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Abstract 

GeneralisaBon from past experience is an important feature of intelligent systems. When 

faced with a new task, efficient generalisaBon can be achieved by evaluaBng soluBons to 

earlier tasks as candidates for reuse. Consistent with this idea, we found that human 

parBcipants (n=40) learned opBmal soluBons to a set of training tasks and conBnued to 

reuse them on novel test tasks. Corresponding funcBonal magneBc resonance imaging data 

showed that opBmal soluBons from the training tasks were represented on test tasks in 

occipitotemporal and dorsolateral prefrontal cortex. These findings suggest that humans 

evaluate and generalise successful past soluBons when a\empBng to solve new tasks. 
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Introduc.on 

The ability to flexibly generalise from past experience to new situaBons is central to 

intelligence. Humans o_en excel at this (Dekker et al., 2022; Lue\gau et al., 2023; Xia & 

Collins, 2021) and the reasons have long intrigued cogniBve neuroscienBsts. A recurring 

theme is that neural systems should store structural informaBon extracted from past 

experiences (Behrens et al., 2018; Tervo et al., 2016). Structural informaBon specifies the 

form shared by soluBons to a given class of problems, abstracBng over the content that is 

specific to each problem. When new situaBons arise, this informaBon can be retrieved and 

combined with situaBon-specific content to make decisions.  

Although this approach is maximally flexible, humans o_en use simpler forms of 

generalisaBon. Recent data have shown that humans tend to solve new tasks by reusing 

soluBons from earlier tasks (Tomov et al., 2021). This relies on an algorithm known as 

“generalised policy improvement” (GPI; Barreto et al. 2017, 2018, 2020). GPI achieves 

efficient generalisaBon by storing a set of soluBons (policies) that can be evaluated and 

selected for reuse. Importantly, a feature-based generalisaBon of the successor 

representaBon (“successor features” or SFs) can be harnessed to support the idenBficaBon 

of the opBmal policy among those stored in memory. The resulBng algorithm, SF&GPI, is 

able to efficiently solve new tasks (Barreto et al. 2017, 2018, 2020) and predict human 

generalisaBon behaviour (Tomov et al., 2021), when tasks are situated in a common 

environment and each task is associated with a disBnct reward funcBon.  

Here we invesBgated whether the human brain implements this flexible and efficient 

form of generalisaBon. If people generalise their past experiences using SF&GPI, it should be 

possible to detect its components in their brain acBvity. We developed three neural 

predicBons based on this premise. First, we predicted that successful past policies would be 

represented in brain acBvity when people are exposed to new tasks. Second, we predicted 

that these policies would be prioriBsed, showing stronger acBvaBon than unsuccessful past 

policies. Third, we predicted a corresponding representaBon of the features associated with 

successful past policies, as these are used in the model to compute expected rewards.  

Past research from cogniBve neuroscience provides important clues about where 

these predicBons should be observed. The dorsolateral prefrontal cortex (DLPFC) has been 

proposed as a region that encodes policies (Botvinick & An, 2008; Fine & Hayden, 2022) and 

supports context-dependent acBon (Badre & Nee, 2017; Flesch et al., 2022; Frith, 2000; 
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Jackson et al., 2021; Rowe et al. 2000). Based on this literature, DLPFC is a candidate region 

in which the encoding of successful past policies could be detected when people are 

exposed to new situaBons. The medial temporal lobe (MTL) and orbitofrontal cortex (OFC) 

have been proposed as regions that encode predicBve representaBons about future states 

(De Cothi & Barry, 2020; Geerts et al. 2020; Muhle-Karbe et al., 2023; Stachenfeld et al. 

2017; Wimmer & Büchel, 2019). Based on this literature, MTL and OFC are candidate regions 

in which features associated with successful past policies might be detected. 

To test these predicBons, parBcipants completed a mulB-task learning experiment 

during funcBonal magneBc resonance imaging (fMRI). The experiment included training 

tasks that parBcipants could use to learn about their environment, and test tasks to probe 

their generalisaBon strategy. Different reward funcBons were used to define different tasks 

in the experiment. To summarise the main results, we found that parBcipants learned 

opBmal soluBons (policies) to the training tasks, and generalised them to test tasks in a 

reward selecBve manner. ParBcipant choices at test were more similar to an SF&GPI 

algorithm than to an MB algorithm. Neural results showed that opBmal soluBons from the 

training tasks could be decoded above chance during test tasks in DLPFC and (surprisingly) in 

occipitotemporal cortex (OTC). These soluBons were also prioriBsed. Decoding evidence for 

the opBmal training soluBons at test was higher than alternaBve soluBons that promised 

larger rewards. These results provide new insights into how a sophisBcated policy reuse 

algorithm might be implemented in the brain. 
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Results 

