lower reaction times (M = 526.6± 14
vs M = 767.4 ± 30.4, t(27.4) = −7.19, p < .001, d = 2.2), as expected. Hence, the 20 minute
nap period significantly improved insight. Insight showed all three characteristics we observed in
previous work: First, insight was selective, i.e. occurred only in some, but not all, participants
(see above). Second, the timing of individual strategy switch points differed substantially across
participants, indicating the highly variable delay known as impasse in the insight literature (block
in which switch occurred: M = 5.1± 2.6, range 3.6–6.2, Fig.1F; analyses based on logistic function
fits, see Methods). Third, if participants had an insight, their accuracy increased very abruptly
within a short time window, i.e. time-locking performance to their individual switch point indicated
an average 25% performance jump within merely 15 trials (M = 62.4±16.9% vs M = 87.6±15.1%,
t(92.8) = −11.16, p < .001, Fig.1G), which often reflected performance changes within a single trial
only (Fig.1H).

No Evidence For N1 but for N2 Sleep Promoting Insight

We followed the procedure of Lacaux et al. (2021) and divided participants into three groups based
on their vigilance state during rest. Sleep was manually scored according to the guidelines from the
American Academy of Sleep Medicine (Berry et al., 2016) based on 30 sec EEG (O2, O1, Pz, Cz,
C3, C4, F3 and F4), EOG and EMG epochs. Using these criteria, participants were categorised as
having had either no sleep, N1 sleep, or N2 sleep. This analysis showed that during the 20-minute
nap period 28 participants reached N2 sleep, 22 reached only N1 sleep, and 18 subjects remained
awake. Within the N2 group, 85.7% (24/28) gained insight into the hidden strategy, while only
63.6% (14/22) of participants in the N1 group and 55.5% (10/18) of the Wake group gained an
insight in our task (Fig.2B). We validated the manual sleep stage scoring with a convolutional
neural network trained on external polysomnography data (U-Sleep, Perslev et al. (2021)). This
categorisation correlated highly with manual scoring, r(66) = 0.82, p < 0.001), and results reported
here can be replicated qualitatively using this alternative approach (see Supplemental Information
(SI)). Similarly, splitting participants based on subjective sleep reports also results in the same
pattern of results (see Fig 5, SI), although subjective reports did not match objective sleep staging
closely (see SI).

Based on the paper by Lacaux et al. (2021), our main preregistered hypothesis proposed that
N1 sleep would lead to an increased number of insight compared to the Wake and N2 sleep groups,
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respectively. We further hypothesised that N2 sleep would lead to decreased insight compared to
N1. We find no support for either the first or second hypothesis (Fisher’s exact test N1 vs. Wake:
p = 0.75; N1 vs. N2: p = 0.1). To explain the above reported heightened incidence of insight after
the nap generally, we explored whether N2 sleep was the main driver of insight. Interestingly, we
observed a significantly higher number of insight after N2 sleep compared to Wake (Fisher’s exact
test, p = 0.038, Fig.2B). In line with these analyses, a generalised linear model (GLM) with sleep
stage as a predictor of insight fits the data better than a model with just an intercept (AIC 82.5
vs. 84.4). As expected, post-hoc tests also showed a significant N2 sleep coefficient in this model
(p = 0.03), while N1 sleep and Wake remained non-significant (Wake: p = 0.64, N1: p = 0.6).
Investigating Bayes Factors supports this finding and shows strong evidence for an effect of N2 >
N1 (BF = 24.71) as well as N2 > Wake (BF = 8.19), while there is no substantial evidence for
our preregistered hypotheses of N1 > W (BF = 1.19) and N1 > N2 (BF = 0.04). We thus find no
evidence that N1 sleep promotes insight as reported by Lacaux et al. (2021). Instead, in our data
N2 sleep showed a significant association with insight frequency.

The increased occurrence of insight in the N2 group had no major associations with overall
performance after the nap. Accuracy on the lowest motion coherence trials only trended to be
better in N2 compared to Wake participants (t-test block 5-12, N2 vs. Wake: M = 85 ± 3% vs
M = 76 ± 2.9%, t(14) = 2.06, p = 0.06, d = 1.03, N2 vs. N1: M = 85 ± 3% vs M = 81 ± 2%,
t(12.1) = 1.06, p = 0.31, d = 0.53, 4A). No effects on the corresponding reaction times could be
found (N2 vs. Wake: M = 757.6 ± 48ms vs M = 809 ± 35ms, t(12.8) = −0.86, p = 0.4, d = 0.43,
N2 vs. N1: M = 757.6 ± 48ms vs M = 787.8 ± 45ms, t(13.9) = −0.46, p = 0.66, d = 0.23, 4B).
Thus, sleep seemed to increase insight frequency, but not alter overall performance characteristics.

