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Abstract
Generalisation from past experience is an important feature of intelligent systems. When
faced with a new task, efficient generalisation can be achieved by evaluating solutions to
earlier tasks as candidates for reuse. Consistent with this idea, we found that human
participants (n=40) learned optimal solutions to a set of training tasks and continued to
reuse them on novel test tasks. Corresponding functional magnetic resonance imaging data
showed that optimal solutions from the training tasks were represented on test tasks in
occipitotemporal and dorsolateral prefrontal cortex. These findings suggest that humans

evaluate and generalise successful past solutions when attempting to solve new tasks.
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Introduction
The ability to flexibly generalise from past experience to new situations is central to
intelligence. Humans often excel at this (Dekker et al., 2022; Luettgau et al., 2023; Xia &
Collins, 2021) and the reasons have long intrigued cognitive neuroscientists. A recurring
theme is that neural systems should store structural information extracted from past
experiences (Behrens et al., 2018; Tervo et al., 2016). Structural information specifies the
form shared by solutions to a given class of problems, abstracting over the content that is
specific to each problem. When new situations arise, this information can be retrieved and
combined with situation-specific content to make decisions.

Although this approach is maximally flexible, humans often use simpler forms of
generalisation. Recent data have shown that humans tend to solve new tasks by reusing
solutions from earlier tasks (Tomov et al., 2021). This relies on an algorithm known as
“generalised policy improvement” (GPI; Barreto et al. 2017, 2018, 2020). GPI achieves
efficient generalisation by storing a set of solutions (policies) that can be evaluated and
selected for reuse. Importantly, a feature-based generalisation of the successor
representation (“successor features” or SFs) can be harnessed to support the identification
of the optimal policy among those stored in memory. The resulting algorithm, SF&GPI, is
able to efficiently solve new tasks (Barreto et al. 2017, 2018, 2020) and predict human
generalisation behaviour (Tomov et al., 2021), when tasks are situated in a common
environment and each task is associated with a distinct reward function.

Here we investigated whether the human brain implements this flexible and efficient
form of generalisation. If people generalise their past experiences using SF&GPI, it should be
possible to detect its components in their brain activity. We developed three neural
predictions based on this premise. First, we predicted that successful past policies would be
represented in brain activity when people are exposed to new tasks. Second, we predicted
that these policies would be prioritised, showing stronger activation than unsuccessful past
policies. Third, we predicted a corresponding representation of the features associated with
successful past policies, as these are used in the model to compute expected rewards.

Past research from cognitive neuroscience provides important clues about where
these predictions should be observed. The dorsolateral prefrontal cortex (DLPFC) has been
proposed as a region that encodes policies (Botvinick & An, 2008; Fine & Hayden, 2022) and

supports context-dependent action (Badre & Nee, 2017; Flesch et al., 2022; Frith, 2000;
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Jackson et al., 2021; Rowe et al. 2000). Based on this literature, DLPFC is a candidate region
in which the encoding of successful past policies could be detected when people are
exposed to new situations. The medial temporal lobe (MTL) and orbitofrontal cortex (OFC)
have been proposed as regions that encode predictive representations about future states
(De Cothi & Barry, 2020; Geerts et al. 2020; Muhle-Karbe et al., 2023; Stachenfeld et al.
2017; Wimmer & Blichel, 2019). Based on this literature, MTL and OFC are candidate regions
in which features associated with successful past policies might be detected.

To test these predictions, participants completed a multi-task learning experiment
during functional magnetic resonance imaging (fMRI). The experiment included training
tasks that participants could use to learn about their environment, and test tasks to probe
their generalisation strategy. Different reward functions were used to define different tasks
in the experiment. To summarise the main results, we found that participants learned
optimal solutions (policies) to the training tasks, and generalised them to test tasks in a
reward selective manner. Participant choices at test were more similar to an SF&GPI
algorithm than to an MB algorithm. Neural results showed that optimal solutions from the
training tasks could be decoded above chance during test tasks in DLPFC and (surprisingly) in
occipitotemporal cortex (OTC). These solutions were also prioritised. Decoding evidence for
the optimal training solutions at test was higher than alternative solutions that promised
larger rewards. These results provide new insights into how a sophisticated policy reuse

algorithm might be implemented in the brain.
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Results
To test whether SF&GPI computations were evident in brain activity, participants completed
a gem collector game inside an MRI scanner (Fig. 1). The cover story was that a criminal
mastermind had hidden rare gems in different cities around the world. Participants needed
to retrieve the gems to sell them for as much profit as possible. The first screen on each trial
showed a set of market values that indicated the profits or losses associated with reselling
each gem. Market prices could range from $2 per gem to -S2 per gem. After seeing the
market values, participants faced a choice between four cities (Sydney, Tokyo, New York,
London) shown in a random order on screen. Each city contained the same three gem stones
(triangle, square, circle), but in different amounts. The profit earned for a particular choice
was based on the combination of market values and the recovered gems. The selling price of
each gem stone was first multiplied by its respective number in the chosen city, and rewards
were then summed across gem stones to arrive at the total profit. Embedded in this trial
structure were two important abstract elements. First, market values were reward functions
that defined the task participants needed to solve on a given trial. If triangular gems had a
high market value for example, and all other factors were equal, participants would need to
locate the city with the most triangular gems. Second, the gem numbers in each city defined
the state features for that city, information that could be reused to guide decisions on new
tasks.

Trials were ordered in a specific way to test the SF&GPI model. When beginning each
block, participants did not know how many gems were present in each city and needed to
learn this information by making decisions and observing the outcomes. This was possible
during the first 32 trials of the block, which included feedback after each choice (Fig 1A). We
refer to trials with feedback as training trials hereafter. Across training trials, participants
encountered four training tasks that each had a unique reward function (i.e. a unique market
value cue shown at the beginning of the trial). Two training tasks resulted in high rewards
when city A was selected (e.g. Sydney), while the alternative cities resulted in losses or
marginal reward. The other two training tasks resulted in high rewards when city B was
selected (e.g. Tokyo), but losses or marginal reward when the alternative cities were
selected. This meant that in effect participants needed to learn two optimal policies to
perform well on training trials. One optimal policy could be used for two training tasks and

another could be used for the remaining two training tasks.
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Following the initial learning phase, participants were given 20 test trials (Fig. 1B)
interspersed with 16 training trials. The test trials differed from training trials in that they
introduced four new tasks (market value cues) and did not provide feedback after each
choice. The test trials were designed so that the two cities resulting in losses or marginal
reward during training (e.g. New York and London) were now the most rewarding. This
experimental setup allowed us to dissociate two main generalisation strategies. A model-
based agent with full knowledge of the environment would compute expected rewards for
all four cities and choose the one that was objectively most rewarding. A model-based agent
would therefore enact different policies on the test tasks compared to the training tasks. In
contrast, an SF&GPI agent that stores and evaluates the best cities from training would
compute expected rewards based on the optimal training policies. An SF&GPI agent would
therefore choose the more rewarding city among the optimal training policies for each test
task, but would not enact polices that had been unrewarding during training.

Participants completed six blocks of 68 trials in total. Training tasks had the following
market values: wirain = {[1, -1, 0], [-1, 1, 0], [1, -2, 0], [-2, 1, O]}. Test tasks had the following
market values: wwest = {[2, -1, -1], [-1, 1, 1], [1, -1, 1], [1, 1, -1]}. Gem numbers (state features)
had the following values: ¢ = {[120, 50, 110], [90, 80, 190], [140, 150, 40], [60, 200, 20]}. The
vector elements in each triplet were shuffled using a shared rule before a new block (e.g. all
vectors were reordered to [1,3,2]). The mapping between cities and features (gem triplets)
was also changed. These changes created the appearance of new training and test tasks in
each block while preserving the structure of the experiment, in which two of the four
options always proved to be best in training trials but suboptimal in test trials. Performance
was incentivised with a monetary bonus that was based on the total profit accrued over all
trials in the scanner game. Before the experiment took place, participants were informed
about how market values and gem numbers were combined to calculate the profit on each
trial. Participants also completed 80 training trials with different state features and a
different task theme in preparation for the session, and 20 training trials with different state

features prior to scanning.
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Figure 1. Experimental design. Participants competed a gem collector game while their brain
activity was measured with fMRI. On each trial in the experiment, gems with distinct shapes
could be resold for either a gain or a loss. Participants made a choice between four cities
from around the world, each leading to a distinct collection of gems. To maximise profit
overall, participants needed to choose the city best suited to the selling prices shown on
each trial. Each block consisted of 32 training trials that included feedback (shown in A),
followed by a mixture of 16 training trials with feedback and 20 test trials without feedback
(shown in B). The gem collection associated with each city changed from block to block. A:
An example training task. Following presentation of the market values, participants selected
a city and saw a feedback screen. The feedback screen revealed the gem numbers in the
selected city and the profit earned on the current trial. Four training tasks were used in the
experiment and were designed so that two of the four cities were optimal across training
tasks. B: An example test task. On test tasks, participants saw a set of market values that had
not appeared during training and selected a city but did not see the outcome of their
decision. Four test tasks were used in the experiment and were designed so that the two
cities that were previously suboptimal now offered the highest returns. A model-based
agent is expected to be sensitive to this change. A “memory-based” SF&GPI agent that
evaluates earlier task solutions as candidates for generalisation is expected to choose among

the cities that were optimal during training.
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Participants learned optimal policies for training tasks

