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Abstract
Humans sometimes have an insight that leads to a sudden and drastic performance
improvement on the task they are working on. The precise origins of such insights are
unknown. Some evidence has shown that sleep facilitates insights, while other work
has not found such a relationship. One recent suggestion that could explain this mixed
evidence is that different sleep stages have differential effects on insight. In addition,
computational work has suggested that neural variability and regularisation play a role
in increasing the likelihood of insight. To investigate the link between insight and differ-
ent sleep stages as well as regularisation, we conducted a preregistered study in which
N=90 participants performed a perceptual insight task before and after a 20 minute day-
time nap. Sleep EEG data showed that N2 sleep, but not N1 sleep, increases the likeli-
hood of insight after a nap, suggesting a specific role of deeper sleep. Exploratory anal-
yses of EEG power spectra showed that spectral slopes could predict insight beyond
sleep stages, which is broadly in line with theoretical suggestions of a link between
insight and regularisation. In combination, our findings point towards a role of N2 sleep
and aperiodic, but not oscillatory, neural activity for insight.

Introduction
Having an insight, or aha-moment, is a unique learning phenomenon that has attracted
researchers’ interest for a century [1]. The cognitive and neural mechanisms that underlie
insight are still debated [2,3], and have for instance been described as a restructuring of exist-
ing task representations [4–6]. On a behavioural level, insight is often characterised by three
features: an abrupt, non-linear increase in task performance [7,8]; a variable delay before the
insight occurs ‘spontaneously’ [6]; and selective occurrence in only some, but not all partici-
pants [9,10].

An important milestone along the path to understanding insight will be to define the fac-
tors that facilitate its occurrence. One such potential factor is sleep, which is linked to mem-
ory consolidation [11] and restructuring of memories [12], suggesting that it could be a facili-
tating factor for the incubation of insight. The evidence that sleep supports insight, however,
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is inconclusive. Work by Wagner et al. [13] suggests a beneficial effect of a full night’s sleep
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on insight, finding that more than twice as many subjects gained insight into a hidden task
rule after sleep, compared to wakefulness. Another study reported similar findings after a day-
time nap [14]. Other investigations, in contrast, did not find any benefits of sleep for insight,
or reported no difference between sleep and awake rest [15–17].

One possibility to explain divergent findings is that particular sleep stages affect insight
in different ways. Lacaux et al. [14] investigated this question by letting participants have a
daytime nap in between sessions of a mathematical insight task, where discovering a hidden
rule allowed to solve the task much more efficiently. In this case, a beneficial effect of sleep on
insight was associated exclusively with sleep stage 1 (N1) [14], which led to a 83% probabil-
ity to discover the hidden rule, compared to 30% in participants who stayed awake and 14%
in those how reached deeper N2 sleep. Another possibility is that different cognitive tasks
benefit differently from sleep. Lerner et al. [18], for instance, have argued that sleep is partic-
ularly important for extracting hidden task regularities, in line with work that has found the
strongest sleep effects in tasks that require extracting statistical rules. This would suggest that
insight tasks, which mainly rely on learning implicit associative rules (such as the PSSST we
tested in this study), benefit more from sleep.

Given the diverging findings on the impact of sleep on insight, we conducted a preregis-
tered daytime nap intervention study based on procedures by Lacaux et al. [14], but used a
different task (pregregistration link: https://osf.io/z5rxg/resources). We first aimed to repli-
cate the above mentioned finding that N1 sleep compared to wakefulness after task exposure
would lead to a higher number of insight moments about a hidden strategy during the post-
nap behavioural measurement, while N2 sleep would lead to a reduced number of insight
moments. A second major interest was to understand which features of the sleep-EEG sig-
nal best predict insight. Past work has focused on power in individual frequency bands [14].
However, our own computational work [10] has suggested that a combination of regulari-
sation and noise had beneficial effects for insight. Regularisation is a technique commonly
used in machine learning that involves shrinking weights towards zero, in an attempt to avoid
overfitting [19]. Our interest in regularisation is based on the observation that homeostatic
plasticity processes during sleep can lead to global shrinkage of synaptic strengths [20], in a
manner that is broadly reminiscent of regularisation [21]. This shrinkage could be critical for
insights in several ways. Our own modelling work has shown that regularisation causes an
initial suppression of irrelevant features that leads to the delayed and abrupt nature of knowl-
edge development during insight [10]. Additionally, we speculate that a global downscaling of
synaptic weights during sleep could lead to a “cleaner slate” that might facilitate insight post
nap. While a direct mapping between noise or regularisation in neural networks and electro-
physiological signals is unknown, the concepts of noise [22] and regularisation (as in synaptic
downscaling, [23]) have been indirectly linked to aperiodic activity [24]. Additionally, aperi-
odic activity has been shown to decrease with an increase in sleep depth [23,25,26]. Hence,
we also asked whether aperiodic activity of the EEG signal might have additional effects on
insight, over and above the hypothesised relations to sleep stages.

Instead of the Number Reduction Task (NRT) employed by Lacaux et al. [14], we
employed the Perceptual Spontaneous Strategy Switch Task (PSSST) that also features a hid-
den task regularity, and which our previous work has shown to invoke insight-based sponta-
neous strategy switches [9,10,27]. Similarly to the NRT, participants initially learned a func-
tional, but suboptimal, strategy, which was replaced by some participants with a more optimal
solution through an insight [9,27–29].

We note that while our task has the benefit to allow for tracking insight on a trial basis,
it also differs from other tests in which participants are asked to actively search for a novel
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problem solution (e.g. Remotes Associates Tasks [30] or Compounds Remotes Associates
Tasks [31]).

Materials and methods
Participants
Participants between eighteen and 35 years of age were recruited via internal mailing lists
as well as the research participation platform Castellum. Participation in the study was con-
tingent on not having any learning difficulty nor colour blindness. Further, participants
needed to report a normal sleep-wake cycle and no history of sleep disorders. Participants
were excluded if they switched to the colour strategy immediately after the correlation onset,
before the nap. All participants gave written informed consent prior to beginning the experi-
ment. The study protocol was approved by the local ethics committee of the Max Planck Insti-
tute for Human Development (approval number i2022-15) and adhered to the Declaration of
Helsinki. Participants received 56€ for completing the entire experimental procedure.