To test whether SF&GPI computaBons were evident in brain acBvity, parBcipants completed 

a gem collector game inside an MRI scanner (Fig. 1). The cover story was that a criminal 

mastermind had hidden rare gems in different ciBes around the world. ParBcipants needed 

to retrieve the gems to sell them for as much profit as possible. The first screen on each trial 

showed a set of market values that indicated the profits or losses associated with reselling 

each gem. Market prices could range from $2 per gem to -$2 per gem. A_er seeing the 

market values, parBcipants faced a choice between four ciBes (Sydney, Tokyo, New York, 

London) shown in a random order on screen. Each city contained the same three gem stones 

(triangle, square, circle), but in different amounts. The profit earned for a parBcular choice 

was based on the combinaBon of market values and the recovered gems. The selling price of 

each gem stone was first mulBplied by its respecBve number in the chosen city, and rewards 

were then summed across gem stones to arrive at the total profit. Embedded in this trial 

structure were two important abstract elements. First, market values were reward funcBons 

that defined the task parBcipants needed to solve on a given trial. If triangular gems had a 

high market value for example, and all other factors were equal, parBcipants would need to 

locate the city with the most triangular gems. Second, the gem numbers in each city defined 

the state features for that city, informaBon that could be reused to guide decisions on new 

tasks.  

Trials were ordered in a specific way to test the SF&GPI model. When beginning each 

block, parBcipants did not know how many gems were present in each city and needed to 

learn this informaBon by making decisions and observing the outcomes. This was possible 

during the first 32 trials of the block, which included feedback a_er each choice (Fig 1A). We 

refer to trials with feedback as training trials herea_er. Across training trials, parBcipants 

encountered four training tasks that each had a unique reward funcBon (i.e. a unique market 

value cue shown at the beginning of the trial). Two training tasks resulted in high rewards 

when city A was selected (e.g. Sydney), while the alternaBve ciBes resulted in losses or 

marginal reward. The other two training tasks resulted in high rewards when city B was 

selected (e.g. Tokyo), but losses or marginal reward when the alternaBve ciBes were 

selected. This meant that in effect parBcipants needed to learn two opBmal policies to 

perform well on training trials. One opBmal policy could be used for two training tasks and 

another could be used for the remaining two training tasks.  
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Following the iniBal learning phase, parBcipants were given 20 test trials (Fig. 1B) 

interspersed with 16 training trials. The test trials differed from training trials in that they 

introduced four new tasks (market value cues) and did not provide feedback a_er each 

choice. The test trials were designed so that the two ciBes resulBng in losses or marginal 

reward during training (e.g. New York and London) were now the most rewarding. This 

experimental setup allowed us to dissociate two main generalisaBon strategies. A model-

based agent with full knowledge of the environment would compute expected rewards for 

all four ciBes and choose the one that was objecBvely most rewarding. A model-based agent 

would therefore enact different policies on the test tasks compared to the training tasks. In 

contrast, an SF&GPI agent that stores and evaluates the best ciBes from training would 

compute expected rewards based on the opBmal training policies. An SF&GPI agent would 

therefore choose the more rewarding city among the opBmal training policies for each test 

task, but would not enact polices that had been unrewarding during training. 

ParBcipants completed six blocks of 68 trials in total. Training tasks had the following 

market values: wtrain = {[1, −1, 0], [−1, 1, 0], [1, −2, 0], [−2, 1, 0]}. Test tasks had the following 

market values: wtest = {[2, -1, -1], [-1, 1, 1], [1, -1, 1], [1, 1, -1]}. Gem numbers (state features) 

had the following values: ɸ = {[120, 50, 110], [90, 80, 190], [140, 150, 40], [60, 200, 20]}. The 

vector elements in each triplet were shuffled using a shared rule before a new block (e.g. all 

vectors were reordered to [1,3,2]). The mapping between ciBes and features (gem triplets) 

was also changed. These changes created the appearance of new training and test tasks in 

each block while preserving the structure of the experiment, in which two of the four 

opBons always proved to be best in training trials but subopBmal in test trials. Performance 

was incenBvised with a monetary bonus that was based on the total profit accrued over all 

trials in the scanner game. Before the experiment took place, parBcipants were informed 

about how market values and gem numbers were combined to calculate the profit on each 

trial. ParBcipants also completed 80 training trials with different state features and a 

different task theme in preparaBon for the session, and 20 training trials with different state 

features prior to scanning.  
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Figure 1. Experimental design. ParBcipants competed a gem collector game while their brain 

acBvity was measured with fMRI. On each trial in the experiment, gems with disBnct shapes 

could be resold for either a gain or a loss. ParBcipants made a choice between four ciBes 

from around the world, each leading to a disBnct collecBon of gems. To maximise profit 

overall, parBcipants needed to choose the city best suited to the selling prices shown on 

each trial. Each block consisted of 32 training trials that included feedback (shown in A), 

followed by a mixture of 16 training trials with feedback and 20 test trials without feedback 