We first examined performance on the training tasks (Fig. 2A-E). This included training trials
from the initial learning phase and training trials that were interspersed between test trials.
The average reward earned per choice was higher than what would be expected if
participants were choosing at random (M=49.77, SD=10.61, Mrandom=-54.32, SDrandom=6.68,
t(74)=51.19, corrected p<0.001) suggesting successful learning. To understand training
performance in more detail, we examined which choice options were selected. Training tasks
were designed so that the most rewarding choice on each trial would lead to gem triplet
®(1) or gem triplet d(4). Gem triplets are called feature triplets hereafter. Consistent with
the training structure, cities associated with ¢(1) and ¢(4) were chosen significantly more
often than the other cities (Fig. 2C). ¢(1) was reached more often than ¢(2) or ¢(3)
(Mg1)=41.66% of training trials, SD¢(1)=3.44, M(2)=6.52%, SD ¢(2)=2.70, t(37)=37.78,
corrected p<0.001; M¢(3)=6.38%, SD¢(3=2.71, t(37)=37.95, corrected p<0.001). d(4) was
similarly reached more often than ¢(2) or d(3) (Me(s)=45.28% of training trials, SD¢(4)=2.02,
tow) vs. 9(2)(37)=45.98, corrected p<0.001; ty(4) vs. 9(3)(37)=45.42, corrected p<0.001). Choices
leading to ¢(1) and ¢(4) were more comparable in number. However, ¢(4) was reached
more often than ¢(1) (t(37)=5.34, corrected p<0.001). To understand the optimality of these
decision patterns, we examined how often participants made the optimal choice on training
trials. The percentage of optimal choices was significantly above chance (M=82.94%,
SD=6.36, chance=25%, t(37)=56.16, corrected p<0.001, Fig. 2E) indicating that participants
acquired the optimal training policies. Together, these results indicate that participants

acquired robust and effective decision strategies to maximise reward on the training tasks.

Participants transferred optimal training policies to test tasks

Having shown that participants learned the optimal training policies, we turned our
attention to the test tasks (Fig. 2F-J). The test tasks were designed so that choices leading to
feature triplets ¢(2) or ¢(3) were the most rewarding. A model-based agent was expected to
compute anticipated rewards under all available policies and therefore make different
choices on test tasks compared to the training tasks. An SF&GPI agent that stores
information about the best cities from training was expected to compute anticipated
rewards only under the optimal training policies. This would result in continued choices to

reach (1) and ¢(4), rather than switching to ¢(2) and ¢(3). Although decisions for ¢(1) and
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®(4) were suboptimal, we expected that participants would still select the option that
generated higher reward among this set.

Consistent with an SF&GPI algorithm, participants continued using optimal policies
from training on most test trials (M=68.81%, SD=15.58, chance=50%, t(37)=7.44, p<0.001,
Fig. 2J). The choice profile on test trials was also similar to the profile seen on training trials
(Fig. 1H). The city associated with feature triplet ¢(1) was selected significantly more often
than cities that led to ¢(2) and ¢(3) (Mg1)=42.52% of test trials, SD¢(1)=8.27, My(2)=15.23%,
SD¢(2)=7.43, t(37)=11.48, corrected p<0.001; M¢(3)=15.96%, SD¢(3)=10.23, t(37)=9.78,
corrected p<0.001). The city associated with feature triplet ¢(4) was similarly selected
significantly more often than those associated with ¢(2) and ¢(3) (Mg(2)=26.29% of test
trials, SDg(2)=10.64, to(4) vs. 4(2)(37)=4.14, corrected p<0.001; to4) vs. 4(3(37)=3.17, corrected
p=0.003). ¢(1) was reached more often than ¢(4) during test tasks (t(37)=9.12, corrected
p<0.001). While most choices were technically suboptimal, participants still performed well
on test tasks overall. The average reward per choice was significantly higher than the reward
expected from random choice (M=147.00, SD=13.94, Mrandom=76.20, SDrandom=8.69, t(74)=
26.57, p<0.001, Fig. 21). This was due to participants selecting the more rewarding solution
among the optimal training policies on test tasks significantly more often than chance
(M=63.71%, SD=14.22, chance=0.25, t(37)=16.78, corrected p<0.001, Fig. 2J). On trials
where participants used either of the two optimal training policies, the more rewarding one
was indeed selected in most cases (M=92.86%, SD=5.21, chance=0.5, t(37)=50.74, corrected
p<0.001). A breakdown of choices made on individual test tasks can be found in the
supplementary information (Fig. S3). Together, the results in this section indicate that
participants were choosing among the optimal training policies on test trials in a reward-

sensitive manner, consistent with the predictions of an SF&GPI algorithm.
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Figure 2. Behavioural results. Columns are grouped into theoretical predictions and human
performance. Rows are grouped into training and test tasks. A, B, F, G: Theoretical
predictions are shown for a model-based algorithm on training (A) and test tasks (F), as well
as an SF&GPI algorithm on training (B) and test tasks (G). Each theoretical plot shows the
predicted proportion of choices leading to each feature (gem) triplet. C, H: Human choice
profiles for training (C) and test tasks (H). The axis structure matches the theoretical plots.
D, I: Performance histograms. The x-axis shows the average reward earned per trial within
10-point bins, and the y-axis shows number of participants with this average. The dashed red
line indicates performance expected from random choices. The dashed grey line indicates
the maximum performance possible. E-J: Use of the optimal training solutions (policies) on
training tasks (E) and their reuse on test tasks (J). Both plots show the proportion of choices
in which either optimal training policy was used (left bars) and the proportion of choices in
which the more rewarding one was used (right bars). Dashed red lines indicate chance. A, B,
C, F, G, H: * denotes feature triplets associated with optimal training and test policies.
Optimal policies for training tasks lead to feature triplet ¢(1) or ¢(4) and optimal policies for

test tasks lead to ¢(2) or (3). C, H, E, J: Dots show data points from individual participants.
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Optimal training policies could be decoded during test tasks

Having established that behaviour was consistent with the predictions of an SF&GPI model,
we tested its neural predictions on test tasks: 1) that optimal training policies would be
activated as decision candidates; 2) that their activation strength would be higher than
alternative policies; and 3) that features associated with the optimal training policies would
also be represented. We tested these predictions in four brain regions. Predictions 1-2 were
expected in DLPFC due to its proposed role in policy encoding (Botvinick & An, 2008; Fine &
Hayden, 2022) and context-dependent action (Badre & Nee, 2017; Flesch et al., 2022; Frith,
2000; Jackson et al., 2021; Rowe et al. 2000). Prediction 3 was expected in MTL and OFC due
to research implicating these regions in coding predictive information about future states
(De Cothi & Barry, 2020; Geerts et al. 2020; Muhle-Karbe et al., 2023; Stachenfeld et al.
2017; Wimmer & Biichel, 2019). OTC was examined as a final region due to its central role in
early fMRI decoding studies and its continued inclusion in recent ones (Haxby et al., 2001;
Muhle-Karbe et al., 2023; Wittkuhn et al., 2021). We first focus on policy activation
(predictions 1-2).