Data inclusion was contingent on participants’ showing learning of the stimulus classifica-
tion. As in our previous study with the PSSST [10], we probed their accuracy on the three eas-
iest, least noisiest coherence levels in the last block of the uncorrelated task phase. 30 subjects
did not reach an accuracy level of at least 80% in those trials and were thus excluded from
further analyses. Fifteen subjects were excluded, because the gained insight before the nap
and further 7 subjects were excluded due to insufficient EEG data quality. The final sample
included in all analyses thus contains 68 datasets.

Behavioural task
Perceptual Spontaneous Strategy Switch Task (PSSST). We employed the PSSST used

in our previous work [9,10,27] that requires a binary choice about circular arrays of moving
dots [32], but adapted the motion coherence levels slightly. Dots were characterised by two
features, (1) a motion direction (four possible orthogonal directions: NW, NE, SW, SE) and
(2) a colour (orange or purple). The noise level of the motion feature was varied in 5 steps
(5%, 23%, 41%, 59% or 76% coherent motion), making motion judgement relatively harder
or easier. Colour difficulty was constant, thus consistently allowing easy identification of the
stimulus colour. The condition with most noise (5% coherence) occurred slightly more fre-
quently than the other conditions (30 trial per 100, vs 10, 20, 20, 20 for the other conditions).

The task was coded in JavaScript and made use of the jsPsych 6.1.0 plugins. Stimuli were
presented on a 24 inch screen with a resolution of 1920 x 1200 pixel and a refresh rate of 59
Hz. On every trial, participants were presented a cloud of 200 moving dots with a radius of
7 pixels each. In order to avoid tracking of individual dots, dots had a lifetime of 10 frames
before they were replaced. Within the circle shape of 400 pixel width, a single dot moved 6
pixel lengths in a given frame. Each dot was either designated to be coherent or incoherent
and remained so throughout all frames in the display, whereby each incoherent dot followed
a randomly designated alternative direction of motion.

The trial duration was 2000 ms and a response could be made at any point during that time
window. After a response had been made via one of the two button presses, the white fixation
cross at the centre of the stimulus turned into a binary feedback symbol (happy or sad smi-
ley) that was displayed until the end of the trial. An inter trial interval (ITI) of either 400, 600,
800 or 1000 ms was randomly selected. If no response was made, a “TOO SLOW” feedback
was displayed for 300 ms before being replaced by the fixation cross for the remaining time of
the ITI.
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RDK task design. For the first 350 trials, themotion phase, the correct binary choice was
only related to stimulus motion (two directions each on a diagonal were mapped onto one
choice), while the colour changed randomly from trial to trial. For the binary choice, partic-
ipants were given two response keys, “X” and “M”. The NW and SE motion directions corre-
sponded to a left key press (“X”), while NE and SW corresponded to a right key press (“M”).
Participants received trial-wise binary feedback (correct or incorrect), and therefore could
learn which choice they had to make in response to which motion direction.

We did not specifically instruct participants to pay attention to the motion direction.
Instead, we instructed them to learn how to classify the moving dot clouds using the two
response keys, so that they would maximise their number of correct choices. To ensure that
participants pick up on the motion relevance and the correct stimulus-response mapping,
motion coherence was set to be at 100% in the first block (100 trials), meaning that all dots
moved towards one coherent direction. In the second task block, we introduced the lowest,
and therefore easiest, three levels of motion noise (41%, 59% and 76% coherent motion),
before starting to use all five noise levels in block 3. Since choices during this phase should
become solely dependent on motion, they should be affected by the level of motion noise.

After themotion phase, in themotion and colour phase, the colour feature became predic-
tive of the correct choice in addition to the motion feature. This means that each response key,
and thus motion direction diagonal, was consistently paired with one colour, and that colour
was fully predictive of the required choice. Orange henceforth corresponded to a correct “X”
key press and a NW/SE motion direction, while purple was predictive of a correct “M” key
press and NE/SWmotion direction. This change in feature relevance was not announced to
participants, and the task continued for another 550 trials as before - the only change being
the predictiveness of colour.

Before the last task block we asked participants whether they 1) noticed the colour rule
in the experiment, 2) how long it took until they noticed it, 3) whether they used the colour
feature to make their choices and 4) to replicate the mapping between stimulus colour and
motion directions. We then instructed them about the correct colour mapping and asked
them to rely on colour for the last task block. This served as a proof that subjects were in prin-
ciple able to do the task based on the colour feature and to show that, based on this easier task
strategy, accuracy should be near ceiling for all participants in the last instructed block.

Psychomotor Vigilance Task (PVT). During the PVT, a white fixation cross was pre-
sented in the middle of the screen. After a delay (jittered with 4000±2000 ms), the fixation
cross changed its colour to red. The change in colour prompted participants to press the space
key as fast as possible. On key press, participants received feedback about their reaction time
for 2.5 s. Overall, the PVT comprised 25 trials, corresponding to approximately 3 min. For
results of the PVT see Fig E in S1 Text.

Experimental procedure
For all participants, the experimental procedure started at the same time (1 pm) to rule out
potential time of day confounds. The experimental procedure consisted of 3 parts: (1) a first
behavioural session of about 25 minutes, including the PVT and 400 trials of the RDK task,
followed by (2) a nap of 20 minutes and (3) a second behavioural session of about 30 minutes,
including the PVT and 500 more trials of the RDK task. Note that the original PSSST version
does not have a delay.

(1) The experimental procedure began with the Pittsburgh Sleep Quality Index (PSQI)
questionnaire. Participants then first completed the PVT and concluded with the first part of
the RDK task of which the last 50 trials contained the hidden, easier strategy.

PLOS Biology https://doi.org/10.1371/journal.pbio.3003185 June 26, 2025 4/ 20

https://doi.org/10.1371/journal.pbio.3003185


ID: pbio.3003185 — 2025/6/13 — page 5 — #5

PLOS BIOLOGY N2 sleep inspires insight

(2) Subsequently, participants were given time to rest and nap for 20 minutes. The EEG
cabin was a completely dark and noise shielded room without sensory stimulation. During
the nap break, participants were positioned in a semi-reclined position on an armchair with
their legs resting on a foot piece, holding a light plastic cup in one hand. With the onset of
N2-sleep this cup likely falls, waking participants up (see [14]). EEG recordings were exclu-
sively recorded during this period and were used to identify different sleep stages. To increase
the probability that people would fall asleep during the nap, sleep in the night before the
experiment was reduced by 30% and participants were additionally asked to refrain from con-
suming caffeine prior to the session. All participants started the session at the same time of
day at 1 pm.