To explore more directly whether the characteristics of insight differed between sleep groups, we
next focused on the individually determined time points of insight, and participants’ performance
thereafter. We investigated differences in delay using the individually defined switch points in
high noise trials (Fig.1G,F; details see Methods), and found no significant differences across groups
(MN2 = 4.96 ± 0.1%;MN1 = 5.22 ± 0.16%;MWake = 5.21 ± 0.15%, see Fig.2C; all ts < 1.39, ps
> .18). The switch point distributions also did not differ between groups (Kolmogorov-Smirnov
test: N1–Wake: D = 0.33, p = 0.47, N1–N2: D = 0.29, p = 0.36, N2–Wake: D = 0.33, p = 0.36).
Accuracy of insight subjects after their switch did not differ between sleep groups either (MN2 =
90.9±0.3%;MN1 = 94.5±0.3%;MWake = 90.2±0.3%, see Fig.2D; all ts < 1.06, ps > .3). Finally, we
also found no group differences between reaction times after the insight (MN2 = 688.4± 42;MN1 =
607.1±54.7;MWake = 711±73, see Fig.2E; all ts < −0.27, ps > .25). Thus, while N2 sleep increased
the prevalence of insight, it does not seem to affect its characteristics, i.e. abruptness, selectivity
and delay.

Aperiodic Neural Activity Predicts Insight

Above, we performed pre-registered analyses investigating sleep stages and their impact on insight.
They revealed that N2 sleep in particular is associated with insight. In a next step, we follow up on
these findings with exploratory analyses investigating a potential association between insight and
aperiodic activity. Our previous work on neural networks (Löwe et al., 2023) suggests that noise
as well as regularisation facilitate sudden and abrupt performance changes characterising insight.
Although the precise mapping of these parameters in neural networks onto electrophysiological
markers is unclear, noise (Voytek et al., 2015) and regularisation (as in synaptic downscaling,
(Lendner et al., 2023)) have both been associated with aperiodic activity. Additionally, aperiodic
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Figure 2: A: Task structure of the PSSST: each block consisted of 100 trials. A first training block
contained only 100% motion coherence trials to familiarise subjects with the S-R mapping. The
remaining training block contained only high coherence (41%, 59%,76%) trials. In the motion phase,
colour changed randomly and was not predictive and all motion coherence levels were included.
Colour started to be predictive of correct choices and correlate with motion directions as well as
correct response buttons in the second half of the 4th block to expose subjects to the hidden rule
before the nap. Participants were then given 20 minutes to nap while EEG was recorded. Before
the very last block 9, which served as sanity check, participants were instructed to use colour. B:
Insight proportion among the different sleep groups. The insight ratio was significantly higher for
the N2 sleep group (85.7%) than for the Wake group (55.5%). The N1 sleep group ratio (63.6%) did
not differ significantly from the other two groups. The insight baseline ratio of 49.5% was derived
from our previous work using the same task without a nap period. C: Distribution of switch points
for the different sleep groups. One beeswarm point is one insight participant. Barplots show the
mean, error bars signify SEM. D: Switch point-aligned accuracy and E: reaction times on the lowest
motion coherence level for insight subjects of the respective sleep groups. Blocks shown are halved
task blocks (50 trials each). Error shadow signifies SEM.

activity has been shown to decrease along the sleep cycle, translating into a steeper spectral slope
with deeper sleep (Lendner et al., 2020, 2023; Ameen et al., 2024). This led us to ask whether
aperiodic activity during the nap period relates to insight, over and above the effects of sleep
stages. We quantified aperiodic neural activity by the spectral slope of the power spectrum in log-
log space (FOOOF algorithm by Donoghue et al., 2020, range 1-45Hz, 0.2Hz frequency resolution,
4sec epochs with 50% overlap). We verified that spectral slopes differ between the Wake, N1 and
N2 groups, as expected (Lendner et al., 2020, 2023; Ameen et al., 2024). This showed a global
association (across all channels) between the spectral slope and sleep stages (pcluster = 0.003) such
that the spectral slope was the steepest in the N2 group and the flattest in the Wake group (post-hoc
t-tests, channel C4: Wake vs. N1: MWake = −1.30± 0.08 vs. MN1 = −1.51± 0.05, t(26.6) = 2.06,
p = 0.05, d = 0.68, N1 vs. N2: MN1 = −1.51±0.05 vs. MN2−1.78±0.06, t(47.7) = 3.48, p = 0.001,
d = 0.95, Fig.3A).