To examine policy activation, decoders based on logistic regression were trained to
distinguish the four cities seen during feedback on the training tasks (i.e. the cities served as
training labels). One measurement volume (TR) per eligible trial was used as input for
decoder training, taken 4-6s after feedback onset to account for the hemodynamic delay.
Decoders were trained separately for each region of interest (ROI). The specific time lag used
for each ROl was determined in validation analyses of the training tasks, independent from
our predictions about test task activity (see Fig. S5). The decoders were applied to each TR
on held out test trials in a leave-one-run-out cross validation procedure. This resulted in a
decoding probability time course for each city on each test trial, which reflected the
evidence that a particular city stimulus was encoded in the fMRI signal. To account for class
imbalances in the decoder training set, we repeated the analysis 100 times using random
subsampling that matched the number of trials per category (M=53 trials per training class,
SD=6.48). Decoding probabilities based on the cities were then coded into the following
categories: 1) the more rewarding policy (among the optimal training policies); 2) the less
rewarding policy (among the optimal training policies); 3) the objective best policy; and 4)

the remaining policy.
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We first tested the prediction that optimal training policies would be activated on
test tasks, by comparing decoding evidence for the optimal training policies against chance
in each ROI (Fig. 3B). Test trials lasted 10s on average (Fig 1B). Decoding evidence was
therefore averaged from +2.5s to +12.5s following test trial onset to account for the
hemodynamic delay. This revealed significant average decoding evidence for the more
rewarding training policy during test tasks in OTC and DLPFC (OTC: M=28.07%, SD=2.17,
t(37)=8.57, corrected p<0.001; DLPFC: M=25.85%, SD=1.51, t(37)=3.40, corrected p=0.011),
but not in MTL or OFC (MTL: M=25.17%, SD=1.43, t(37)=0.72, corrected p=0.744; OFC:
M=25.40%, SD=1.37, t(37)=1.79, corrected p=0.405). Numerical evidence for the less
rewarding training policy was also detected in OTC, but this did not survive correction
(M=25.97%, SD=2.34, t(37)=2.53, uncorrected p=0.016, Bonferroni-Holm corrected p=0.094,
see the section entitled Reactivation and stimulus processing contributed to the decoding
effects for evidence from cluster-based permutation tests). Average decoding evidence for
the less rewarding training policy was not detected in the remaining ROIs (MTL: M=25.32%,
SD=1.76, t(37)=1.12, corrected p=0.744; OFC: M=25.31%, SD=1.40, t(37)=1.38, corrected
p=0.708; DLPFC: M=25.30%, SD=1.53, t(37)=1.17, corrected p=0.744). These results indicate
that the more rewarding among the optimal training policies was activated in OTC and

DLPFC during test tasks.

Optimal training policies were prioritised on test tasks

Having established that the optimal training policies were activated on test tasks (prediction
1), we next tested whether their activation strength was higher than the other policies
(prediction 2, Fig. 3C). Average decoding evidence during the test tasks was significantly
higher for the more rewarding training policy than the objective best policy in OTC, OFC and
DLPFC (OTC: Myif=4.09%, SDqi=3.69, t(37)=6.75, corrected p<0.001; MTL: M4i#=0.48%,
SD4ifr=2.46, t(38)=1.17, corrected p=0.743; OFC: Mgif=0.97%, SDqix=1.87, t(38)=3.14,
corrected p=0.030; DLPFC: Mgifr=1.61%, SD4irr=2.59, t(38)=3.77, corrected p=0.006). Similar
results were observed for the less rewarding training policy. Average decoding evidence for
the less rewarding training policy was significantly higher than the objective best policy in
OTC and DLPFC (OTC: Myifr=2.00%, SDqi=3.95, t(37)=3.07, corrected p=0.032; DLPFC:
Muir=1.05%, SD4irt=2.15, t(37)=2.99, corrected p=0.035; MTL: Mgi#=0.63%, SDaif=2.80,
t(37)=1.36, corrected p=0.722; OFC: Mix=0.88%, SD4ifr=1.97, t(37)=2.71, corrected p=0.060).
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Relative decoding scores above take the form: (evidence for training policy X) — (evidence for
the objective best policy) and measure the extent to which optimal training policies were
prioritised in neural activity. We found that relative decoding scores were significantly higher
for the more rewarding training policy than the less rewarding one in OTC (Mgi=2.09%,
SD4ifr=2.37, t(37)=5.38, corrected p<0.001) but comparable in other ROIs (MTL: Mgitr=-0.15%,
SDuifr=1.61, t(37)=-0.58, corrected p>0.99; OFC: Mgi#=0.09%, SDaifr=1.93, t(37)=0.28,
corrected p>0.99; DLPFC: Mqi=0.55%, SD4i=1.94, t(37)=1.73, corrected p=0.092). The
results from testing predictions 1 and 2 suggest that successful training policies were

activated and prioritised on test tasks within OTC and DLPFC.

Reactivation and stimulus processing contributed to the decoding effects

We next used cluster-based permutation testing (Maris & Oostenveld, 2007) to
estimate when the optimal training policies were activated in the decoding time courses
(window tested=2.5-12.5s post cue; 10,000 permutations). These tests revealed significant
decoding evidence for the more rewarding training policy from 5-12.5s on test trials in OTC
(corrected p<0.001) and from 8.75-12.5s in DLPFC (corrected p<0.001). Cluster-based
permutation testing is potentially more sensitive than testing average evidence because
activation that occurs in smaller subsets of time points can be identified. Consistent with this
idea, cluster tests identified significant decoding evidence for the less rewarding training
policy in OTC from 5-7.5s (corrected p<0.001) and 11.25-12.5s (corrected p=0.016), as well
as a candidate cluster at 3.75s in DLPFC (corrected p=0.072). No signfiicant decoding clusters
were detected for OFC or MTL (all corrected p-values>0.301). These results suggest that the
more rewarding training policy was activated in the MRI signal from OTC about 5s after trial
onset and in the signal from DLPFC about 8.75 s after trial onset. The OTC signal also had
transient information about the less rewarding past policy from about 5s (Fig. 3D).

To assess whether these effects were impacted by the choice made on each test trial,
we re-ran the cluster tests above but excluded evidence from trials where the policy
category matched the choice participants made. A significant decoding cluster for the more
rewarding training policy was detected in OTC from 5s-7.5s (corrected p=0.003) but no
significant clusters were detected in DLPFC (candidate cluster at 5s, corrected p=0.254). The
same results were seen for the less rewarding training policy. Significant decoding clusters

were observed in OTC from 5s-7.5s (corrected p=0.003) and from 11.25s-12.5s (corrected
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p=0.021), but not in DLPFC (no candidate clusters). These results suggest that information
about successful past policies could still be decoded from OTC when controlling for the
choice made. This was not the case for DLPFC.

So far we have seen that OTC activated the optimal training policies and that DLPFC
activated the more rewarding of the optimal training policies. These effects could be due to
the neural reactivation of the policies from memory following the test cue, selective
attention to specific policies when the response screen was shown, or both. To arbitrate
between these possibilities, we examined decoding evidence locked to the response phase,
and asked whether activation of the optimal training policies arose earlier than could be
expected from the response phase alone (Fig. 3E). The procedure for training the decoder
remained the same as the previous analyses. However, the evaluation was conducted at
each time point from Os to 7.5s relative to response phase onset rather than the cue onset.
To establish the expected lag of policy decoding after the response phase onset, we
examined decoding evidence on training trials using cluster-based permutation tests
(window tested=0-7.5s, 10,000 permutations). Using these trials as a baseline revealed a
significant decoding cluster for the optimal policy in OTC that was first detected 3.75s after
the start of the response phase during training trials (significant cluster window=3.75-7.5s,
corrected p<0.001). In contrast to this expected lag, the cluster onset was shifted earlier on
test trials, with significant information about the optimal training policies present in OTC
already Os from the response phase onset (more rewarding training policy: significant cluster
window=0-7.5s, corrected p<0.001; less rewarding past policy: first significant cluster
window=0-2.5s, corrected p=0.001, second significant cluster window=6.25-7.5s, corrected
p=0.014). In line with these results, decoding evidence in OTC at Os from the response phase
onset was significantly higher on test trials compared to training trials (more rewarding
training policy: Maif=2.94%, SDuir=3.38, t(37)=5.29, corrected p<0.001; less rewarding
training policy: Maif=2.81%, SD4ir=3.97, t(37)=4.31, corrected p<0.001). No differences at Os
were detected for DLPFC (corrected p values>0.623). To summarise, information about the
optimal training policies was present from response phase onset in OTC during test trials.
Due to the hemodynamic delay, this implies some reactivation of the optimal training
policies in OTC before the response screen was displayed. Attention to specific stimuli shown
on the response screen would have then plausibly contributed to the decoding effects in

OTC from around 2.5-3.75s after its onset (Fig. 3F).
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Figure 3. Decoding results. A: Brain regions of interest. The four regions include
occipitotemporal cortex (OTC), the medial temporal lobe (MTL), orbitofrontal cortex (OFC)
and dorsolateral prefrontal cortex (DLPFC). B: Decoding evidence for the optimal training
policies on test tasks (y-axis) shown for each brain region (x-axis). The dashed line indicates
chance. C: Neural prioritisation to the optimal training policies. This panel shows the
difference in decoding evidence on test tasks between the optimal training policies and the
objective best policy. Higher values indicate stronger evidence for the optimal training
policies within the neural signal. D: Time resolved decoding evidence for the optimal training
policies on test trials. Panels begin at the onset of the test cue. The initial period shows
negative decoding evidence due to a control procedure. To avoid activity from the previous
trial biasing our assessment of the current trial, we excluded trials in which the current
policy category was selected on the previous trial. E: Time resolved decoding evidence
locked to the response phase onset. Evidence is presented for both the optimal policy on
training trials and the optimal training policies on test trials. D-E: Coloured bars below each
line indicate significant decoding clusters. Shaded error bars show the standard error of
mean. D: Relationships between decoding evidence for the more rewarding training policy in
a specific ROI (y-axis) and the proportion of test trials in which participants reused that
policy (x-axis). Black lines indicate linear fits to the data and grey lines indicate 95%
confidence intervals of the fits. B-F: Throughout the figure, decoding evidence for the more
rewarding among the two optimal training policies is shown in orange, and the less
rewarding among the two optimal training policies is shown in blue. The policy within this

set that is more or less rewarding varies across test trials depending on the specific cue.