(3) After the nap, participants resumed the behavioural testing and first performed a sec-
ond PVT, followed by 500 more trials of the RDK task.

Object
We used the same object as Lacaux and colleagues [14] for this experiment: a light (55 g)
plastic drinking cup with a height of 14.5 cm and a 5.5 cm diameter. A babyphone filming
space below the hand of the participant next to the armchair was used to get accurate time
stamps of the object drop should the cup fall out of the participant’s hand due to muscle tonus
relaxation.

Modelling of insight-like switches
To investigate insight based strategy adaptations, we modelled participants’ data using indi-
vidually fitted sigmoid functions (for details see [10]).

y = ymax – ymin

1 + e–m(t–ts)
+ ymin

The criterion defined in order to assess whether a subject switched to the colour strategy, is
the accuracy in the highest noise level (5% coherence) in the last task block before the colour
rule was explicitly instructed. Insight subjects are classified as those participants whose per-
formance on those trials was above 85%. The individual insight moments ts were derived from
the individually fitted sigmoid functions.

EEG recordings
During the nap period, EEG and electrooculography (EOG) data were recorded using a Brain
Products 64-channel EEG system with a sampling rate of 1000 Hz. All electrodes were refer-
enced online to A2 (right mastoid) and AFz was used as the ground electrode. Two external
electrodes (biploar reference and ground electrode on the forehead) were placed on the chin
to record muscle activity (electromyography, EMG). Impedances were kept below 20 kΩ.

Sleep scoring
EEG and EOG data were re-referenced offline to linked mastoids and band pass filtered
between 0.3 and 35 Hz (high pass filter: 0.3 Hz, two-pass butterworth filter, 3rd order; low
pass filter: 35 Hz, two-pass butterworth filter, 5th order). EMG data were high pass filtered at
5 Hz (two-pass butterworth filter, 3rd order). Lastly, all data were down-sampled to 200 Hz.

To identify different sleep stages, sleep was scored according to the guidelines from the
American Academy of Sleep Medicine (AASM, [33]) based on EEG (O2, O1, Pz, Cz, C3, C4,
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F3 and F4), EOG and EMG data. Participants without any N1 or N2 period were assigned to
the wake group. Participants who had at least 1 epoch (30 s) of N1 and no signs of N2 (sleep
spindles and/or K-complexes) were assigned to the N1 group. Participants with signs of N2
(sleep spindles and/or K-complexes) were assigned to the N2 group. For the AASM scoring,
30 s epochs were used. Scoring was done by two scorers (ATL and MP), blind to the experi-
mental condition. Additionally, we validated the scoring by a convolutional neural network
trained on external polysomnography data (U-Sleep, [34], correlation with manual scoring:
r(66) = 0.82, p<0.001).

In addition to sleep stages, Lacaux et al. [14] reported a modulation of insight by alpha
and delta power across the whole nap period. To test for an additional modulation of insight
by power of different frequency ranges, we used a data driven approach across the frequency
spectrum of 1–20 Hz (see section Spectral slope analysis).

EEG data analysis
EEG analyses were conducted using the FieldTrip toolbox [35] and custom scripts written
in MATLAB. Independent component analysis (ICA) was applied to remove eye movement
artifacts from the data. For that, data were re-referenced offline to linked mastoids, filtered
(two-pass butterworth filter: high-pass: 1Hz, low-pass: 100Hz, bandstop: 48-52Hz) and down-
sampled (200 Hz). Bad channels were removed and coarse artifacts were discarded based on
outliers regarding amplitude and variance (implemented in ftrejectvisual). ICA was applied
to identify components reflecting eye movements (saved together with the unmixing matrix).
The raw data were then pre-processed again since previous pre-processing was optimised for
ICA. Data were re-referenced to linked mastoids, filtered (two-pass butterworth filter: high-
pass: 0.1Hz, low-pass: 48Hz) and down-sampled (200Hz). Bad channels were removed and
the previously obtained unmixing matrix was applied to the data, components reflecting eye
movements were removed and data were demeaned. Finally, bad channels were interpolated
(spherical spline interpolation) and artifacts were visually identified.

Spectral slope analysis. To obtain estimates of aperiodic activity, the spectral slope
parameter x (reflecting the slope of the power spectrum) was used. Data of the whole 20
minute nap period were segmented into 6 second epochs with an overlap of 50%. For these
segments, power spectra were obtained by applying a Hanning window and transforming data
from time to frequency domain using Fast Fourier Transformation. Power spectra were calcu-
lated for 1–45 Hz with a frequency resolution of 0.2Hz. The FOOOF algorithm [36] was then
applied to obtain the spectral slope. Aperiodic activity a is defined by:

a = 10b ∗ 1
(k + f 1x

)

where b is the y intercept, k is the knee parameter and x is the slope parameter. The knee
parameter was set to 0 since we did not expect the aperiodic activity to change across the fre-
quency range. Lower frequencies (< 1 Hz) often show a plateau in the power spectrum result-
ing in the need to fit a knee [37]. To avoid this, the lower limit of the frequency range was set
to 1 Hz. All other settings for the fit (including the peaks for the periodic component) were
kept at their default values (maximum number of peaks = 3, minimum height of a peak = 3
dB, limits of peak width = 0.5–12 Hz).
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Statistical analyses
Fisher’s exact tests were used in the analysis of contingency tables. All tests were two-tailed
with a significance level of less than 0.05. All computations were performed using R version
4.3.1. For comparisons of spectral slopes between Wake, N1 and N2 groups or between par-
ticipants with vs. without insight across all channels, a cluster-based permutation test was
used (F-statistics for comparison between Wake, N1 and N2: 1000 permutation, alpha = 0.05
, clusteralpha = 0.05; t-statistics for comparison between Insight vs. No insight: 1000 permuta-
tion, alpha = 0.025 , clusteralpha = 0.05). For post-hoc comparisons, t-tests were applied. For
model comparisons, we used the following logistic regression models for each EEG channel:

Modelbaseline: Insight ∼ 1 + sleep stage
Model1: Insight ∼ 1 + sleep stage + slope
Model2: Insight ∼ 1 + slope
AIC scores and likelihood ratio tests were used to assess the best model fit in a hierarchical

manner, while adjustedMcFaddensR2 scores are reported to indicate total model fit.
Bayes Factors were analysed in R using the BFpack library using fitted GLMs for the

respective hypotheses as inputs. The respective hypotheses were included as constraints.