Our main question was whether the spectral slope relates to insight beyond the association
between sleep stages and insight reported above. Given the substantial association between sleep
stages and spectral slope, we used a nested model comparison approach and tested a baseline model
containing only sleep stage as a predictor for insight against a model containing sleep stage and
spectral slope. This showed that spectral slope over fronto-central areas improved insight prediction
compared to the baseline model (e.g., channel C4: AIC: 82.5 vs. 81.2, Fig.3B), with a steeper
spectral slope relating to a higher insight likelihood (e.g., channel C4: β = 1.86). Interestingly,
comparing this full model (with both sleep stage and spectral slope as predictors) with the more
parsimonious model containing only the spectral slope showed that the spectral slope alone is the
best predictor for insight, yielding the best of all considered models (e.g., channel C4: AIC: 81.2 vs.
78.8, Fig.3B). As anticipated based on these results, contrasting participants with versus without
insight also indicated clear differences in spectral slope ( pcluster = 0.01, Fig.3C; for channel C4:
Insight vs. No Insight: MInsight = −1.51 ± 0.05 vs. MNoInsight = −1.78 ± 0.06, t(47.7) = 3.48,
p = 0.001, d = 0.75, Fig.3D).

Investigation of oscillatory activity, in contrast, did not reveal any correlation with insight.
Although oscillatory activity changed across sleep stages, and Lacaux et al. (2021) reported links
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between alpha and delta power and insight, we did not find such associations in our data (see SI
for an overview of the analyses).

In conclusion, variations in aperiodic activity during a nap period predict whether participants
will gain insight, with steeper spectral slopes, particularly over fronto-central areas, linked to higher
insight likelihood. This association exists across sleep stages, and is stronger than previously de-
scribed links between sleep stages or oscillatory power and insight.
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Figure 3: A: The spectral slope significantly decreased from Wake to N1 to N2, as expected. For the corresponding
topoplot see Supplemental Information, Fig.6. B: Topographies of model comparison results testing a model of
interest that included sleep stage and spectral slope (left) or only spectral slope (right) against a baseline model (left:
insight ∼ 1 + sleep stage, right: insight ∼ 1 + sleep stage + slope). Shown are channel-wise model fit improvements
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more negative) for participants with insight vs. participants without insight, over fronto-central areas. All channels
that are part of the significant cluster are highlighted in white. D: The comparison of the spectral slope between
participants with vs. without an insight for channel C4 (part of the significant cluster in C).
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3 Discussion

We investigated the effect of sleep on insight. Our preregistered study set out to conceptually
replicate findings of Lacaux et al. (2021), who reported that effects of sleep on insight were driven
entirely by N1 sleep. While we did find a general increase in insight following the nap, the insight
ratio of N1 subjects did not differ from subjects of the Wake group, thus providing no support for
the hypothesis that N1 sleep fosters insight, contrary to (Lacaux et al., 2021). Instead, we found
a beneficial effect of N2 sleep on post-nap insight likelihood, suggesting a need for deeper sleep
for insight. An exploratory analysis showed that the 1/f slope of the power spectrum did explain
additional variance in insight probability above and beyond sleep stages. In contrast, neither power
in the alpha nor in the spindle frequency range could predict insight. Hence, aperiodic but not
oscillatory neural activity emerged as an additional factor that promotes insight.

The 1/f slope has been linked to consciousness and sleep depth, where a steeper slope signi-
fies less consciousness under anaesthesia, or deeper sleep (Miskovic, MacDonald, Rhodes, & Cote,
2019; Colombo et al., 2019; Lendner et al., 2020; G. Horváth et al., 2022; Schneider et al., 2022).
Compared to ordinal sleep staging, the 1/f slope is a continuous measurement that offers a more
fine grained measure of sleep depth. Hence, the fact that the spectral slope predicts insight beyond
sleep stages alone supports the idea that deeper sleep is needed for insight.

This begs the question what the insight promoting processes during deeper sleep are. Our previ-
ous computational work (Löwe et al., 2023) pointed towards a role of regularisation and noise for the
formation of insight. Proponents of the synaptic homeostasis hypothesis (Tononi & Cirelli, 2003,
2006, 2014) have related regularisation to synaptic downscaling (Hoel, 2021), a process that regu-
lates synaptic strength depending on the synapses’ firing rates during wake. By pruning synaptic
connections with low activity, overall excitability is renormalised during sleep (Turrigiano & Nel-
son, 2004; Olcese, Esser, & Tononi, 2010; Hashmi, Nere, & Tononi, 2013). Computational work
correlated this excitation-inhibition (E/I) balance with the spectral slope of aperiodic EEG activity
(Gao, Peterson, & Voytek, 2017). Beyond just being a fine grained measure of sleep depth, the
1/f slope might thus reflect regularisation, which potentially plays an important role in generating
insight.