(shown in B). The gem collecBon associated with each city changed from block to block. A: 

An example training task. Following presentaBon of the market values, parBcipants selected 

a city and saw a feedback screen. The feedback screen revealed the gem numbers in the 

selected city and the profit earned on the current trial. Four training tasks were used in the 

experiment and were designed so that two of the four ciBes were opBmal across training 

tasks. B: An example test task. On test tasks, parBcipants saw a set of market values that had 

not appeared during training and selected a city but did not see the outcome of their 

decision. Four test tasks were used in the experiment and were designed so that the two 

ciBes that were previously subopBmal now offered the highest returns. A model-based 

agent is expected to be sensiBve to this change. A “memory-based” SF&GPI agent that 

evaluates earlier task soluBons as candidates for generalisaBon is expected to choose among 

the ciBes that were opBmal during training.  
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Par.cipants learned op.mal policies for training tasks 

We first examined performance on the training tasks (Fig. 2A-E). This included training trials 

from the iniBal learning phase and training trials that were interspersed between test trials. 

The average reward earned per choice was higher than what would be expected if 

parBcipants were choosing at random (M=49.77, SD=10.61, Mrandom=-54.32, SDrandom=6.68, 

t(74)=51.19, corrected p<0.001) suggesBng successful learning. To understand training 

performance in more detail, we examined which choice opBons were selected. Training tasks 

were designed so that the most rewarding choice on each trial would lead to gem triplet 

ɸ(1) or gem triplet ɸ(4). Gem triplets are called feature triplets herea_er. Consistent with 

the training structure, ciBes associated with ɸ(1) and ɸ(4) were chosen significantly more 

o_en than the other ciBes (Fig. 2C). ɸ(1) was reached more o_en than ɸ(2) or ɸ(3) 

(Mɸ(1)=41.66% of training trials, SDɸ(1)=3.44, Mɸ(2)=6.52%, SD ɸ(2)=2.70, t(37)=37.78, 

corrected p<0.001; Mɸ(3)=6.38%, SDɸ(3)=2.71, t(37)=37.95, corrected p<0.001). ɸ(4) was 

similarly reached more o_en than ɸ(2) or ɸ(3) (Mɸ(4)=45.28% of training trials, SDɸ(4)=2.02, 

tɸ(4) vs. ɸ(2)(37)=45.98, corrected p<0.001; tɸ(4) vs. ɸ(3)(37)=45.42, corrected p<0.001). Choices 

leading to ɸ(1) and ɸ(4) were more comparable in number. However, ɸ(4) was reached 

more o_en than ɸ(1) (t(37)=5.34, corrected p<0.001). To understand the opBmality of these 

decision pa\erns, we examined how o_en parBcipants made the opBmal choice on training 

trials. The percentage of opBmal choices was significantly above chance (M=82.94%, 

SD=6.36, chance=25%, t(37)=56.16, corrected p<0.001, Fig. 2E) indicaBng that parBcipants 

acquired the opBmal training policies. Together, these results indicate that parBcipants 

acquired robust and effecBve decision strategies to maximise reward on the training tasks. 

 
Par.cipants transferred op.mal training policies to test tasks 

Having shown that parBcipants learned the opBmal training policies, we turned our 

a\enBon to the test tasks (Fig. 2F-J). The test tasks were designed so that choices leading to 

feature triplets ɸ(2) or ɸ(3) were the most rewarding. A model-based agent was expected to 

compute anBcipated rewards under all available policies and therefore make different 

choices on test tasks compared to the training tasks. An SF&GPI agent that stores 

informaBon about the best ciBes from training was expected to compute anBcipated 

rewards only under the opBmal training policies. This would result in conBnued choices to 

reach ɸ(1) and ɸ(4), rather than switching to ɸ(2) and ɸ(3). Although decisions for ɸ(1) and 
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ɸ(4) were subopBmal, we expected that parBcipants would sBll select the opBon that 

generated higher reward among this set.  

Consistent with an SF&GPI algorithm, parBcipants conBnued using opBmal policies 

from training on most test trials (M=68.81%, SD=15.58, chance=50%, t(37)=7.44, p<0.001, 

Fig. 2J). The choice profile on test trials was also similar to the profile seen on training trials 

(Fig. 1H). The city associated with feature triplet ɸ(1) was selected significantly more o_en 

than ciBes that led to ɸ(2) and ɸ(3) (Mɸ(1)=42.52% of test trials, SDɸ(1)=8.27, Mɸ(2)=15.23%, 