Policy activation in OTC was associated with test choices

The neural results presented above suggest that OTC and DLPFC represented information
predicted under an SF&GPI algorithm. To examine whether neural coding in OTC and DLPFC
had a functional connection to participant choices, we correlated average decoding strength
for the more rewarding training policy (the orange dots in Fig. 3B) with the proportion of
test trials in which participants generalised the more rewarding training policy. This revealed
a significant positive correlation between neural activation of the more rewarding training
policy in OTC and the implementation of that policy at test (Spearman’s Rho=0.445,

corrected p=0.010). The equivalent correlation was not detected for DLPFC (Spearman’s
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Rho=0.118, corrected p=0.481). The correlation results held when using neural prioritisation
towards the more rewarding training policy (the orange dots in Fig. 3C) as the neural variable
(OTC: Spearman’s Rho=0.431, corrected p=0.014; DLPFC: Spearman’s Rho=0.163, corrected
p=0.327, Fig. 3F). These results suggest that policy coding within the OTC was associated

with test choices.

Features could not be decoded on test tasks

Having seen that optimal training policies were activated on test tasks (prediction 1) and
that the evidence for them was higher than the objective best policy (prediction 2), we
tested whether features associated with the optimal policies were also represented
(prediction 3). This required a different decoding approach for two reasons. The first was
that feature triplets ¢(1) and ¢(4) were consistently associated with the optimal training
policies and were thus selected on most trials. Training a feature decoder on these data
directly would result in large imbalances in the number of trials per class. The second reason
was that the feature triplets were correlated with the reward. Feature triplets ¢(1) and ¢(4)
often resulted in a profit and feature triplets ¢(2) and ¢(3) often resulted in a loss.

To circumvent these issues, we trained feature decoders on fMRI data from a
separate associative memory paradigm (see Session One in the methods section and Fig. S6).
Participants were first pre-trained on associations between visual cues and target stimuli.
The target stimuli were feature numbers or cities that would later be used in the gem
collector game. On each scanning trial, participants were shown a visual cue and needed to
select its associated target from a choice array. Trials in which the correct number target was
selected were used to train logistic decoders that could distinguish neural responses for the
12 number targets. The training process was similar to the process used for policy decoding.
One measurement volume (TR) per eligible trial was used as training input, taken 4-6s after
the response screen onset. The time shift and smoothing used for each ROl were the same
as those used to decode policies. The trained decoders were then shown neural data from
the test trials in the gem collector paradigm. This returned a cross-validated decoding
probability for each feature number at each TR on each test trial. To ensure the decoding
probabilities were stable, we repeated the procedure 100 times using random subsampling

to match trial numbers (M=36 trials per training class, SD=2.44). We then identified the
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three feature numbers associated with each of the optimal training policies and averaged
the decoding probabilities for those number labels on each test trial.

Using this approach, we examined whether average decoding evidence for the three
features anticipated under each of the optimal training policies was higher than chance
(8.33% based on the 12 possible feature numbers). Like the earlier section on policies,
decoding evidence was averaged from +2.5s to +12.5s following test trial onset. Feature
information associated with the more rewarding training policy was not detected on test
tasks (OTC: M=8.71%, SD=1.12, t(37)=2.04, corrected p=0.392; MTL: M=8.37%, SD=0.40,
t(37)=0.51, corrected p>0.99; OFC: M=8.28%, SD=0.52, t(37)=-0.60, corrected p>0.99; DLPFC:
M=8.34%, SD=0.72, t(37)=0.05, corrected p>0.99). Equivalent results were found for features
associated with the less rewarding training policy (OTC: M=8.61%, SD=0.91, t(37)=1.87,
corrected p=0.486; MTL: M=8.38%, SD=0.59, t(37)=0.47, corrected p>0.99; OFC: M=8.37%,
SD=0.52, t(37)=0.48, corrected p>0.99; DLPFC: M=8.38%, SD=0.57, t(37)=0.50, corrected
p>0.99, Fig. S7).
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Discussion
This study aimed to investigate whether an SF&GPI algorithm could account for neural
activity when humans transfer their experience from known to novel tasks. Behavioural
results showed that human choices on new tasks relied on reusing policies that were
successful in previous tasks. While this strategy was less optimal than a model-based
process, past policies were applied in a reward-sensitive manner that led to high
performance. An analysis of neural activity during test tasks showed that successful training
policies were also represented in occipital-temporal and dorsolateral-prefrontal areas. These
policies were prioritised as candidates for decision-making, with stronger activation than
alternative policies that offered higher rewards. Activation strength in OTC was correlated
with reuse behaviour. We found no evidence for the reactivation of features associated with
successful training policies. Our results speak towards a role of OTC and DLPFC in
implementing an efficient form of generalisation that is superior to model-free behaviour,
but less optimal than model-based computation.

Consistent with previous behavioural research (Tomov et al., 2021), a computational
process based on SF&GPI could explain human generalisation performance. However, it did
not capture participant choices perfectly. This was evident in data showing that participants
made fewer choices leading to feature triplet ¢(4) on test trials than the model predicted
(Fig. 2G-H). Exploratory tests revealed that this was due to the presence of two distinct
subgroups (Fig. S2). Half of the participants showed a full recapitulation of the SF&GPI
predictions on test tasks. The other half showed a partial recapitulation. This suggests that
some participants used different strategies on specific test tasks. When examining individual
test tasks (Fig. S3), we further observed that the SF&GPI algorithm predicted the dominant
choice in most cases. However, there was one test task on which choices were evenly split
between the SF&GPI and MB predictions. Whereas most test tasks contained an anti-
correlated structure in the feature weights that was similar to one or more training tasks,
this outlier test task did not. This raises the possibility that at least some participants
exploited structural similarities between the training and test tasks to determine their
choices, similar to a Universal Value Function Approximator (UVFA) process in which similar
task cues lead to similar rewards for a given action (Schaul et al., 2015). Tomov et al. (2021)
observed evidence for UVFAs in a minority of subjects, but also had less structural overlap

between training cues and the test cue. Future research should systematically manipulate
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the similarity between training and test scenarios to understand how this affects the
computational process used for generalisation.

Consistent with SF&GPI predictions, we observed neural prioritisation of the optimal
training policies during test tasks. This was most prominent in OTC. Evidence from our data
suggests that two distinct sources contributed to decoding in this region. One was a
reactivation of optimal training policies after seeing the test cue, as optimal training policies
could be decoded earlier than what would be expected based on training trials. This could
reflect expectations about upcoming stimuli in visual cortex (Aitken et al., 2020; Kok et al.,
2014), with added modulation based on behavioural relevance. The other source was
prioritised processing of the optimal training policies shown on the response screen. This
enhanced processing could reflect value-driven attentional capture, in which stimuli
previously associated with reward are preferentially attended to in new contexts (Anderson
et al., 2011). Neural prioritisation was also observed DLPFC, an area proposed to encode
policies (Botvinick & An, 2008; Fine & Hayden, 2022). This finding aligns with DLPFC’s role in
context-dependent behaviour (Badre & Nee, 2017; Flesch et al., 2022; Frith, 2000; Jackson et
al., 2021; Rowe et al. 2000), as the task cue on each trial can be seen as a context cue that
determines the current response mapping. One interpretation of our findings is that DLPFC
can generalise this role outside a set of training cues, retrieving relevant response mappings
for novel context cues with similar but non-identical structure to earlier contexts. We also
note that although the prioritisation seen in our data is consistent with an SF&GPI-like
process, it could also support hybrid models that use cached option values to identify useful
candidates for particular decisions, and then perform model-based planning on that subset
of options (Cushman & Morris, 2015; Morris et al., 2021).