It should be noted, however, that to date it is unclear if synaptic downscaling occurs dur-
ing NREM sleep. Some evidence has linked E/I balance adjustments to REM sleep (Lendner
et al., 2023), and evidence for synaptic downscaling during NREM sleep has remained indirect
(Suppermpool, Lyons, Broom, & Rihel, 2024; Norimoto et al., 2018). Future work should thus
investigate the role of sleep beyond NREM and include a full night of sleep.

What amount of regularisation is beneficial for insight is also uncertain. While our previous work
(Löwe et al., 2023) has suggested that a certain amount of regularisation in neural networks leads
to abrupt learning dynamics that characterise insight, either too little or too much regularisation
caused the network to behave less insight-like. In the present study we only found a one directional
relation, where deeper sleep and thus possibly more regularisation predicted insight. A speculative
explanation for this might be that downscaling during N2 sleep of the nap led to a sort of reset of
the previously learned synaptic weights which led participants to have a ‘clean slate’ after the nap,
enabling them to restart the task with a fresh mind and discover the hidden rule more easily.

Lastly, why our findings diverge from what was reported by Lacaux et al. (2021) is unclear. A
major difference between our studies is that we used the Perceptual Spontaneous Strategy Switch
Task (PSSST Löwe et al., 2023; Schuck et al., 2015; Gaschler et al., 2019), while they used the
NRT. The PSSST has crucial analogies in task structure to the NRT. Both tasks measure ‘intrin-
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sic’ insight where the hidden rule as a potential for strategy improvement is never mentioned to
participants, and both tasks can be solved in principle even if the hidden rule is not discovered,
by using the initially learned rule. Besides the fact that our rule was much simpler, there are two
major differences between these two insight tasks: first, the initial rule was learned via feedback
in the PSSST, while it was instructed in the NRT; second, in our study the hidden rule became
possible only after 350 trials, while for the NRT it is present from the start. This could imply
potentially different learning mechanisms that could be affected differently by the respective sleep
stages. Further, Lacaux et al. use occipital electrodes for oscillatory analyses, but our spectral slope
results find an effect of aperiodic activity predicting insight in fronto-central electrodes (Fig.3C).

While such differences do not allow inferences about the original finding, conceptual replications
are important for validating broader scientific implications. How theoretical constructs such as
insight are mapped onto specific tasks needs to be carefully evaluated, if one seeks to test the
theoretical construct of interest. Further studies on the relationship between sleep and insight
should therefore continue to evaluate different tasks, for instance one that is neither mathematical
nor perceptual. Additionally, future work could also investigate the effect of a full night of sleep,
rather than brief naps.

To conclude, the present study presents evidence of N2 sleep increasing insight likelihood, with
the EEG spectral slope predicting insight beyond sleep stages. An exciting avenue for future studies
will be to investigate the mapping between on-task EEG activity during insight moments to EEG
activity during sleep and further examine potential relationships between the EEG spectral slope
and regularisation in neural networks.

4 Methods

Participants

Participants between eighteen and 35 years of age were recruited via internal mailing lists as well
as the research participation platform Castellum. Participation in the study was contingent on not
having any learning difficulty nor colour blindness. Further, participants needed to report a normal
sleep-wake cycle and no history of sleep disorders. Participants were excluded if they switched to
the colour strategy immediately after the correlation onset, before the nap. All participants gave
informed consent prior to beginning the experiment. The study protocol was approved by the local
ethics committee of the Max Planck Institute for Human Development. Participants received 56€
for completing the entire experimental procedure.

Data inclusion was contingent on participants’ showing learning of the stimulus classification.
As in our previous study with the PSSST (Löwe et al., 2023), we probed their accuracy on the
three easiest, least noisiest coherence levels in the last block of the uncorrelated task phase. 30
subjects did not reach an accuracy level of at least 80% in those trials and were thus excluded from
further analyses. Fifteen subjects were excluded, because the gained insight before the nap and
further 7 subjects were excluded due to insufficient EEG data quality. The final sample included
in all analyses thus contains 68 datasets.
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Behavioural Task

Perceptual Spontaneous Strategy Switch Task (PSSST)

We employed the PSSST used in our previous work (PSSST Löwe et al., 2023; Schuck et al., 2015;
Gaschler et al., 2019) that requires a binary choice about circular arrays of moving dots (Rajananda,
Lau, & Odegaard, 2018), but adapted the motion coherence levels slightly. Dots were characterised
by two features, (1) a motion direction (four possible orthogonal directions: NW, NE, SW, SE) and
(2) a colour (orange or purple). The noise level of the motion feature was varied in 5 steps (5%,
23%, 41%, 59% or 76% coherent motion), making motion judgement relatively harder or easier.
Colour difficulty was constant, thus consistently allowing easy identification of the stimulus colour.
The condition with most noise (5% coherence) occurred slightly more frequently than the other
conditions (30 trial per 100, vs 10, 20, 20, 20 for the other conditions).