SDɸ(2)=7.43, t(37)=11.48, corrected p<0.001; Mɸ(3)=15.96%, SDɸ(3)=10.23, t(37)=9.78, 

corrected p<0.001). The city associated with feature triplet ɸ(4) was similarly selected 

significantly more o_en than those associated with ɸ(2) and ɸ(3) (Mɸ(4)=26.29% of test 

trials, SDɸ(4)=10.64, tɸ(4) vs. ɸ(2)(37)=4.14, corrected p<0.001; tɸ(4) vs. ɸ(3)(37)=3.17, corrected 

p=0.003). ɸ(1) was reached more o_en than ɸ(4) during test tasks (t(37)=9.12, corrected 

p<0.001). While most choices were technically subopBmal, parBcipants sBll performed well 

on test tasks overall. The average reward per choice was significantly higher than the reward 

expected from random choice (M=147.00, SD=13.94, Mrandom=76.20, SDrandom=8.69, t(74)= 

26.57, p<0.001, Fig. 2I). This was due to parBcipants selecBng the more rewarding soluBon 

among the opBmal training policies on test tasks significantly more o_en than chance 

(M=63.71%, SD=14.22, chance=0.25, t(37)=16.78, corrected p<0.001, Fig. 2J). On trials 

where parBcipants used either of the two opBmal training policies, the more rewarding one 

was indeed selected in most cases (M=92.86%, SD=5.21, chance=0.5, t(37)=50.74, corrected 

p<0.001). A breakdown of choices made on individual test tasks can be found in the 

supplementary informaBon (Fig. S3). Together, the results in this secBon indicate that 

parBcipants were choosing among the opBmal training policies on test trials in a reward-

sensiBve manner, consistent with the predicBons of an SF&GPI algorithm. 
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Figure 2. Behavioural results. Columns are grouped into theoreBcal predicBons and human 

performance. Rows are grouped into training and test tasks. A, B, F, G: TheoreBcal 

predicBons are shown for a model-based algorithm on training (A) and test tasks (F), as well 

as an SF&GPI algorithm on training (B) and test tasks (G). Each theoreBcal plot shows the 

predicted proporBon of choices leading to each feature (gem) triplet. C, H: Human choice 

profiles for training (C) and test tasks (H). The axis structure matches the theoreBcal plots.  

D, I: Performance histograms. The x-axis shows the average reward earned per trial within 

10-point bins, and the y-axis shows number of parBcipants with this average. The dashed red 

line indicates performance expected from random choices. The dashed grey line indicates 

the maximum performance possible. E-J: Use of the opBmal training soluBons (policies) on 

training tasks (E) and their reuse on test tasks (J). Both plots show the proporBon of choices 

in which either opBmal training policy was used (le_ bars) and the proporBon of choices in 

which the more rewarding one was used (right bars). Dashed red lines indicate chance. A, B, 

C, F, G, H: π* denotes feature triplets associated with opBmal training and test policies. 

OpBmal policies for training tasks lead to feature triplet ɸ(1) or ɸ(4) and opBmal policies for 

test tasks lead to ɸ(2) or ɸ(3). C, H, E, J: Dots show data points from individual parBcipants.  
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Op.mal training policies could be decoded during test tasks 

Having established that behaviour was consistent with the predicBons of an SF&GPI model, 

we tested its neural predicBons on test tasks: 1) that opBmal training policies would be 

acBvated as decision candidates; 2) that their acBvaBon strength would be higher than 

alternaBve policies; and 3) that features associated with the opBmal training policies would 

also be represented. We tested these predicBons in four brain regions. PredicBons 1-2 were 

expected in DLPFC due to its proposed role in policy encoding (Botvinick & An, 2008; Fine & 

Hayden, 2022) and context-dependent acBon (Badre & Nee, 2017; Flesch et al., 2022; Frith, 

2000; Jackson et al., 2021; Rowe et al. 2000). PredicBon 3 was expected in MTL and OFC due 

to research implicaBng these regions in coding predicBve informaBon about future states 

(De Cothi & Barry, 2020; Geerts et al. 2020; Muhle-Karbe et al., 2023; Stachenfeld et al. 

2017; Wimmer & Büchel, 2019). OTC was examined as a final region due to its central role in 

early fMRI decoding studies and its conBnued inclusion in recent ones (Haxby et al., 2001; 

Muhle-Karbe et al., 2023; Wi\kuhn et al., 2021). We first focus on policy acBvaBon 

(predicBons 1-2). 

To examine policy acBvaBon, decoders based on logisBc regression were trained to 

disBnguish the four ciBes seen during feedback on the training tasks (i.e. the ciBes served as 

training labels). One measurement volume (TR) per eligible trial was used as input for 

decoder training, taken 4-6s a_er feedback onset to account for the hemodynamic delay. 