Based on proposals that the MTL and OFC serve as predictive maps that encode
information about future states (De Cothi & Barry, 2020; Geerts et al. 2020; Muhle-Karbe et
al., 2023; Stachenfeld et al. 2017; Wimmer & Biichel, 2019), we predicted that features
expected under the optimal training policies would be detected in these regions on test
trials. We did not find evidence that this was the case. One possibility is that the features
were not central to participants’ decision process, which could occur if choices were
primarily based on structural similarities between the training and test cues. It is also
possible that the features were used but that we were unable detect them. This could occur

if feature numbers were represented with different neural patterns in the localiser task used
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to train the neural decoders than the main task. Future experiments should develop designs
in which feature information can be remapped between the optimal and suboptimal policies
within each block of a single paradigm to train more sensitive feature decoders. A second
reason for not detecting features could be because each test task was repeated five times
per block without feedback. This could have meant that feature triplets were used to
compute expected rewards during initial test trials but that a policy was cached and used for
remaining test trial repeats. Decoding predictive feature representations remains a critical
target in future neural tests of SF&GPI.

The present study had two main limitations. One was that each trial involved a single
decision step. This meant that multi-step successor features were equivalent to single-step
state features in the present design. This simplification was made to meet the practical
constraints of fMRI scanning but future studies will need to devise practical ways to retain a
multi-step element that can distinguish between computational processes using successor
features and state features for generalisation. A second limitation was that the reward for
the objective best policy was only 10-20 points higher than the more rewarding training
policy (from among the optimal training policies). While we observed a high degree of reuse
as predicted under an SF&GPI algorithm, it could be that the computational process would
differ — with more equal evaluation across all options — if the reward prospect for previously
unsuccessful policies had been higher at test. Future research could therefore manipulate
the difference in reward between successful and unsuccessful training policies during test
tasks, to better understand the conditions under which an SF&GPI-like transfer process is (or
is not) used.

Overall, the present study provides behavioural and neural evidence that
generalisation to new tasks was more consistent with an SF&GPI-based algorithm than an
MB algorithm. Successful past solutions were prioritised as candidates for decision making
on tasks outside the training distribution. This prioritisation provides flexibility when faced
with new decisions problems and has lower computational cost than considering all
available options. These findings take a step towards illuminating the flexible yet efficient

nature of human intelligence.
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Method
Participants
Forty people participated in the experiment. One participant was excluded from the final
sample due to low behavioural performance. The number of points earned in each scanning
session was more than 2.5 standard deviations below the sample mean. Another participant
was excluded due to excessive head motion. This was based on framewise displacement,
which measures the change in head position between adjacent data points (Jenkinson et al.,
2002). All functional runs in the second scanning session for the participant were more than
2.5 standard deviations above the sample mean for framewise displacement. The resulting
38 participants were between 18-35 years of age (mean=25 years, 23 female). All individuals
had normal or corrected-to-normal vision and did not report an on-going neurological or
psychiatric illness. €75 was paid for completing the experiment and €25 extra could be
earned as a performance dependent bonus (€10 in session 1 and €15 in session two). Ethical
approval was granted by the German Society for Psychology (the Deutsche Gesellschaft fiir
Psychologie) and participants signed informed consent before each session.

Materials

Psychopy3 (RRID: SCR_006571, version 2021.2.3, Peirce et al., 2019) and Pavlovia
(RRID:SCR_023320, https://pavlovia.org/) were used to prescreen prospective participants.
Stimulus presentation during the scan sessions was controlled using Psychophysics Toolbox-3
(RRID:SCR_002881, version 3.0.17) in MATLAB (RRID:SCR_001622). The sessions used stimuli
from Saryazdi et al. (2018) and city images from Rijan Hamidovic, Aleksander Pesaric,
Pixabay and Burst that were retrieved from https://pexels.com. Scan preparation was
completed on a computer outside the scanner with a spatial resolution of 2048 x 1152 and
refresh rate of 60Hz (MATLAB version R2021b). The main experimental tasks were run on a
stimulus PC with a spatial resolution of 1024 x 768 and a refresh rate of 60Hz, which
projected to a magnetically safe screen for participants inside the scanner (MATLAB version
R2017b). Responses were recorded using two fiber optic button boxes (Current Designs,
Philadelphia, PA, USA). Participants used two buttons on the left box (middle finger and
index finger) and three buttons on the right box (index finger, middle finger and ring finger).
Output files from the scanner were converted to the BIDs naming convention
(RRID:SCR_016124) using Reproln (RRID:SCR_017184, HeuDiConv version 0.9.0).
Preprocessing and quality control were conducted using fMRIprep (Esteban et al., 2019,
RRID:SCR_016216, version 20.2.4) and MRIQC (Esteban et al., 2017, RRID:SCR_022942,
version 0.16.1). Behavioural analyses were performed in MATLAB (version 2021b). Neural
analyses were performed in Python (RRID:SCR_008394, version 3.8.13), primarily using SciPy
(RRID:SCR_008058, version 1.7.3), Pandas (RRID:SCR_018214, version 1.4.4), NumPy
(RRID:SCR_008633, version 1.21.5), Matplotlib (RRID:SCR_008624, version 3.5.2), MNE
(RRID:SCR_005972, version 1.4.2), Sklearn (RRID:SCR_019053, version 1.3.0) and Nilearn
(RRID:SCR_001362, version 0.10.1).

Online Prescreening

Participants completed an online prescreening task prior to study admission. This was
conceptually similar to the main task in MRI session two. However, it had different stimuli,
different state features and a different theme to avoid biasing participants during scanning.
The market values used for the prescreening were: wiain = {[1, -1, 0], [-1, 1, 0], [1, -2, O],
[-2, 1, 0]}. The state features were: ¢ = {[100, 0O, 0], [30, 30, 160], [100, 100, 0], [0, 100, 70]}.
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The vector elements in each triplet were shuffled with a randomly selected permutation rule
for each participant. The theme used for prescreening was from Tomov et al. (2021).
Participants completed 80 trials with equal numbers of each training task (Wtrain) in @ random
order. No test tasks (Wtest) were presented. Trials had the same structure as Figure 1A but
with different event timing. Market values were shown for 2.5s, no response limit was
imposed, and feedback was shown for 3s. The cue-target interval was set to Os and the inter-
trial interval to 1s. Prospective participants needed to achieve an average reward above zero
points to pass the prescreening and participate in the experiment. Up to three attempts
could be made. 95% of people who passed the prescreening did so on their first attempt.
Four prospective participants did not pass and were not admitted to the experiment.

Session One

During the first experimental session, participants completed an associative retrieval task
inside the MRI scanner. Session one was designed to produce a localiser dataset that could
be as training data for neural decoders. Data from this session were not analysed for the
present paper but are included in the open dataset. For the procedure behind the gem
collector game, see session two.

Scan Preparation

In preparation for the first MRI scan, participants learned associations between cartoon
objects (e.g. a balloon) and cities or number stimuli that would appear during session two.
There were 4 cities (Sydney, Tokyo, New York, London) and 12 numbers (20, 40, 50, 60, 80,
90, 110, 120, 140, 150, 190, 200) in total. Each target was associated with two cartoon
images, resulting in 32 associations. The associations between stimuli were randomly
determined for each person. Participants completed a structured training procedure to learn
the associations. The training began with the 8 object-city associations. On each trial,
participants were shown a cartoon object (e.g. a balloon) for 1.5s, followed by a 0.25s blank
delay. The four cities were then shown on screen in a random order. Participants needed to
press the key (D, F, J, K, or L) corresponding to the screen position of the correct city within
5s. Following a response, feedback was shown for 2s (‘Correct!” or ‘Incorrect!’). If the
response was incorrect, participants were shown the correct object-city pairing. The trial
concluded with a blank inter-trial interval (ITl) lasting 1s. Each block had 8 trials in total. This
included one trial per association (e.g. four cities with two associated objects each),
presented in a random order. Participants continued to complete blocks until achieving 8/8
correct responses. To reduce training time, the object duration on screen was shortened
from 1.5s to 0.5s after the first block for each set of 8 associations. Using the same training
structure, participants then learned 8 associations for each of the following number sets in
turn: [20, 40, 50, 60], [80, 90, 110, 120], [140, 150, 190, 200]. To conclude the training,
participants were tested on longer blocks with one trial for each of the 32 associations.
Blocks continued until participants scored at least 90% correct (29/32 trials). After passing
the 90% criterion once, participants had to do so one more time but with a shorter response
deadline of 1.5s.