Results
To study the effect of different sleep stages on insight, 90 participants performed a previ-
ously developed perceptual insight task, [9], before and after a 20-minute nap break. Sub-
jects were presented with a stimulus consisting of dots that were (1) either orange or purple
(colour feature) and (2) moved in one of four possible orthogonal directions (motion feature,
see Fig 1A). Dot motion had a varying degree of noise across trials (5%, 23%, 41%, 59% or
76% coherent motion), making motion judgement relatively harder or easier on different tri-
als. Participants were instructed to learn the correct button for each stimulus from trial-wise
binary feedback (see Fig 1A and 1B). The main task consisted of 9 blocks of 100 trials each
in which participants had to press one of two buttons in response to the shown stimulus, and
observe the feedback afterwards.

In the first three task blocks, only stimulus motion correlated with the correct response,
such that the correct button was deterministically mapped onto the directions of the dots (two
directions for each response). However, starting in the middle of block 4, stimulus colour
began predicting the correct button as well (i.e. the colour was paired with the two directions
that predicted the same response button, see Fig 2A). After block 4, participants were given
an opportunity to nap for 20 minutes in a reclining arm chair. We monitored brain activity
and sleep during this phase using a 64-channel electroencephalography (EEG). Participants
then completed 5 more blocks of the task, during which colour continued to predict the cor-
rect response in addition to motion (Fig 2A). Additional details about the task can be found
in the Methods section.

The subtle, unannounced change in task structure after 3.5 blocks provided a hidden
opportunity to improve the decision strategy that could be discovered through insight. Insight
was spontaneous in the sense that participants were not instructed about the hidden rule and
did not need to switch their strategy to perform the task correctly. Only after a participant
incidentally discovered the hidden rule did it become clear that using the colour could make
the task easier.

We tracked insight on a trial-by-trial basis by monitoring rapid performance increases
on high-noise (i.e. low motion coherence) trials, on which accuracy prior to the onset of
colour predictiveness was at only 56% (vs. 92% in low noise trials; how accuracy depended
on the noise level is shown in Fig 1D). Performance in high noise trials was stable before the
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Fig 1. Performance on the PSSST insight task and behavioural insight characteristics. A: Stimuli and stimulus-
response mapping of the PSSST. Dot clouds were either coloured in orange or purple and moved to one of the four
directions (NW, NE, SE, SW) with varying coherence. A left response key, “X”, corresponded to the NW/SE motion
directions, while a right response key “M” corresponded to NE/SW directions. B: Trial structure: a fixation cue is
shown for a duration that is shuffled between 400, 600, 800 and 1000 ms. The random dot cloud stimulus is dis-
played for 2000 ms. A response can be made during these entire 2000 ms, but a central feedback cue will replace
the fixation cue immediately after a response. C: Accuracy (% correct) over the course of the experiment for all
motion coherence levels. The first dashed vertical line marks the onset of the colour correlation, the second dashed
vertical line the instruction about colour predictiveness. Blocks shown are halved task blocks (50 trials each). N
= 90, error shadows signify standard error of the mean (SEM).D: Accuracy (% correct) during the motion phase
increases with increasing motion coherence. N = 90, error bars signify SEM. E: 70.6% of subjects (48/68) were clas-
sified as insight subjects based on non-linear increases in performance on the lowest motion coherence level (5%).
F: Distribution of switch points. The first dashed vertical line marks onset of the colour correlation, the second
dashed vertical line the nap period. Blocks shown are halved task blocks (50 trials each). G: Switch point-aligned
accuracy on the lowest motion coherence level for insight (48/68) and no-insight (20/68) subjects. Blocks shown
are halved task blocks (50 trials each). Error shadow signifies SEM.H: Trial-wise switch-aligned binary responses
on lowest motion coherence level for an example insight subject. The underlying data for this figure can be found at
https://doi.org/10.6084/m9.figshare.28806383.

https://doi.org/10.1371/journal.pbio.3003185.g001
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Fig 2. PSSST task structure and insight across sleep groups. A: Task structure of the PSSST: each block consisted
of 100 trials. A first training block contained only 100% motion coherence trials to familiarise subjects with the S-R
mapping. The remaining training block contained only high coherence (41%, 59%,76%) trials. In the motion phase,
colour changed randomly and was not predictive and all motion coherence levels were included. Colour started to be
predictive of correct choices and correlate with motion directions as well as correct response buttons in the second
half of the 4th block to expose subjects to the hidden rule before the nap. Participants were then given 20 minutes to
nap while EEG was recorded. Before the very last block 9, which served as sanity check, participants were instructed
to use colour. B: Insight proportion among the different sleep groups. The insight ratio was significantly higher for
the N2 sleep group (85.7%) than for the Wake group (55.5%). The N1 sleep group ratio (63.6%) did not differ signif-
icantly from the other two groups. The insight baseline ratio of 49.5% was derived from our previous work using the
same task without any nap or other delay period. C: Distribution of switch points for the different sleep groups. One
beeswarm point is one insight participant. Barplots show the mean, error bars signify SEM.D: Switch point-aligned
accuracy and E: reaction times on the lowest motion coherence level for insight subjects of the respective sleep
groups. Blocks shown are halved task blocks (50 trials each). Error shadow signifies SEM.The underlying data for this
figure can be found at https://doi.org/10.6084/m9.figshare.28806383.