Decoders were trained separately for each region of interest (ROI). The specific Bme lag used 

for each ROI was determined in validaBon analyses of the training tasks, independent from 

our predicBons about test task acBvity (see Fig. S5). The decoders were applied to each TR 

on held out test trials in a leave-one-run-out cross validaBon procedure. This resulted in a 

decoding probability Bme course for each city on each test trial, which reflected the 

evidence that a parBcular city sBmulus was encoded in the fMRI signal. To account for class 

imbalances in the decoder training set, we repeated the analysis 100 Bmes using random 

subsampling that matched the number of trials per category (M=53 trials per training class, 

SD=6.48). Decoding probabiliBes based on the ciBes were then coded into the following 

categories: 1) the more rewarding policy (among the opBmal training policies); 2) the less 

rewarding policy (among the opBmal training policies); 3) the objecBve best policy; and 4) 

the remaining policy. 
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 We first tested the predicBon that opBmal training policies would be acBvated on 

test tasks, by comparing decoding evidence for the opBmal training policies against chance 

in each ROI (Fig. 3B). Test trials lasted 10s on average (Fig 1B). Decoding evidence was 

therefore averaged from +2.5s to +12.5s following test trial onset to account for the 

hemodynamic delay. This revealed significant average decoding evidence for the more 

rewarding training policy during test tasks in OTC and DLPFC (OTC: M=28.07%, SD=2.17, 

t(37)=8.57, corrected p<0.001; DLPFC: M=25.85%, SD=1.51, t(37)=3.40, corrected p=0.011), 

but not in MTL or OFC (MTL: M=25.17%, SD=1.43, t(37)=0.72, corrected p=0.744; OFC: 

M=25.40%, SD=1.37, t(37)=1.79, corrected p=0.405). Numerical evidence for the less 

rewarding training policy was also detected in OTC, but this did not survive correcBon 

(M=25.97%, SD=2.34, t(37)=2.53, uncorrected p=0.016, Bonferroni-Holm corrected p=0.094, 

see the secBon enBtled Reac5va5on and s5mulus processing contributed to the decoding 

effects for evidence from cluster-based permutaBon tests). Average decoding evidence for 

the less rewarding training policy was not detected in the remaining ROIs (MTL: M=25.32%, 

SD=1.76, t(37)=1.12, corrected p=0.744; OFC: M=25.31%, SD=1.40, t(37)=1.38, corrected 

p=0.708; DLPFC: M=25.30%, SD=1.53, t(37)=1.17, corrected p=0.744). These results indicate 

that the more rewarding among the opBmal training policies was acBvated in OTC and 

DLPFC during test tasks. 

 

Op.mal training policies were priori.sed on test tasks 

Having established that the opBmal training policies were acBvated on test tasks (predicBon 

1), we next tested whether their acBvaBon strength was higher than the other policies 

(predicBon 2, Fig. 3C). Average decoding evidence during the test tasks was significantly 

higher for the more rewarding training policy than the objecBve best policy in OTC, OFC and 

DLPFC (OTC: Mdiff=4.09%, SDdiff=3.69, t(37)=6.75, corrected p<0.001; MTL: Mdiff=0.48%, 

SDdiff=2.46, t(38)=1.17, corrected p=0.743; OFC: Mdiff=0.97%, SDdiff=1.87, t(38)=3.14, 

corrected p=0.030; DLPFC: Mdiff=1.61%, SDdiff=2.59, t(38)=3.77, corrected p=0.006). Similar 

results were observed for the less rewarding training policy. Average decoding evidence for 

the less rewarding training policy was significantly higher than the objecBve best policy in 

OTC and DLPFC (OTC: Mdiff=2.00%, SDdiff=3.95, t(37)=3.07, corrected p=0.032; DLPFC: 

Mdiff=1.05%, SDdiff=2.15, t(37)=2.99, corrected p=0.035; MTL: Mdiff=0.63%, SDdiff=2.80, 

t(37)=1.36, corrected p=0.722; OFC: Mdiff=0.88%, SDdiff=1.97, t(37)=2.71, corrected p=0.060). 
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RelaBve decoding scores above take the form: (evidence for training policy X) – (evidence for 

the objecBve best policy) and measure the extent to which opBmal training policies were 

prioriBsed in neural acBvity. We found that relaBve decoding scores were significantly higher 

for the more rewarding training policy than the less rewarding one in OTC (Mdiff=2.09%, 

SDdiff=2.37, t(37)=5.38, corrected p<0.001) but comparable in other ROIs (MTL: Mdiff=-0.15%, 

SDdiff=1.61, t(37)=-0.58, corrected p>0.99; OFC: Mdiff=0.09%, SDdiff=1.93, t(37)=0.28, 

corrected p>0.99; DLPFC: Mdiff=0.55%, SDdiff=1.94, t(37)=1.73, corrected p=0.092). The 

results from tesBng predicBons 1 and 2 suggest that successful training policies were 

acBvated and prioriBsed on test tasks within OTC and DLPFC. 