Scan Task

The MRI task for session one was a cued retrieval task. The setup was similar to the final
training stage outlined in the previous section. On each trial, participants were shown a
cartoon object for 0.5s and asked to imagine its associated target (i.e. the city or number
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associated with it). Following a blank delay, participants were presented with four possible
response options in a random order on screen and needed to select the associated item
within 1.5s. A feedback screen was then shown and the trial concluded with a blank ITI. The
delay between the cartoon object offset and the response phase onset was drawn from a
truncated exponential distribution, with a mean of 3s (lower bound=1.5s, upper
bound=10s). Feedback (‘+10’ or ‘+0’) was shown for 0.5s. The ITI was drawn from a
truncated exponential distribution with a mean of 2s (lower bound=1.5s, upper bound=10s).
Participants completed 64 trials per block and 10 blocks in total. The trial order was
constrained so that the correct target was not repeated on consecutive trials. Trials could
also be labelled based on the following categories: cities (Sydney, Tokyo, New York, London),
number set 1 (20, 40, 50, 60), number set 2 (80, 90, 110, 120) and number set 3 (140, 150,
190, 200). Consecutive trials with the same category were allowed to occur a maximum of
two times per block. To motivate good performance, participants were shown their average
accuracy, median RT and their bonus earnings up to that point at the end of each block.
Fieldmaps and an T1w anatomical image were collected after the 5™ block. This scan
resulted in 640 retrieval trials, with 40 trials for each target stimulus.

Session Two

During the second experimental session, participants completed the gem collector game
described in the main text. Sessions were held on consecutive days, with session two
occurring the day after the session one.

Scan Preparation

Participants completed a brief preparation task to orient them to the gem collector theme
and trial events. This included 30 practice trials. Practice trials had the same event structure
as those shown in Figure 1. The market values used in the preparation task were: Wtrain = {[1,
-1, 0], [-1, 1, 0]}. The state features were: ¢ = {[100, 0, 0], [30, 30, 160], [100, 100, 0], [O,
100, 70]}. The vector elements in each triplet were shuffled with a randomly selected
permutation rule for each participant. The assignment between cities and state feature
triplets was also randomised. Participants were told how the game profit was calculated on
each trial and had to correctly calculate the profit for three example trials to confirm their
understanding. The first 10 practice trials provided feedback after each choice. The
remaining 20 trials consisted of 15 trials with feedback and 5 trials without feedback. Event
timing was reduced across practice to prepare participants for the event speed during
scanning. Market values were presented for 3.5s and a 5s response deadline was imposed
for the first 10 trials. This was reduced to 2s and 1.5s for the remaining trials. The feedback
(2.5s), cue-target interval (1s) and inter-trial interval (2s) had consistent durations.
Participants did not need to reach a performance threshold on the practice trials to proceed
to the scan task.

Scan Task

The cognitive task used in the second scanning session is described in the main text. On each
trial, participants were shown the selling prices of three gem stimuli (2s). This was followed
by a jittered blank delay. The specific duration on each trial was drawn from a truncated
exponential distribution with a mean of 3.5s, a lower bound of 3s and an upper bound of
10s. Four city stimuli then appeared on screen in a random order. The random ordering
prevented participants from preparing a motor response before seeing the choice stimuli.
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Participants had up 1.5s to choose a city. Upon entering a response, a feedback screen was
presented (2.5s) that showed the selling prices, the number of gems in the selected city and
the profit (or loss). The feedback screen was omitted on certain trials (described below). In
the event that no response was made within 1.5s, “Too slow!” was printed to the screen as
feedback. The trial concluded with a jittered ITI. The specific duration on each trial was
drawn from a truncated exponential distribution with a mean of 3s, a lower bound of 2.5s
and an upper bound of 10s.

Each event in the trial sequence had a specific function. The selling prices were used
to define the ‘task’ on each trial. A task is a context that specifies which features of the
environment should be prioritised during decision making. For example, if square gems have
a high selling price and the other gems sell for SO per unit, the task on that trial is to choose
the option with the highest number of square gems. In this way, the selling prices (which
were numeric weight vectors) allowed us to manipulate the task on each trial in a precise
manner. Another important trial event was the feedback. Each city was had unique number
of gems. For example, Sydney might have 120 square gems, 50 triangle gems and 110 circle
gems. The number of gems were state features (¢) associated with each city. The following
set was used during scanning: ¢ = {[120, 50, 110], [90, 80, 190], [140, 150, 40], [60, 200,
20]}. The profit (or loss) on each trial was the dot product of the task weight triplet (the
selling prices) and the state feature triplet (the gem numbers in the selected city).

The experiment had two main trial types. Training trials allowed participants to learn
about the state features for each city because they showed feedback after each choice. Test
trials were used to assess participants’ generalisation strategy and did not provide feedback.
Participants were informed that the reward from all trials counted towards the €15
performance bonus in the session, even if feedback was not shown. Training and test trials
were also distinguished based on the tasks (selling prices) shown to participants. The
training tasks used in the experiment were: wtin = {[1, -1, 0], [-1, 1, 0], [1, -2, O], [-2, 1, O]}.
The test tasks were: weest = {[2, -1, -1], [-1, 1, 1], [1, -1, 1], [1, 1, -1]}.

Each block had 68 trials. The order of training and test trials were pseudo-
randomised based on a set of constraints. The block was divided into two phases. The first
32 trials were training trials (phase 1). The remaining 36 trials were a mixture of 16 training
trials and 20 test trials (phase 2). Trials in the first phase were constrained so that: 1) equal
numbers of the four training tasks were shown, 2) the same task was not repeated on
consecutive trials and 3) trials with a particular optimal choice under SF&GPI (e.g. Sydney)
were preceded by an equal number of trials with the same or a different optimal choice (e.g.
50% Sydney and 50% New York). Equivalent constraints were applied to the remaining trials
(i.e. phase 2). Trials in phase 2 had the additional constraints that: 4) the phase did not begin
with a test trial and 5) no more than 3 test trials were presented in a row. The two phases in
each block were recorded as separate fMRI runs to aid leave-one-run-out cross-validation
(described in the section on neural analyses).

Participants completed 6 blocks in total (12 fMRI runs). There were six possible
permutation rules that could be used to order the numeric elements within each task and
state feature triplet: {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}. One
configuration was used for each block. The configuration sequence across blocks was
randomised. The state features for each city were also varied across blocks. We ensured that
each city was paired with each state feature triplet at least once. A random mapping was
used for the remaining two blocks. The mapping was pseudo-randomised across blocks so
that no city had the same state feature triplet in consecutive blocks. The screen position of
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the three gem stimuli was randomised for each participant but remained consistent
throughout the experiment. Permuting the triplet elements and changing the state features
in each city across blocks preserved the logical structure of the experiment, while giving the
appearance of new game rounds for participants.

Post Scan

To conclude session two, participants were asked to estimate the number of triangle, square
and circle gems that had appeared in each city during the final block of the scan task.
Estimates were restricted to a range between 0-250 gems. Participants were also asked to
rate their confidence for each estimate on a scale from 0 (not confident at all) to 100
(completely confident). These measures were not probed during the scan itself to avoid
biasing participants’ learning strategy.

MRI Parameters

MRI acquisition parameters were based on Wittkuhn et al. (2021). Data were acquired using
a 32-channel head coil on a 3-Tesla Siemens Magnetom TrioTim MRI scanner. Functional
measurements were whole brain T2* weighted echo-planar images (EPI) with multi-band
acceleration (voxel size=2x2x2xmm; TR=1250ms; echo time (TE)=26ms; flip angle (FA)=71
degrees; 64 slices; matrix = 96 x 96; FOV = 192 x 192mm; anterior-posterior phase encoding
direction; distance factor=0%; multi-band acceleration=4). Slices were tilted +15 relative to
the corpus callosum, with the aim of balancing signal quality from MTL and OFC (Weiskopf et
al., 2006). Functional measurements began after five TRs (6.25s) to allow the scanner to
reach equilibrium and help avoid partial saturation effects. Up to 401 volumes (session one)
or 333 volumes (session two) were acquired during each task run; acquisition was ended
earlier if participants had completed all trials. Fieldmaps were measured using the same
scan parameters, except that two short runs of 20 volumes were collected with opposite
phase encoding directions. Fieldmaps were later used for distortion correction in fMRIPrep
(Esteban et al., 2019, RRID: SCR_016216, version 23.0.2). Anatomical measurements were
acquired using T1 weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE)
sequences (voxel size=1x1x1xmm; TR=1900ms; TE=2.52ms; flip angle FA=9 degrees;
inversion time (T1)=900ms; 256 slices; matrix = 192 x 256; FOV = 192 x 256mm).

MRI Preprocessing

Results included in this manuscript come from preprocessing performed

using fMRIPrep 23.0.2 (Esteban et al. (2019); Esteban et al. (2018); RRID:SCR_016216),
which is based on Nipype 1.8.6 (K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018);
RRID:SCR_002502).

Preprocessing of Bo Inhomogeneity Mappings

A total of 2 fieldmaps were found available within the input BIDS structure per subject. A Bo-
nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar
imaging (EPI) references with topup (Andersson, Skare, and Ashburner (2003); FSL
6.0.5.1:57b01774).