https://doi.org/10.1371/journal.pbio.3003185.g002

change in task structure (paired t-test first half of block 3 vs. first half of block 4: 55% vs. 58%,
t(157.8) = –1.51, p = 0.13, d = 0.23, Fig 1C), indicating that improvements do not arise simply
due to training. A sudden change towards high accuracy on high noise trials can therefore be
interpreted as indicative of insight about the colour-based strategy [9,10,27].
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20 Minutes of rest increase insight
Fifteen subjects had an insight before the nap and were therefore excluded from analysis.
In another 7 cases EEG data quality prevented sleep classification, resulting in a total of 68
subjects for post nap data analysis. 70.6% (48/68) of participants showed abrupt, non-linear
performance improvements after the nap and were thus classified as “insight participants”
(Fig 1E). Notably, this percentage is substantially higher than a baseline of 49.5% (49/99)
insight that we observed in our previous study with closely related experimental procedures,
but without any delay period (p = .007, Fisher’s exact test, see Fig 2B below; N = 99, data
from [10]). By the first half of block 8, insight participants had significantly higher average
accuracy across all trial types (M = 98.2 ± 0.3% vsM = 86.4 ± 0.9%, t(22.86) = 12.28, p<.001,
d = 4.26), and lower reaction times (M = 526.6±14 vsM = 767.4±30.4, t(27.4) = –7.19, p<.001,
d = 2.2), as expected. Hence, the 20 minute nap period significantly improved insight. Insight
showed all three characteristics we observed in previous work: First, insight was selective, i.e.
occurred only in some, but not all, participants (see above). Second, the timing of individual
strategy switch points differed substantially across participants, indicating the highly variable
delay known as impasse in the insight literature (block in which switch occurred:M = 5.1 ±
2.6, range 3.6–6.2, Fig 1F; analyses based on logistic function fits, see Methods). Third, if par-
ticipants had an insight, their accuracy increased very abruptly within a short time window,
i.e. time-locking performance to their individual switch point indicated an average 25% per-
formance jump within merely 15 trials (M = 62.4 ± 16.9% vsM = 87.6 ± 15.1%, t(92.8) =
–11.16, p<.001, Fig 1G), which often reflected performance changes within a single trial only
(Fig 1H).

No evidence for N1 but for N2 sleep promoting insight
We followed the procedure of Lacaux et al. [14] and divided participants into three groups
based on their vigilance state during rest. Sleep was manually scored according to the guide-
lines from the American Academy of Sleep Medicine [33] based on 30 s EEG (O2, O1, Pz,
Cz, C3, C4, F3 and F4), EOG and EMG epochs. Using these criteria, participants were cate-
gorised as having had either no sleep, N1 sleep, or N2 sleep. This analysis showed that during
the 20 minute nap period 28 participants reached N2 sleep, 22 reached only N1 sleep, and 18
subjects remained awake (Please note that one subject spent 1 min in N3 sleep, but was never-
theless included in the N2 group; for sleep characteristics see Table A in S1 Text). Within the
N2 group, 85.7% (24/28) gained insight into the hidden strategy, while only 63.6% (14/22) of
participants in the N1 group and 55.5% (10/18) of the Wake group gained an insight in our
task (Fig 2B). Since manual sleep stage scoring depends on subjective classification, we val-
idated the manual sleep stage scoring with a convolutional neural network trained on exter-
nal polysomnography data (U-Sleep, [34]). This categorisation correlated highly with manual
scoring, r(66) = 0.82, p<0.001), and results reported here can be replicated qualitatively using
this alternative approach (see S1 Text). To further argue for the reported results being inde-
pendent of the sleep stage scoring technique, we split participants based on their subjective
sleep reports. Again, the reported results can be qualitatively replicated (see Fig B in S1 Text),
although subjective reports did not match objective sleep staging closely (see S1 Text).

Based on the paper by Lacaux et al. [14], our main preregistered hypothesis proposed that
N1 sleep would lead to an increased number of insight compared to the Wake and N2 sleep
groups, respectively. We further hypothesised that N2 sleep would lead to decreased insight
compared to N1. We find no support for either the first or second hypothesis (Fisher’s exact
test N1 vs. Wake: p = 0.75; N1 vs. N2: p = 0.1). To explain the above reported heightened inci-
dence of insight after the nap generally, we explored whether N2 sleep was the main driver
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of insight. Interestingly, we observed a significantly higher number of insight after N2 sleep
compared to Wake (Fisher’s exact test, p = 0.038, Fig 2B). In line with these analyses, a gener-
alised linear model (GLM) with sleep stage as a predictor of insight fits the data better than
a model with just an intercept (AIC 82.5 vs. 84.4). As expected, post-hoc tests also showed a
significant N2 sleep coefficient in this model (p = 0.03), while N1 sleep and Wake remained
non-significant (Wake: p = 0.64, N1: p = 0.6). Investigating Bayes Factors supports this find-
ing and shows strong evidence for an effect of N2 > N1 (BF = 24.71) as well as N2 > Wake (BF
= 8.19), while there is no substantial evidence for our preregistered hypotheses of N1 > W (BF
= 1.19) and N1 > N2 (BF = 0.04). We thus find no evidence that N1 sleep promotes insight as
reported by Lacaux et al. [14]. Instead, in our data N2 sleep showed a significant association
with insight frequency. Please note that the results do not qualitatively change when partici-
pants with very short episodes of N2 sleep (< 2min) are excluded (excluded participants = 4;
insight likelihood of N2adjusted = 87.5% [21 of 24 participants with insight], Fisher’s exact test
N2adjusted vs. N1, p = 0.09; Fisher’s exact test N2adjusted vs. W, p = 0.03).

The increased occurrence of insight in the N2 group had no major associations with over-
all performance after the nap. Accuracy on the lowest motion coherence trials only trended to
be better in N2 compared to Wake participants (t-test block 5-12, N2 vs. Wake:M = 85 ± 3%
vsM = 76 ± 2.9%, t(14) = 2.06, p = 0.06, d = 1.03, N2 vs. N1:M = 85 ± 3% vsM = 81 ± 2%,
t(12.1) = 1.06, p = 0.31, d = 0.53, Fig BA in S1 Text).

No effects on the corresponding reaction times could be found (N2 vs. Wake:M = 757.6 ±
48ms vsM = 809 ± 35ms, t(12.8) = –0.86, p = 0.4, d = 0.43, N2 vs. N1:M = 757.6 ± 48ms vs
M = 787.8 ± 45ms, t(13.9) = –0.46, p = 0.66, d = 0.23, Fig BB in S1 Text). Finally, there was no
significant difference in the vigilance between Wake, N1 and N2 (assessed via reaction times
in a psychomotor vigilance task, PVT, before and after the nap. linear model: rtlog ∼ 1 + sleep
stage + time point; for all 𝛽: -0.045 < 𝛽 < 0.031, all p> 0.2; Details see Methods and Fig E in
S1 Text). Thus, sleep seemed to increase insight frequency, but not alter overall performance
characteristics.