The task was coded in JavaScript and made use of the jsPsych 6.1.0 plugins. Stimuli were
presented on a 24 inch screen with a resolution of 1920 x 1200 pixel and a refresh rate of 59 Hz.
On every trial, participants were presented a cloud of 200 moving dots with a radius of 7 pixels
each. In order to avoid tracking of individual dots, dots had a lifetime of 10 frames before they were
replaced. Within the circle shape of 400 pixel width, a single dot moved 6 pixel lengths in a given
frame. Each dot was either designated to be coherent or incoherent and remained so throughout
all frames in the display, whereby each incoherent dot followed a randomly designated alternative
direction of motion.

The trial duration was 2000 ms and a response could be made at any point during that time
window. After a response had been made via one of the two button presses, the white fixation cross
at the centre of the stimulus turned into a binary feedback symbol (happy or sad smiley) that was
displayed until the end of the trial. An inter trial interval (ITI) of either 400, 600, 800 or 1000 ms
was randomly selected. If no response was made, a ”TOO SLOW” feedback was displayed for 300
ms before being replaced by the fixation cross for the remaining time of the ITI.

RDK Task Design

For the first 350 trials, the motion phase, the correct binary choice was only related to stimulus
motion (two directions each on a diagonal were mapped onto one choice), while the colour changed
randomly from trial to trial. For the binary choice, participants were given two response keys, ”X”
and ”M”. The NW and SE motion directions corresponded to a left key press (”X”), while NE
and SW corresponded to a right key press (”M”). Participants received trial-wise binary feedback
(correct or incorrect), and therefore could learn which choice they had to make in response to which
motion direction.

We did not specifically instruct participants to pay attention to the motion direction. Instead,
we instructed them to learn how to classify the moving dot clouds using the two response keys, so
that they would maximise their number of correct choices. To ensure that participants pick up on
the motion relevance and the correct stimulus-response mapping, motion coherence was set to be
at 100% in the first block (100 trials), meaning that all dots moved towards one coherent direction.
In the second task block, we introduced the lowest, and therefore easiest, three levels of motion
noise (41%, 59% and 76% coherent motion), before starting to use all five noise levels in block 3.
Since choices during this phase should become solely dependent on motion, they should be affected
by the level of motion noise.

After the motion phase, in the motion and colour phase, the colour feature became predictive
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of the correct choice in addition to the motion feature. This means that each response key, and
thus motion direction diagonal, was consistently paired with one colour, and that colour was fully
predictive of the required choice. Orange henceforth corresponded to a correct ”X” key press and
a NW/SE motion direction, while purple was predictive of a correct ”M” key press and NE/SW
motion direction. This change in feature relevance was not announced to participants, and the task
continued for another 550 trials as before - the only change being the predictiveness of colour.

Before the last task block we asked participants whether they 1) noticed the colour rule in the
experiment, 2) how long it took until they noticed it, 3) whether they used the colour feature to
make their choices and 4) to replicate the mapping between stimulus colour and motion directions.
We then instructed them about the correct colour mapping and asked them to rely on colour for
the last task block. This served as a proof that subjects were in principle able to do the task based
on the colour feature and to show that, based on this easier task strategy, accuracy should be near
ceiling for all participants in the last instructed block.

Psychomotor Vigilance Task (PVT)

During the PVT, a white fixation cross was presented in the middle of the screen. After a delay
(jittered with 4000±2000ms), the fixation cross changed its colour to red. The change in colour
prompted participants to press the space key as fast as possible. On key press, participants received
feedback about their reaction time for 2.5 sec. Overall, the PVT comprised 25 trials, corresponding
to approximately 3 min. For results of the PVT see Supplemental Information, Fig.8.

Experimental Procedure

The experimental procedure consisted of 3 parts: (1) a first behavioural session of about 25 minutes,
including the PVT and 400 trials of the RDK task, followed by (2) a nap of 20 minutes and (3)
a second behavioural session of about 30 minutes, including the PVT and 500 more trials of the
RDK task.

(1) The experimental procedure began with the Pittsburgh Sleep Quality Index (PSQI) ques-
tionnaire. Participants then first completed the PVT and concluded with the first part of the RDK
task of which the last 50 trials contained the hidden, easier strategy.