Anatomical Data Preprocessing

A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset per subject.
All of them were corrected for intensity non-uniformity (INU)
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with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al.
2008, RRID:SCR_004757). The T1lw-reference was then skull-stripped with

a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTSs), using
OASIS30ANTSs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted Tlw

using fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823, Zhang, Brady, and Smith 2001). An
anatomical Tlw-reference map was computed after registration of 2 T1w images (after INU-
correction) using mri_robust_template (FreeSurfer 7.3.2, Reuter, Rosas, and Fischl 2010).
Brain surfaces were reconstructed using recon-all (FreeSurfer 7.3.2, RRID:SCR_001847, Dale,
Fischl, and Sereno 1999), and the brain mask estimated previously was refined with a
custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived
segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et al.
2017). Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym,
MNI152NLin2009cAsym) was performed through nonlinear registration

with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and
the T1lw template. The following templates were were selected for spatial normalization and
accessed with TemplateFlow (23.0.0, Ciric et al. 2022): FSL’s MINI ICBM 152 non-linear 6th
Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012),
RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], ICBM 152 Nonlinear Asymmetrical
template version 2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym)].

Functional Data Preprocessing

For each of the 22 BOLD runs found per subject (across all tasks and sessions), the following
preprocessing was performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. Head-motion parameters with respect
to the BOLD reference (transformation matrices, and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL
6.0.5.1:57b01774, Jenkinson et al. 2002). The estimated fieldmap was then aligned with
rigid-registration to the target EPI (echo-planar imaging) reference run. The field coefficients
were mapped on to the reference EPI using the transform. BOLD runs were slice-time
corrected to 0.588s (0.5 of slice acquisition range 0s-1.18s) using 3dTshift from AFNI (Cox
and Hyde 1997, RRID:SCR_005927). The BOLD reference was then co-registered to the T1lw
reference using bbregister (FreeSurfer) which implements boundary-based

registration (Greve and Fischl 2009). Co-registration was configured with six degrees of
freedom. Several confounding time-series were calculated based on the preprocessed BOLD:
framewise displacement (FD), DVARS and three region-wise global signals. FD was
computed using two formulations following Power (absolute sum of relative motions, Power
et al. (2014)) and Jenkinson (relative root mean square displacement between

affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both
using their implementations in Nipype (following the definitions by Power et al. 2014). The
three global signals are extracted within the CSF, the WM, and the whole-brain masks.
Additionally, a set of physiological regressors were extracted to allow for component-based
noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated after
high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with
128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components are then calculated from the top 2% variable voxels
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within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined
CSF+WM) are generated in anatomical space. The implementation differs from that of
Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, a mask of
pixels that likely contain a volume fraction of GM is subtracted from the aCompCor masks.
This mask is obtained by dilating a GM mask extracted from the

FreeSurfer’s aseg segmentation, and it ensures components are not extracted from voxels
containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space
and binarized by thresholding at 0.99 (as in the original implementation). Components are
also calculated separately within the WM and CSF masks. For each CompCor decomposition,
the k components with the largest singular values are retained, such that the retained
components’ time series are sufficient to explain 50 percent of variance across the nuisance
mask (CSF, WM, combined, or temporal). The remaining components are dropped from
consideration. The head-motion estimates calculated in the correction step were also placed
within the corresponding confounds file. The confound time series derived from head
motion estimates and global signals were expanded with the inclusion of temporal
derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a
threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers.
Additional nuisance timeseries are calculated by means of principal components analysis of
the signal found within a thin band (crown) of voxels around the edge of the brain, as
proposed by (Patriat, Reynolds, and Birn 2017). The BOLD time-series were resampled into
standard space, generating a preprocessed BOLD run in MNI152NLin6Asym space. First, a
reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. The BOLD time-series were resampled onto the following
surfaces (FreeSurfer reconstruction nomenclature): fsnative. All resamplings can be
performed with a single interpolation step by composing all the pertinent transformations
(i.e. head-motion transform matrices, susceptibility distortion correction when available,
and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings
were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation
to minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface)
resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.9.1 (Abraham et al. 2014,
RRID:SCR_001362), mostly within the functional processing workflow. For more details of
the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

Computational Models

Theoretical predictions for choices on test tasks were generated using code from Tomov et
al. (2021). The code was adapted to the current task design, which included changing the
training tasks, test tasks, state features and the state space. Model training procedures
remained the same.

The models were situated in a standard reinforcement learning formalism called a
Markov Decision Process M = (S, A, p, 1, y), where S is a set of states, A is a set of
actions, p(s'| s, a) is the probability of transitioning to a subsequent state (s’) from an initial
state (s) after taking action a, r(s) is the reward received when entering state s, and y is a
discount factor between 0 and 1 that down-weights future rewards. The environment also
contained state features ¢(s) and tasks w. Policies defining the action an agent takes in each
state are denoted 7.
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Model Based (MB)

The MB algorithm had perfect knowledge about the environment. To decide what to do on
each test task, it computed expected values for all possible actions. Each expected value was
defined as:

Quis, ) = D p(s' |5, ()

The experimental design used deterministic transitions and thus each entry in p(s’| s, a)
was 0 or 1. The reward, r(s), was computed as:

r(s) = ¢()'w

The MB algorithm selected the policy on the current test task with the highest expected
value:
T, = argmax,Q,,(s, a)

Successor Features and Generalised Policy Improvement (SF&GPI)
The SF&GPI algorithm is designed to learn estimates of the state features called successor
features:

Y5 = $()+ ) p(s'15,0yd(s)

Since no further action could be taken in the terminal state (s’), this simplified to:

Y@ = ) p(s'5 ()

This simplification meant that successor features were equivalent to state features in the
present design. The SF&GPI algorithm then performs generalised policy improvement, which
computes a policy for the current test task based on earlier training policies. The first step in
this process is to compute expected values on the current test task under a set of earlier
policies {m; ... m, }:

w(s,a) = Pri(s,a)"w

An interesting property of the SF&GPI algorithm is that it is flexible with respect to the
policies it considers from training. When considering all policies experienced during training,
an SF&GPI algorithm makes the same predictions as an MB algorithm in the present design.
However, when generalised policy improvement is restricted to the optimal training policies,
its predictions on test tasks differ:

Ty, = argmax, max,eyg Qw (s, a)

Here the set of policies, II, contains the optimal training policies but not all policies. We used
this formulation of SF&GPI to distinguish between a model of generalisation that evaluates
optimal training solutions on test tasks and an MB generalisation process that evaluates all
possible solutions.
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Behavioural Analyses

16 statistical tests are reported in the main text for behavioural data. The corresponding p-
values reported were therefore corrected for 16 tests using the Bonferroni-Holm correction
(Holm, 1979).

Average Performance

The average points per choice on training trials was computed for each participant. To
compare this performance against a sensible baseline, we simulated an equivalent sample of
38 agents that made random choices on the same trials. To ensure comparability, points
from random choices were replaced with 0 points for trials where the equivalent human
participant omitted a response. The average points per choice was calculated for each agent.
The two distributions (human and agent) were then compared using an independent two-
tailed t-test. This process was repeated to assess average performance on the test trials.

State Analysis

The present experiment contained four terminal states. Each terminal state was defined by a
unique feature triplet from the following set: ¢ =[120, 50, 110], [90, 80, 190], [140, 150, 40],
[60, 200, 20]. The order of individual elements within each triplet varied across blocks in the
experiment. The most rewarding terminal states during training trials were associated with
®(1) or d(4). To assess whether participants made more choices leading ¢(1) or ¢(4), we
recorded the proportion of choices leading to each terminal state across all training trials in
the experiment. We then compared the proportions between each pair of states using
paired two-tailed t-tests. The one exception was that we did not compare the choice
numbers between ¢(2) and ¢(3), as this comparison was less related to the computational
modelling predictions. To assess whether the same choice profile was recapitulated at test,
the process above was repeated for test trials.

Reuse Behaviour

To further quantify the reuse of policies leading to ¢(1) or ¢(4) on test tasks, we computed
the proportion of test trials in which choices to ¢(1) or ¢(4) were selected for each
participant. To assess whether the proportions were above chance, the distribution was
compared to a mean of 0.5 in a one sample two-tailed t-test. To understand whether policy
reuse was sensitive to prospective rewards, we computed the proportion of test trials in
which participants selected the more rewarding optimal policy from training. While the
previous analysis counted choices to either ¢(1) or ¢(4) regardless of outcome, this analysis
counted choices to ¢(1) or ¢(4) only when the more rewarding of the two was selected.
Since participants had a % chance of selecting the more rewarding optimal training policy at
random from the response array, the empirical proportions were compared to a mean of
0.25 in a one sample two-tailed t-test. The same process was used to quantify how often the
optimal policy was selected on training trials.