To explore more directly whether the characteristics of insight differed between sleep
groups, we next focused on the individually determined time points of insight, and partic-
ipants’ performance thereafter. We investigated differences in delay using the individually
defined switch points in high noise trials (Fig 1G and 1F; details see Methods), and found
no significant differences across groups (MN2 = 4.96 ± 0.1%;MN1 = 5.22 ± 0.16%;MWake =
5.21±0.15%, see Fig 2C; all ts <1.39, ps >.18). The switch point distributions also did not differ
between groups (Kolmogorov-Smirnov test: N1–Wake: D = 0.33, p = 0.47, N1–N2: D = 0.29,
p = 0.36, N2–Wake: D = 0.33, p = 0.36). Accuracy of insight subjects after their switch did not
differ between sleep groups either (MN2 = 90.9±0.3%;MN1 = 94.5±0.3%;MWake = 90.2±0.3%,
see Fig 2D; all ts <1.06, ps >.3). Finally, we also found no group differences between reaction
times after the insight (MN2 = 688.4 ± 42;MN1 = 607.1 ± 54.7;MWake = 711 ± 73, see Fig 2E; all
ts <–0.27, ps >.25). Thus, while N2 sleep increased the prevalence of insight, it does not seem
to affect its characteristics, i.e. abruptness, selectivity and delay.

No evidence for oscillatory activity predicting insight
Additionally to sleep stages, Lacaux et al. [14] found an association between insight and alpha
and delta power. We pre-registered a data-driven analysis approach (including frequencies
from 1–20 Hz) to test for a modulation of insight by power. To this end, we contrasted spec-
tral slope corrected power spectra (FOOOF algorithm [36], 6 s epochs, 1–20 Hz, 0.2 Hz fre-
quency resolution, 50% overlap) between Wake, N1 and N2. Power spectra were calculated as
described in the Methods section (Spectral slope analysis).
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As expected, oscillatory power in the frequency range of 6–16 Hz significantly differed
across all channels between Wake, N1 and N2 (cluster-based permutation test, F-statistics,
pcluster = 0.005). Post hoc cluster-based permutation tests revealed a positive and negative
cluster in the alpha (5.8–11.3 Hz) and sleep spindle frequency range (11.5–15.2 Hz), respec-
tively (post-hoc cluster-based permutation test, t-statistics, Wake > N1: negative cluster,
pcluster = 0.02, 10.5–14 Hz; Wake > N2: positive cluster, pcluster = 0.07, 6–9 Hz; negative clus-
ter, pcluster = 0.05, 11.5–15.2 Hz; N1 > N2: positive cluster, pcluster = 0.007, 5.8–12.3 Hz). Since
we also wanted to test the a priori hypothesis of delta power predicting insight (see pre-
registration), we additionally extracted power in the delta frequency range (1–4 Hz). Nei-
ther averaged power in the alpha nor in the spindle cluster nor in the delta frequency range
explained insight beyond sleep stages (AIC for model containing only sleep stages = 82.5; AIC
for model with sleep stages + alpha power at channel C4 = 84.5; AIC for model with sleep
stages + spindle power at channel C4 = 84.1, Fig DB in S1 Text; AIC for model with sleep
stages + delta power at channel C4 = 84.4). In line with the spectral slope analyses, we also
removed sleep stages from both models. Removing sleep stages from both models resulted
in a worse model fit (AIC for model with spindle power at channel C4 = 85.9; AIC for model
with spindle power at channel C4 = 86.3, Fig DC in S1 Text; AIC for model with delta power
at channel C4 = 85.6). A complementary pattern emerges when directly contrasting partic-
ipants with and without insight across the whole frequency range. No significant differences
were observed, neither in the alpha, spindle, delta or any other frequency range (cluster-based
permutation test, pcluster = 0.31).

Together, these results suggest that oscillatory activity does not explain insight, neither
alone nor in combination with sleep stages.

Aperiodic neural activity predicts insight
Above, we performed pre-registered analyses investigating sleep stages and their impact on
insight. They revealed that N2 sleep in particular is associated with insight. In a next step, we
follow up on these findings with exploratory analyses investigating a potential association
between insight and aperiodic activity. Our previous work on neural networks [10] suggests
that noise as well as regularisation facilitate sudden and abrupt performance changes charac-
terising insight. Although the precise mapping of these parameters in neural networks onto
electrophysiological markers is unclear, noise [22] and regularisation (as in synaptic down-
scaling, [23]) have both been associated with aperiodic activity. Additionally, aperiodic activ-
ity has been shown to decrease along the sleep cycle, translating into a steeper spectral slope
with deeper sleep [23,25,26]. This led us to ask whether aperiodic activity during the nap
period relates to insight, over and above the effects of sleep stages. We quantified aperiodic
neural activity during the entire 20 min nap period by the spectral slope of the power spec-
trum in log-log space (FOOOF algorithm by range 1–45 Hz, 0.2 Hz frequency resolution, 6
s epochs with 50% overlap [36]). Analyses that use only aperiodic neural activity during the
deepest sleep stage (e.g., N1 sleep stage for N1 group) revealed qualitatively similarly results to
those reported below and are shown in Fig F in S1 Text. We verified that spectral slopes differ
between the Wake, N1 and N2 groups, as expected [23,25,26]. This showed a global associa-
tion (across all channels) between the spectral slope and sleep stages (pcluster = 0.003) such that
the spectral slope was the steepest in the N2 group and the flattest in the Wake group (post-
hoc t-tests, for channel F4: Wake vs. N1:MWake = –1.37±0.08 vs.MN1 = –1.47±0.04, t(26.9) =
1.72, p = 0.25, d = 0.39, N1 vs. N2:MN1 = –1.47 ± 0.04 vs.MN2 – 1.79 ± 0.06, t(47.3) = 4.33,
p<0.001, d = 1.18; for channel C4: Wake vs. N1:MWake = –1.31 ± 0.09 vs.MN1 = –1.50 ± 0.05,
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t(26.8) = 2.00, p = 0.06, d = 0.67, N1 vs. N2:MN1 = –1.50± 0.05 vs.MN2 –1.76± 0.06, t(47.8) =
3.49, p = 0.001, d = 0.96, Fig 3A).