 

Reac.va.on and s.mulus processing contributed to the decoding effects 

We next used cluster-based permutaBon tesBng (Maris & Oostenveld, 2007) to 

esBmate when the opBmal training policies were acBvated in the decoding Bme courses 

(window tested=2.5-12.5s post cue; 10,000 permutaBons). These tests revealed significant 

decoding evidence for the more rewarding training policy from 5-12.5s on test trials in OTC 

(corrected p<0.001) and from 8.75-12.5s in DLPFC (corrected p<0.001). Cluster-based 

permutaBon tesBng is potenBally more sensiBve than tesBng average evidence because 

acBvaBon that occurs in smaller subsets of Bme points can be idenBfied. Consistent with this 

idea, cluster tests idenBfied significant decoding evidence for the less rewarding training 

policy in OTC from 5-7.5s (corrected p<0.001) and 11.25-12.5s (corrected p=0.016), as well 

as a candidate cluster at 3.75s in DLPFC (corrected p=0.072). No signfiicant decoding clusters 

were detected for OFC or MTL (all corrected p-values>0.301). These results suggest that the 

more rewarding training policy was acBvated in the MRI signal from OTC about 5s a_er trial 

onset and in the signal from DLPFC about 8.75 s a_er trial onset. The OTC signal also had 

transient informaBon about the less rewarding past policy from about 5s (Fig. 3D). 

To assess whether these effects were impacted by the choice made on each test trial, 

we re-ran the cluster tests above but excluded evidence from trials where the policy 

category matched the choice parBcipants made. A significant decoding cluster for the more 

rewarding training policy was detected in OTC from 5s-7.5s (corrected p=0.003) but no 

significant clusters were detected in DLPFC (candidate cluster at 5s, corrected p=0.254). The 

same results were seen for the less rewarding training policy. Significant decoding clusters 

were observed in OTC from 5s-7.5s (corrected p=0.003) and from 11.25s-12.5s (corrected 
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p=0.021), but not in DLPFC (no candidate clusters). These results suggest that informaBon 

about successful past policies could sBll be decoded from OTC when controlling for the 

choice made. This was not the case for DLPFC. 

So far we have seen that OTC acBvated the opBmal training policies and that DLPFC 

acBvated the more rewarding of the opBmal training policies. These effects could be due to 

the neural reacBvaBon of the policies from memory following the test cue, selecBve 

a\enBon to specific policies when the response screen was shown, or both. To arbitrate 

between these possibiliBes, we examined decoding evidence locked to the response phase, 

and asked whether acBvaBon of the opBmal training policies arose earlier than could be 

expected from the response phase alone (Fig. 3E). The procedure for training the decoder 

remained the same as the previous analyses. However, the evaluaBon was conducted at 

each Bme point from 0s to 7.5s relaBve to response phase onset rather than the cue onset. 

To establish the expected lag of policy decoding a_er the response phase onset, we 

examined decoding evidence on training trials using cluster-based permutaBon tests 

(window tested=0-7.5s, 10,000 permutaBons). Using these trials as a baseline revealed a 

significant decoding cluster for the opBmal policy in OTC that was first detected 3.75s a_er 

the start of the response phase during training trials (significant cluster window=3.75-7.5s, 

corrected p<0.001). In contrast to this expected lag, the cluster onset was shi_ed earlier on 

test trials, with significant informaBon about the opBmal training policies present in OTC 

already 0s from the response phase onset (more rewarding training policy: significant cluster 

window=0-7.5s, corrected p<0.001; less rewarding past policy: first significant cluster 

window=0-2.5s, corrected p=0.001, second significant cluster window=6.25-7.5s, corrected 

p=0.014). In line with these results, decoding evidence in OTC at 0s from the response phase 

onset was significantly higher on test trials compared to training trials (more rewarding 

training policy: Mdiff=2.94%, SDdiff=3.38, t(37)=5.29, corrected p<0.001; less rewarding 

training policy: Mdiff=2.81%, SDdiff=3.97, t(37)=4.31, corrected p<0.001). No differences at 0s 

were detected for DLPFC (corrected p values>0.623). To summarise, informaBon about the 

opBmal training policies was present from response phase onset in OTC during test trials. 

Due to the hemodynamic delay, this implies some reacBvaBon of the opBmal training 

policies in OTC before the response screen was displayed. A\enBon to specific sBmuli shown 

on the response screen would have then plausibly contributed to the decoding effects in 