Neural Analyses

Decoding was performed separately for each ROI. The voxel activity on each trial was
extracted from the current ROl and smoothed 2-4mm. The specific smoothing was
determined in validation analyses that did not use the trials needed to test our hypothesis.
The resulting data were detrended, z-scored and motion confounds (identified by fMRIPrep)
were removed. Data cleaning was performed separately for each functional run using
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Nilearn signal clean. Trials without a response were then removed. The decoding procedure
next entered a cross-validation loop. One block was held out to use as test data. The
remaining blocks were used to train the decoder. A random sub-sample was taken to match
the number of trials for each training class. It is important to note that only trials with
feedback were used for decoder training (see Fig. 1A). Voxel activity 4-6s following feedback
onset was extracted and the city shown on the feedback screen was used as the training
label. The specific time lag was determined in validation analyses (see Fig. S5). The resulting
voxel patterns and labels were used to train a logistic regression model. This was
implemented in Sklearn with an L2 penalty term and a one-vs-the-rest multiclass strategy.
For more details, please see the Sklearn documentation. The trained decoder was then
tested on each trial in the held-out run. Testing was performed at multiple TRs on each trial,
from cue onset (TRo) through to 15s after it (TR+12). This resulted in one probability score per
city stimulus at each TR in the held-out test trial. Each score was the probability — according
to the model - that a particular city was the correct label for the neural data provided. The
class probabilities at a specific data point did not need to sum to 1 (due to the one-vs-the-
rest approach). The cross-validation procedure was repeated until all functional runs had
been used as held-out test data. For robustness, the analysis procedure was repeated 100
times with random sub-sampling on each iteration. The results were based on model
probabilities averaged across iterations. These probabilities are interpreted as decoding
evidence throughout the paper.

ROIs

To extract voxel patterns from specific regions, we generated masks for the four ROIs using
Freesurfer cortical parcellations. Each mask was composed of one or more bilateral
parcellations. Masks were specific to each participant. DLPFC was based on the rostral
middle frontal gyrus parcellation. MTL combined the hippocampus, parahippocampal gyrus
and entorhinal cortex parcellations. OFC combined the medial and lateral OFC parcellations.
OTC combined the cuneus, lateral occipital, pericalcarine, superioparietal, lingual,
inferioparietal, fusiform, inferiotemporal, parahippocampal and middle temporal
parcellations. For more information, please see Desikan et al. (2006) and the Freesurfer
documentation:
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT

Validation

To validate the decoding pipeline, we trained neural decoders to classify the city observed
during feedback on training trials. We then tested how well we could recover the chosen city
on held out training trials. One functional run was held out at a time to assess decoding
performance. As training trials were not related to our hypothesis, we used the validation
procedure to explore three possible time shifts (+4s, +5s, +6s seconds following feedback
onset) and three possible smoothing levels (Omm, 2mm, 4mm) that could be used to
optimise decoder training. The validation results were based on 25 iterations. Data were
subsampled at random on each iteration to match the number of trials from each class. The
highest performing decoding parameters were selected for each ROl based on the validation
results (Fig. S5). These parameters were later used when testing our hypothesis about neural
reactivation during test tasks.
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Policy Decoding

The choice on each test trial could fall into one of four categories: 1) the more rewarding
policy (among the optimal training policies); 2) the less rewarding policy (among the optimal
training policies); 3) the objective best policy; and 4) the remaining policy. To examine the
neural evidence for these categories, we extracted decoding probabilities for the four choice
stimuli on test trials — that is, on trials that did not show feedback (Fig. 1B). This extraction
was first performed for the time point closest to cue onset (TRo). The four decoding
probabilities on each test trial at this time point — one for each choice stimulus - were
divided into the four categories above. To avoid contamination from the previous trial,
probabilities were removed in cases where the policy category on the current test trial was
the same as the previous trial. Once this operation had been performed for all test trials, the
probabilities in each category were averaged over trials. This process was repeated at each
time point until 15s after cue onset (TR+12). The output of this process was one decoding
time course per policy category, per participant. These were stored in a 38 x 4 x 12 matrix, in
which dimensions were participants x categories x time points (TRs). A separate matrix was
generated for each ROI. To test the average decoding strength on test trials against chance,
we averaged the matrices above from 2.5s after cue onset (TR+2) through to 12.5s (TR+10).
This time window was selected based on average test trial duration of 10s (Fig. 1B) and the
hemodynamic delay. The 2.5s starting point was selected based on validation analysis (Fig.
S5), which showed that an event often took two TRs to have a discernible impact on the
decoding probabilities. The average probabilities for the optimal training policies were
compared to the chance rate of 0.25, using one-sample two-tailed t-tests. The resulting p-
values were corrected for 8 comparisons (2 policy categories x 4 ROIs) using the Bonferroni-
Holm correction. To assess the evidence for the optimal training policies within OTC and
DLPFC in a time resolved manner, we conducted one-sample cluster-based permutation
tests against a population mean of 0.25 (window tested=2.5-12.5s) using
mne.stats.permutation_cluster_1samp_test. To assess neural prioritisation in each ROI, we
took the average decoding evidence for each of the optimal training policies and subtracted
the average evidence for the objective best policy on test tasks. Prioritisation scores were
tested against for significance using one-sample two-tailed t-tests. The two prioritisation
scores within each ROl were further compared with two-sample two-tailed t-tests. The
resulting p-values were corrected for 12 comparisons (2 prioritisation scores x 4 ROls and 4
follow up tests) using the Bonferroni-Holm correction.

Control Analyses

We performed two control analyses to examine the policy results from OTC and DLPFC. To
distinguish between neural reactivation and processing of options during the response
screen, we re-ran the decoding analysis but tested the decoder on time points locked to the
response phase onset. To be cautious about interpreting evidence at the onset itself, we set
TRo to be the earlier TR closest to each response phase onset (rather than rounding to the
closest TR which could potentially contain signal further into the response phase). We then
performed cluster-based permutation tests from Os to +7.5s relative to the response phase
onset. Trials with feedback were used to establish a baseline time lag for the decoding of
policy information. This was contrasted with the time course observed on trials without
feedback. To control for the impact of choice on the core results, we examined decoding
evidence for the optimal training policies on test trials where participants did not select the
corresponding policy. For example, when extracting decoding probabilities for the more
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rewarding policy (among the optimal training policies), we extracted probabilities from trials
where participants selected a different policy. We then repeated statistical tests for the
average decoding evidence and cluster-based permutation tests across time. The Bonferroni-
Holm correction was applied for the four statistical tests comparing average decoding
strength against chance (2 policy categories x 2 ROls).

Feature Decoding

To decode feature information, logistic decoders were trained on fMRI data described in
Session One. Trials in which participants selected the correct number target were eligible as
training data. The response phase onset was taken for each eligible trial and time shifted 4-
6s. The closest TR to this time point was used the neural training data from that trial. The
training label was the selected number target. Training data was locked to the response
phase (rather than feedback events for policy decoding) because feedback was only
presented on error trials in session one. The time shift and spatial smoothing used were the
same as policy decoding. After training, the logistic decoders were evaluated on each TR
from the test trials from Session Two. This resulted in a separate decoding probability for the
12 feature numbers at each TR on each test trial. We then iterated over the test trials and
extracted the decoding probabilities for the features associated with more (or less)
rewarding training policy and averaged them. Feature probabilities were excluded from the
average in cases where a feature number was the same as one of the optimal rewards from
training. Probabilities were also excluded in cases where the features being decoded were
the same as those selected on the previous trial. These control measures were intended to
get an estimate of feature evidence that was independent from the previous trial and could
not be explained as a reward prediction. The remaining procedure was the same as policy
decoding. The extracted probabilities were averaged over test trials for each ROl and then
averaged from 2.5s after cue onset through to 12.5s. The average probabilities for features
associated with the optimal training policies were compared to a chance rate of 1/12, using
one-sample two-tailed t-tests. The resulting p-values were corrected for 8 comparisons (2
policy categories x 4 ROIs) using the Bonferroni-Holm correction.

Associations with Reuse Behaviour

Spearman correlations were used to test whether policy decoding effects were associated
with choices during the experiment. The average decoding evidence for the more rewarding
training policy was correlated with the proportion of test trials on which participants made
the choice predicted by SF&GPI. The decoding evidence had a precautionary measure to
avoid contamination from the previous trial (see the earlier section on Policy Decoding). For
consistency, the behavioural proportion used in correlation tests was calculated with the
same trials used for the decoding evidence. The correlation was run twice, once for OTC and
once for DLPFC. The process was then repeated but using neural prioritisation as the neural
measure (the difference in decoding evidence for the more rewarding training policy and the
objective best policy). Since this second set of correlations was not independent from the
first, p-values were corrected for the two ROIs tested using the Bonferroni-Holm correction.
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