Our main question was whether the spectral slope relates to insight beyond the association
between sleep stages and insight reported above. Given the substantial association between
sleep stages and spectral slope, we used a nested model comparison approach and tested a
baseline model containing only sleep stage as a predictor for insight against a full model con-
taining sleep stage and spectral slope. While the sleep stage only model performed better than
an intercept-only null model (for channel F4: AIC null model: 84.4, AIC sleep stage model:
82.5; likelihood ratio test between null and sleep stage model: X2(2) = 5.85, p = 0.05, for sleep
stageN1vsWake, 𝛽 = 0.34, p = 0.60, for sleep stageN2vsWake, 𝛽 = 1.57, p = 0.03), we also found that
spectral slope over fronto-central areas further improved insight prediction compared to the
sleep stage only model (for channel F4: AIC: 82.5 vs. 81.0, Fig 3B, likelihood ratio test between
both models: X2(1) = 3.56, p = 0.06), with a steeper spectral slope relating to a higher insight
likelihood (e.g., channel F4: 𝛽 = –1.98, p = 0.07). Interestingly, comparing this full model (with

Fig 3. Spectral slope analysis. A:The spectral slope significantly decreased fromWake to N1 to N2, as expected. For
the corresponding topoplot see Fig C in S1 Text. B: Topographies of model comparison results testing the full model,
including sleep stage and spectral slope, vs. a baseline model, including just sleep stage (left) and the slope model,
including just the slope, vs. the full model, including sleep stage and spectral slope (right). Shown are channel-wise
model fit improvements (see colour scale on the right side) obtained by including the spectral slope (left, AIC dif-
ferences with negative values indicate a better fit of the full model) or removing sleep stage (right, AIC differences
with negative values indicate a better fit of the slope model). For channels with AIC differences <0 and a significant
model prediction of the full (left) or slope model (right),McFaddensR2 adjusted for model complexity is shown as a
colour-coded dot (see colour legend left). See Table B in S1 Text for model information of frontal, central, parietal
and occipital channels. C:The spectral slope was significantly steeper (i.e., more negative) for participants with
insight vs. participants without insight, over fronto-central areas. All channels that are part of the significant cluster
are highlighted in white.D:The comparison of the spectral slope between participants with vs. without an insight for
channel C4 (part of the significant cluster in C). Repeating all analyses with aperiodic neural activity calculated only
during the deepest sleep stage revealed comparable results, see Fig F in S1 Text. The underlying data for this figure
can be found at https://doi.org/10.6084/m9.figshare.28805639.

https://doi.org/10.1371/journal.pbio.3003185.g003
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both sleep stage and spectral slope as predictors) with the more parsimonious model con-
taining only the spectral slope showed that the spectral slope alone is the best predictor for
insight, yielding the best of all considered models (e.g., channel F4: AIC: 81.0 vs. 78.2, Fig 3B,
for slope, 𝛽 = –2.53, p = 0.01, likelihood ratio test that the more complex model is better: X2(2)
= 1.25, p = 0.54). As anticipated based on these results, contrasting participants with ver-
sus without insight also indicated clear differences in spectral slope (pcluster = 0.01, Fig 3C;
for channel F4: Insight vs. No Insight:MInsight = –1.65 ± 0.04 vs.MNoInsight = –1.40 ± 0.08,
t(30.85) = –2.69, p = 0.01,d = 0.77; for channel C4: Insight vs. No Insight:MInsight = –1.62 ±
0.04 vs.MNoInsight = –1.39± 0.09, t(30.05) = –2.39, p = 0.02,d = 0.69, Fig 3D).

Investigation of oscillatory activity, in contrast, did not reveal any correlation with insight.
Although oscillatory activity changed across sleep stages, and Lacaux et al. [14] reported links
between alpha and delta power and insight, we did not find such associations in our data (see
above for an overview of the analyses).

In conclusion, variations in aperiodic activity during a nap period predict whether par-
ticipants will gain insight, with steeper spectral slopes, particularly over fronto-central areas,
linked to higher insight likelihood. Aperiodic activity explained insight beyond sleep stages
and was even sufficient to explain insight to a similar extent than aperiodic activity together
with sleep stages, with the latter suggesting that aperiodic activity captures all information
obtained by sleep stages. Further, the association between aperiodic activity and insight is
stronger than previously described links between sleep stages or oscillatory power and insight.

Discussion
We investigated the effect of sleep on insight. Our preregistered study set out to conceptu-
ally replicate findings of Lacaux et al. [14], who reported that effects of sleep on insight were
driven entirely by N1 sleep. While we did find a general increase in insight following the nap,
the insight ratio of N1 subjects did not differ from subjects of the Wake group, thus providing
no support for the hypothesis that N1 sleep fosters insight, contrary to [14]. Instead, we found
a beneficial effect of N2 sleep on post-nap insight likelihood, suggesting a need for deeper
sleep for insight. We note that although the combination of awake and sleep group differences
in this study and previous observations from studies without any delay strongly suggest a ben-
eficial effect of sleep rather than delay, we do not present a randomized manipulation of sleep,
awake rest, and no rest.

An exploratory analysis showed that the 1/f slope of the power spectrum did explain addi-
tional variance in insight likelihood above and beyond sleep stages. In contrast, neither power
in the alpha nor in the spindle frequency range could predict insight. Hence, aperiodic but
not oscillatory neural activity emerged as an additional factor that promotes insight. The 1/f
slope has been linked to consciousness and sleep depth, where a steeper slope signifies less
consciousness under anaesthesia. From wakefulness, to N1, N2 and N3 sleep, i.e., when sleep
becomes deeper, the spectral slope becomes steeper [25,38–41]. Since the 1/f slope is a con-
tinuous measurement and tracks different brain states during sleep on a short timescale [42],
it potentially offers a more fine grained measure of sleep depth. Hence, the fact that the spec-
tral slope predicts insight beyond sleep stages alone suggests that deeper sleep is needed for
insight.

This begs the question what the insight promoting processes during deeper sleep are. Our
previous computational work [10] pointed towards a role of regularisation and noise for the
formation of insight. Regularisation is a model simplification process that is commonly used
in machine learning to improve performance and avoid overfitting [19]. In the context of
neural networks, regularisation shrinks or eliminates in particular weak weights between
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neurons. On a molecular level, this renormalisation has been linked to synaptic downscaling
during sleep [24], a process that maintains a synaptic firing homeostasis by adjusting synap-
tic weights based on activity [20]. It has been specifically argued that by regulating synaptic
strength depending on the neurons’ firing rates during wake, this scaling process can aid sta-
ble energy requirements and may avoid memory interference [20]. Proponents of the synaptic
homeostasis hypothesis [43–45] have linked regularisation to synaptic downscaling [21], since
both processes reduce weights and support generalisation. The selective, activity-dependent
renormalisation of synapses through regularisation during sleep might thus be an ideal can-
didate for gist extraction of relevant information and therefore contribute to insight-like
learning phenomena.