OTC from around 2.5-3.75s a_er its onset (Fig. 3F).  
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Figure 3. Decoding results. A: Brain regions of interest. The four regions include 

occipitotemporal cortex (OTC), the medial temporal lobe (MTL), orbitofrontal cortex (OFC) 

and dorsolateral prefrontal cortex (DLPFC). B: Decoding evidence for the opBmal training 

policies on test tasks (y-axis) shown for each brain region (x-axis). The dashed line indicates 

chance. C: Neural prioriBsaBon to the opBmal training policies. This panel shows the 

difference in decoding evidence on test tasks between the opBmal training policies and the 

objecBve best policy. Higher values indicate stronger evidence for the opBmal training 

policies within the neural signal. D: Time resolved decoding evidence for the opBmal training 

policies on test trials. Panels begin at the onset of the test cue. The iniBal period shows 

negaBve decoding evidence due to a control procedure. To avoid acBvity from the previous 

trial biasing our assessment of the current trial, we excluded trials in which the current 

policy category was selected on the previous trial. E: Time resolved decoding evidence 

locked to the response phase onset. Evidence is presented for both the opBmal policy on 

training trials and the opBmal training policies on test trials. D-E: Coloured bars below each 

line indicate significant decoding clusters. Shaded error bars show the standard error of 

mean. D: RelaBonships between decoding evidence for the more rewarding training policy in 

a specific ROI (y-axis) and the proporBon of test trials in which parBcipants reused that 

policy (x-axis). Black lines indicate linear fits to the data and grey lines indicate 95% 

confidence intervals of the fits. B-F: Throughout the figure, decoding evidence for the more 

rewarding among the two opBmal training policies is shown in orange, and the less 

rewarding among the two opBmal training policies is shown in blue. The policy within this 

set that is more or less rewarding varies across test trials depending on the specific cue. 

 

Policy ac.va.on in OTC was associated with test choices 

The neural results presented above suggest that OTC and DLPFC represented informaBon 

predicted under an SF&GPI algorithm. To examine whether neural coding in OTC and DLPFC 

had a funcBonal connecBon to parBcipant choices, we correlated average decoding strength 

for the more rewarding training policy (the orange dots in Fig. 3B) with the proporBon of 

test trials in which parBcipants generalised the more rewarding training policy. This revealed 

a significant posiBve correlaBon between neural acBvaBon of the more rewarding training 

policy in OTC and the implementaBon of that policy at test (Spearman’s Rho=0.445, 

corrected p=0.010). The equivalent correlaBon was not detected for DLPFC (Spearman’s 
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Rho=0.118, corrected p=0.481). The correlaBon results held when using neural prioriBsaBon 

towards the more rewarding training policy (the orange dots in Fig. 3C) as the neural variable 

(OTC: Spearman’s Rho=0.431, corrected p=0.014; DLPFC: Spearman’s Rho=0.163, corrected 

p=0.327, Fig. 3F). These results suggest that policy coding within the OTC was associated 

with test choices. 

 

Features could not be decoded on test tasks 

Having seen that opBmal training policies were acBvated on test tasks (predicBon 1) and 

that the evidence for them was higher than the objecBve best policy (predicBon 2), we 

tested whether features associated with the opBmal policies were also represented 

(predicBon 3). This required a different decoding approach for two reasons. The first was 

that feature triplets ɸ(1) and ɸ(4) were consistently associated with the opBmal training 

policies and were thus selected on most trials. Training a feature decoder on these data 

directly would result in large imbalances in the number of trials per class. The second reason 

was that the feature triplets were correlated with the reward. Feature triplets ɸ(1) and ɸ(4) 

o_en resulted in a profit and feature triplets ɸ(2) and ɸ(3) o_en resulted in a loss.  

To circumvent these issues, we trained feature decoders on fMRI data from a 

separate associaBve memory paradigm (see Session One in the methods secBon and Fig. S6). 

ParBcipants were first pre-trained on associaBons between visual cues and target sBmuli. 

The target sBmuli were feature numbers or ciBes that would later be used in the gem 

collector game. On each scanning trial, parBcipants were shown a visual cue and needed to 

select its associated target from a choice array. Trials in which the correct number target was 

selected were used to train logisBc decoders that could disBnguish neural responses for the 

12 number targets. The training process was similar to the process used for policy decoding. 

One measurement volume (TR) per eligible trial was used as training input, taken 4-6s a_er 

the response screen onset. The Bme shi_ and smoothing used for each ROI were the same 

as those used to decode policies. The trained decoders were then shown neural data from 

the test trials in the gem collector paradigm. This returned a cross-validated decoding 

probability for each feature number at each TR on each test trial. To ensure the decoding 

probabiliBes were stable, we repeated the procedure 100 Bmes using random subsampling 

to match trial numbers (M=36 trials per training class, SD=2.44). We then idenBfied the 
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three feature numbers associated with each of the opBmal training policies and averaged 

the decoding probabiliBes for those number labels on each test trial. 