(2) Subsequently, participants were given time to rest and nap for 20 minutes. The EEG cabin
was a completely dark and noise shielded room without sensory stimulation. During the nap break,
participants were positioned in a semi-reclined position on an armchair with their legs resting on
a foot piece, holding a light plastic cup in one hand. With the onset of N2-sleep this cup likely
falls, waking participants up (see (Lacaux et al., 2021)). EEG recordings were exclusively recorded
during this period and were used to identify different sleep stages. To increase the probability
that people would fall asleep during the nap, sleep in the night before the experiment was reduced
by 30% and participants were additionally asked to refrain from consuming caffeine prior to the
session. All participants started the session at the same time of day at 1 pm.

(3) After the nap, participants resumed the behavioural testing and first performed a second
PVT, followed by 500 more trials of the RDK task.

Object

We used the same object as Lacaux and colleagues (Lacaux et al., 2021) for this experiment: a light
(55 g) plastic drinking cup with a height of 14.5 cm and a 5.5 cm diameter. A babyphone filming
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space below the hand of the participant next to the armchair was used to get accurate time stamps
of the object drop should the cup fall out of the participant’s hand due to muscle tonus relaxation.

Modelling of Insight-like Switches

To investigate insight based strategy adaptations, we modelled participants’ data using individually
fitted sigmoid functions (for details see (Löwe et al., 2023)).

y =
ymax − ymin

1 + e−m(t−ts)
+ ymin

The criterion defined in order to assess whether a subject switched to the colour strategy, is the
accuracy in the highest noise level (5% coherence) in the last task block before the colour rule was
explicitly instructed. Insight subjects are classified as those participants whose performance on
those trials was above 85%. The individual insight moments ts were derived from the individually
fitted sigmoid functions.

EEG Recordings

During the nap period, EEG and electrooculography (EOG) data were recorded using a Brain
Products 64-channel EEG system with a sampling rate of 1000 Hz. All electrodes were referenced
online to A2 (right mastoid) and AFz was used as the ground electrode. Two external electrodes
(biploar reference and ground electrode on the forehead) were placed on the chin to record muscle
activity (electromyography, EMG). Impedances were kept below 20 kΩ.

Sleep Scoring

EEG and EOG data were re-referenced offline to linked mastoids and band pass filtered between
0.3 and 35 Hz (high pass filter: 0.3 Hz, two-pass butterworth filter, 3rd order; low pass filter: 35
Hz, two-pass butterworth filter, 5th order). EMG data were high pass filtered at 5 Hz (two-pass
butterworth filter, 3rd order). Lastly, all data were down-sampled to 200 Hz.

To identify different sleep stages, sleep was scored according to the guidelines from the American
Academy of Sleep Medicine (AASM, (Berry et al., 2016)) based on EEG (O2, O1, Pz, Cz, C3, C4,
F3 and F4), EOG and EMG data. Participants without any N1 or N2 period were assigned to
the wake group. Participants who had at least 1 epoch (30 sec) of N1 and no signs of N2 (sleep
spindles and/or K-complexes) were assigned to the N1 group. Participants with signs of N2 (sleep
spindles and/or K-complexes) were assigned to the N2 group. For the AASM scoring, 30 sec
epochs were used. Scoring was done by two scorers (ATL and MP), blind to the experimental
condition. Additionally, we validated the scoring by a convolutional neural network trained on
external polysomnography data (U-Sleep, Perslev et al. (2021), correlation with manual scoring:
r(66) = 0.82, p < 0.001).

In addition to sleep stages, Lacaux et al. (2021) reported a modulation of insight by alpha and
delta power across the whole nap period. To test for an additional modulation of insight by power
of different frequency ranges, we used a data driven approach across the frequency spectrum of
1-20Hz (see section Spectral Analysis).

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600359doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600359


EEG Data Analysis

EEG analyses were conducted using the FieldTrip toolbox ((Oostenveld, Fries, Maris, & Schoffelen,
2011)) and custom scripts written in MATLAB. Independent component analysis (ICA) was ap-
plied to remove eye movement artifacts from the data. For that, data were re-referenced offline to
linked mastoids, filtered (two-pass butterworth filter: high-pass: 1Hz, low-pass: 100Hz, bandstop:
48-52Hz) and down-sampled (200 Hz). Bad channels were removed and coarse artifacts were dis-
carded based on outliers regarding amplitude and variance (implemented in ftrejectvisual). ICA
was applied to identify components reflecting eye movements (saved together with the unmixing
matrix). The raw data were then pre-processed again since previous pre-processing was optimised
for ICA. Data were re-referenced to linked mastoids, filtered (two-pass butterworth filter: high-
pass: 0.1Hz, low-pass: 48Hz) and down-sampled (200Hz). Bad channels were removed and the
previously obtained unmixing matrix was applied to the data, components reflecting eye move-
ments were removed and data were demeaned. Finally, bad channels were interpolated (spherical
spline interpolation) and artifacts were visually identified.