By pruning synaptic connections with low activity, overall excitability is renormalised dur-
ing sleep [46–48]. Computational work correlated this excitation-inhibition (E/I) balance
with the spectral slope of aperiodic EEG activity [24] where a reduced E/I balance is reflected
in a steeper spectral slope. Beyond just being a fine grained measure of sleep depth, the 1/f
slope might thus reflect regularisation, which potentially plays an important role in generating
insight.

It should be noted, however, that to date it is unclear if synaptic downscaling occurs dur-
ing NREM sleep. Some evidence has linked E/I balance adjustments to REM sleep [23], but
also to slow-wave sleep [49], while further evidence for synaptic downscaling during NREM
sleep has remained indirect [50,51]. While our nap intervention was not sufficiently long for
participants to reach N3 sleep, our results are in line with several findings suggesting that
deeper sleep more generally plays a special role in the origins of insight. Increased alpha band
activity during slow wave sleep (SWS), for instance, has been found to be predictive of post
sleep insight, potentially reflecting representational restructuring happening during deeper
sleep [52]. Another study found a SWS-specific effect in the beta frequency range, but inter-
preted particularly the oscillatory 10 Hz patterns during SWS to imply neocortical read-out
of implicitly learned information stored in the hippocampus [53]. While we do not directly
observe SWS in our study, and individual frequency bands such as alpha did not predict
insight, the evidence seems to broadly suggest that deeper forms of sleep yield bigger benefits
for insights. How this can be reconciled with findings from Lacaux et al. [14] and others has
yet to be determined. Future work should further investigate the role of sleep beyond NREM
and include a full night of sleep.

What amount of regularisation is beneficial for insight is also uncertain. While our previ-
ous work [10] has suggested that a certain amount of regularisation in neural networks leads
to abrupt learning dynamics that characterise insight, either too little or too much regular-
isation caused the network to behave less insight-like. In the present study we only found a
one directional relation, where deeper sleep and thus possibly more regularisation predicted
insight. A speculative explanation for this might be that downscaling during N2 sleep of the
nap led to a sort of reset of the previously learned synaptic weights which led participants
to have a ‘clean slate’ after the nap, enabling them to restart the task with a fresh mind and
discover the hidden rule more easily.

Lastly, why our findings diverge from what was reported by Lacaux et al. [14] is unclear.
A major difference between our studies is that we used the Perceptual Spontaneous Strat-
egy Switch Task [9,10,27], while they used the NRT. The PSSST has crucial analogies in
task structure to the NRT. Both tasks measure ‘intrinsic’ insight where the hidden rule as a
potential for strategy improvement is never mentioned to participants, and both tasks can
be solved in principle even if the hidden rule is not discovered, by using the initially learned
rule. Besides the fact that our rule was much simpler, there are two major differences between
these two insight tasks: first, the initial rule was learned via feedback in the PSSST, while it
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was instructed in the NRT; second, in our study the hidden rule became possible only after
350 trials, while for the NRT it is present from the start. This could imply potentially different
learning mechanisms that could be affected differently by the respective sleep stages. Further,
Lacaux et al. [14] use occipital electrodes for oscillatory analyses, but our spectral slope results
find an effect of aperiodic activity predicting insight on fronto-central electrodes (Fig 3C).

While such differences do not allow inferences about the original finding, conceptual repli-
cations are important for validating broader scientific implications. How theoretical con-
structs such as insight are mapped onto specific tasks needs to be carefully evaluated, if one
seeks to test the theoretical construct of interest.

Beyond sleep stages, different cognitive tasks might benefit from sleep in different ways –
and potentially explain divergent findings regarding the relationship of sleep and insight. For
instance, sleep has been found to aid in statistical learning [54] and particularly in the extrac-
tion of hidden task regularities [18]. Besides the associative learning of hidden structure in
the PSSST and NRT, participants also need to overcome the initially learned strategy, which
could block learning of the associations required for the insight [55,56]. Both downscaling
of redundant information in terms of weak synaptic connections, as well as global downscal-
ing of all synaptic weights to a speculative ‘clean slate’ could potentially account for the post
sleep insight. In favour of the clean slate hypothesis would be that subjects often take a while
after waking up to discover the hidden rule [13,14], i.e. they don’t wake up with the insight
solution.

It is important to note that regularisation only reflects one of several possible mechanisms
that foster insights and are not mutually exclusive. As discussed above, regularisation can lead
to a “cleaner slate” after a nap, akin to a process that relaxes previously established constraints,
and can lead to gist extraction. Another mechanism that could foster insight is replay, the
reactivation of sequential experience during sleep or wake [57], which can be used to recom-
bine previously separate experiences and thereby promote novel inferences [58,59]. Replay
on the other hand, might be beneficial for generating new connections, such as would be
required for insight puzzles. It would also be expected that based on this mechanism, subjects
should know the solution upon waking and restarting the task.

Further studies on the relationship between sleep and insight should therefore continue to
evaluate different tasks, for instance one that is neither mathematical nor perceptual. Addi-
tionally, future work could also investigate the effect of a full night of sleep, rather than brief
naps.

To conclude, the present study presents evidence of N2 sleep increasing insight likelihood,
with the EEG spectral slope predicting insight beyond sleep stages. An exciting avenue for
future studies will be to investigate the mapping between on-task EEG activity during insight
moments to EEG activity during sleep and further examine potential relationships between
the EEG spectral slope and regularisation in neural networks.

Supporting information
S1 Text. Supporting text. Supplementary information file including additional analyses on
self-reported sleep stages and sleep stages using U-Sleep [34]. This file includes Fig A (Accu-
racy and reaction times on the lowest motion coherence level for subjects of the respective
sleep groups), Fig B (Insight proportion, switch point distribution, accuracy and reaction
times among the reported sleep groups), Fig C (F-values of the comparison of the spectral
slope between Wake, N1 and N2), Fig D (Oscillatory activity and topographies of model com-
parison results), Fig E (PVT results), Fig F (Results of quantifying aperiodic neural activity
for the deepest sleep stage), Table A (Average sleep durations), Table B (Information about
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the full model and the slope model across frontal, central, parietal and occipital area). Figure
legends see inside S1 Text.
(ZIP)
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