Spectral Slope Analysis

To obtain estimates of aperiodic activity, the spectral slope parameter x (reflecting the slope of the
power spectrum) was used. Data were segmented into 4 second epochs with an overlap of 50%. For
these segments, power spectra were obtained by applying a Hanning window and transforming data
from time to frequency domain using Fast Fourier Transformation. Power spectra were calculated
for 1-45Hz with a frequency resolution of 0.2Hz. The FOOOF algorithm (Donoghue et al., 2020)
was then applied to obtain the spectral slope. Aperiodic activity a is defined by:

a = 10b ∗ 1

(k + f
1
x

)

where b is the y intercept, k is the knee parameter and x is the slope parameter.

Statistical Analyses

Fisher’s exact tests were used in the analysis of contingency tables. All tests were two-tailed with
a significance level of less than 0.05. All computations were performed using R version 4.3.1. For
comparisons of spectral slopes between Wake, N1 and N2 groups or between participants with
vs. without insight across all channels, a cluster-based permutation test was used (F-statistics for
comparison between Wake, N1 and N2: 1000 permutation, alpha = 0.05 , clusteralpha = 0.05;
t-statistics for comparison between Insight vs. No insight: 1000 permutation, alpha = 0.025 ,
clusteralpha = 0.05). For post-hoc comparisons, t-tests were applied. For model comparisons, we
used the following logistic regression models for each EEG channel:

Modelbaseline: Insight ∼ 1 + sleep stage
Model1: Insight ∼ 1 + sleep stage + slope
Model2: Insight ∼ 1 + slope
AIC scores were used to assess the best model fit.
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Figure 4: A: Accuracy and B: reaction times on the lowest motion coherence level for insight subjects of the
respective sleep groups. Blocks shown are halved task blocks (50 trials each). Error shadow signifies SEM.

Self Reported Sleep Stages and U-Sleep

After participants completed the 20-minute nap break, we asked them whether they fell asleep (N2),
were between sleep and wake (N1) or stayed awake (Wake) during that time. These ratings differed
from the EEG based sleep scoring as only 13 participants indicated to have fallen asleep (N2), 32
reported to have stayed between sleep and wake, and 23 subjects reported to have stayed awake.
We then assessed insight differences based on these sleep self reports. The insight proportions
yield similar results as the sleep staging based on EEG data: within the self reported N2 group,
92.3% (12/13) gained insight into the hidden strategy, while only 75% (24/32) of participants in
the self reported N1 group and 52.2% (12/23) of the reported Wake group gained an insight in our
task (Fig.5A). When sleep stages were automatically defined with U-Sleep Perslev et al. (2021), 27
participants were categorised as Wake, 21 participants as N1 and 20 as N2. The insight proportions
and statistical comparisons revealed similar results as the manually scored and subjective data:
In the N2 group, 90% (18/20) gained insight but only 66.66% (14/21) and 59.26% (16/27) gained
insight in the N1 and wake group respectively (Fisher’s exact test N1 vs. Wake: p = 0.77; N1 vs.
N2: p = 0.13; N2 vs. Wake: p = 0.025).

As for the EEG based results, the individually defined switch points in high noise trials (Fig.1G,F;
details see Methods), do not differ across reported sleep groups (MN2 = 5.17 ± 0.3;MN1 =
5.36± 0.2;MWake = 4.84± 0.2, see Fig.5B; all ts < 0.5, ps > .11).

After the nap, participants reporting to have slept (N2) perform significantly better than
participants indicating to have stayed awake or to have been between sleep and wake (MN2 =
81 ± 1.5%;MN1 = 76.9 ± 2%;MWake = 73.6 ± 2.5%, see Fig.5C; N2 vs. W: t(25.4) = 2.63
p = 0.014, N2 vs. N1: t(40.8) = 1.89 p = 0.07). There was no such difference for reaction
times (MN2 = 784.92± 36.6;MN1 = 816.54± 29;MWake = 861± 35.3, see Fig.5C; all ts < 0.67, ps
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> 0.15).
This reported sleep effect again does not hold when considering data of insight subjects only.

Accuracy does not differ between self reported sleep groups after the individually fitted switch
points (MN2 = 91.3 ± 3.3%;MN1 = 92.2 ± 2.4%;MWake = 91.5± 3.4%, see Fig.5E; all ts < −0.05,
ps > .8). Again, there was also no difference between reaction times after the insight (MN2 =
676.07± 58.5;MN1 = 668.06± 46.2;MWake = 665.33± 58.4, see Fig.5F; all ts < 0.12, ps > .9).

We thus find the same results for self reported sleep groups as we do using the EEG based sleep
staging: (1) N2 sleep significantly increases insight compared to Wake and (2) insight characteristics
do not differ between subjects once insight has occurred.

No Evidence for Oscillatory Activity Predicting Insight

Additionally to sleep stages, Lacaux et al. (2021) found an association between insight and alpha
and delta power. We pre-registered a data-driven analysis approach (including frequencies from
1-20 Hz) to test for a modulation of insight by power. To this end, we contrasted spectral slope
corrected power spectra (FOOOF algorithm (Donoghue et al., 2020), 4 sec epochs, 1-20Hz, 0.2Hz
frequency resolution, 50% overlap) between Wake, N1 and N2. Power spectra were calculated as
described in the Methods section (Spectral Slope Analysis).

As expected, oscillatory power in the frequency range of 6-16 Hz significantly differed across all
channels between Wake, N1 and N2 (cluster-based permutation test, F-statistics, pcluster = 0.005).
Post hoc cluster-based permutation tests revealed a positive and negative cluster in the alpha
(5.8-11.3Hz) and sleep spindle frequency range (11.5-15.2Hz), respectively (post-hoc cluster-based
permutation test, t-statistics, Wake > N1: negative cluster, pcluster = 0.02, 10.5-14Hz; Wake >
N2: positive cluster, pcluster = 0.07, 6-9Hz; negative cluster, pcluster = 0.05, 11.5-15.2Hz; N1 >
N2: positive cluster, pcluster = 0.007, 5.8-12.3Hz). Neither averaged power in the alpha nor in the
spindle cluster explained insight beyond sleep stages (AIC for model containing only sleep stages
= 82.5; AIC for model with sleep stages + alpha power at channel C4 = 84.5; AIC for model with
sleep stages + spindle power at channel C4 = 84.1, Fig.7B). In line with the spectral slope analyses,
we also removed sleep stages from both models. Removing sleep stages from both models resulted
in a worse model fit (AIC for model with spindle power at channel C4 = 85.9; AIC for model with
spindle power at channel C4 = 86.3, Fig.7C). A complementary pattern emerges when directly
contrasting participants with and without insight across the whole frequency range. No significant
differences were observed (cluster-based permutation test, pcluster = 0.31).

Together, these results suggest that oscillatory activity does not explain insight, neither alone
nor in combination with sleep stages.
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Figure 5: Caption on next page.
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Figure 5: A: Insight proportion among the reported sleep groups. The insight ratio was significantly higher for
people that reported to have slept deeply (N2) (92.3%) than for the reported Wake group (52.2%). The reported N1
sleep group ratio (75%) did not differ significantly from the other two groups. The insight baseline ratio of 49.5%
was derived from our previous work using the same task without a nap period. B: Distribution of switch points for
the self reported sleep stages. One beeswarm point is one insight participant. Barplots show the mean, error bars
signify SEM. C: Accuracy and D: reaction times on the lowest motion coherence level for all subjects based on self
reported sleep stages. Blocks shown are halved task blocks (50 trials each). Error shadow signifies SEM. E and F
show data from C and D aligned to the individually fitted switch points for insight subjects only.

Figure 6: F-values of the comparison of the spectral slope betweenWake, N1 and N2. The spectral slope significantly
differs between Wake, N1 and N2 across all channels (pcluster = 0.003).
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Figure 7: Oscillatory activity. A: Overall, power significantly differs between Wake, N1 and N2. In grey, negative
cluster are highlighted, in red positive cluster. B: Topographies of model comparison results testing a model of
interest that include sleep stage and alpha power (left) or only alpha power (right) against a baseline model (left:
insight ∼ 1 + sleep stage, right: insight ∼ 1 + sleep stage + alpha power). Shown are channel-wise model fit
improvements obtained by including alpha power (left) or removing sleep stage (right; AIC in percentage). C:
Topographies of model comparison results which can be interpreted as in B. Here, spindle power instead of alpha
power is shown. D: There was no difference in power between participants with vs. without insight.
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Figure 8: PVT results. Before as well as after the nap period, participants’ vigilance was assessed via a 3 min
Psychomotor Vigilance Task (pvt1 = before, pvt2 = after nap period). Comparing reaction times between the Wake,
N1 and N2 group before (MWake = 314.51 ± 7.06ms;MN1 = 317.92 ± 4.55ms;MN2 = 317.51 ± 4.82ms) and after
(MWake = 324.71 ± 7.44ms;MN1 = 314.88 ± 5.95ms;MN2 = 312.93 ± 4.18ms) the nap period did not reveal any
significant differences (linear model: rtlog ∼ 1 + sleep stage + time point; for all β: -0.045 < β < 0.031, all p > 0.2.)
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