Using this approach, we examined whether average decoding evidence for the three 

features anBcipated under each of the opBmal training policies was higher than chance 

(8.33% based on the 12 possible feature numbers). Like the earlier secBon on policies, 

decoding evidence was averaged from +2.5s to +12.5s following test trial onset. Feature 

informaBon associated with the more rewarding training policy was not detected on test 

tasks (OTC: M=8.71%, SD=1.12, t(37)=2.04, corrected p=0.392; MTL: M=8.37%, SD=0.40, 

t(37)=0.51, corrected p>0.99; OFC: M=8.28%, SD=0.52, t(37)=-0.60, corrected p>0.99; DLPFC: 

M=8.34%, SD=0.72, t(37)=0.05, corrected p>0.99). Equivalent results were found for features 

associated with the less rewarding training policy (OTC: M=8.61%, SD=0.91, t(37)=1.87, 

corrected p=0.486; MTL: M=8.38%, SD=0.59, t(37)=0.47, corrected p>0.99; OFC: M=8.37%, 

SD=0.52, t(37)=0.48, corrected p>0.99; DLPFC: M=8.38%, SD=0.57, t(37)=0.50, corrected 

p>0.99, Fig. S7).  
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Discussion 

This study aimed to invesBgate whether an SF&GPI algorithm could account for neural 

acBvity when humans transfer their experience from known to novel tasks. Behavioural 

results showed that human choices on new tasks relied on reusing policies that were 

successful in previous tasks. While this strategy was less opBmal than a model-based 

process, past policies were applied in a reward-sensiBve manner that led to high 

performance. An analysis of neural acBvity during test tasks showed that successful training 

policies were also represented in occipital-temporal and dorsolateral-prefrontal areas. These 

policies were prioriBsed as candidates for decision-making, with stronger acBvaBon than 

alternaBve policies that offered higher rewards. AcBvaBon strength in OTC was correlated 

with reuse behaviour. We found no evidence for the reacBvaBon of features associated with 

successful training policies. Our results speak towards a role of OTC and DLPFC in 

implemenBng an efficient form of generalisaBon that is superior to model-free behaviour, 

but less opBmal than model-based computaBon.  

 Consistent with previous behavioural research (Tomov et al., 2021), a computaBonal 

process based on SF&GPI could explain human generalisaBon performance. However, it did 

not capture parBcipant choices perfectly. This was evident in data showing that parBcipants 

made fewer choices leading to feature triplet ɸ(4) on test trials than the model predicted 

(Fig. 2G-H). Exploratory tests revealed that this was due to the presence of two disBnct 

subgroups (Fig. S2). Half of the parBcipants showed a full recapitulaBon of the SF&GPI 

predicBons on test tasks. The other half showed a parBal recapitulaBon. This suggests that 

some parBcipants used different strategies on specific test tasks. When examining individual 

test tasks (Fig. S3), we further observed that the SF&GPI algorithm predicted the dominant 

choice in most cases. However, there was one test task on which choices were evenly split 

between the SF&GPI and MB predicBons. Whereas most test tasks contained an anB-

correlated structure in the feature weights that was similar to one or more training tasks, 

this outlier test task did not. This raises the possibility that at least some parBcipants 

exploited structural similariBes between the training and test tasks to determine their 

choices, similar to a Universal Value FuncBon Approximator (UVFA) process in which similar 

task cues lead to similar rewards for a given acBon (Schaul et al., 2015). Tomov et al. (2021) 

observed evidence for UVFAs in a minority of subjects, but also had less structural overlap 

between training cues and the test cue. Future research should systemaBcally manipulate 
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the similarity between training and test scenarios to understand how this affects the 

computaBonal process used for generalisaBon.  

Consistent with SF&GPI predicBons, we observed neural prioriBsaBon of the opBmal 

training policies during test tasks. This was most prominent in OTC. Evidence from our data 

suggests that two disBnct sources contributed to decoding in this region. One was a 

reacBvaBon of opBmal training policies a_er seeing the test cue, as opBmal training policies 

could be decoded earlier than what would be expected based on training trials. This could 

reflect expectaBons about upcoming sBmuli in visual cortex (Aitken et al., 2020; Kok et al., 

2014), with added modulaBon based on behavioural relevance. The other source was 

prioriBsed processing of the opBmal training policies shown on the response screen. This 

enhanced processing could reflect value-driven a\enBonal capture, in which sBmuli 

previously associated with reward are preferenBally a\ended to in new contexts (Anderson 

et al., 2011). Neural prioriBsaBon was also observed DLPFC, an area proposed to encode 

policies (Botvinick & An, 2008; Fine & Hayden, 2022). This finding aligns with DLPFC’s role in 

context-dependent behaviour (Badre & Nee, 2017; Flesch et al., 2022; Frith, 2000; Jackson et 

al., 2021; Rowe et al. 2000), as the task cue on each trial can be seen as a context cue that 

determines the current response mapping. One interpretaBon of our findings is that DLPFC 

can generalise this role outside a set of training cues, retrieving relevant response mappings 

for novel context cues with similar but non-idenBcal structure to earlier contexts. We also 

note that although the prioriBsaBon seen in our data is consistent with an SF&GPI-like 

process, it could also support hybrid models that use cached opBon values to idenBfy useful 

candidates for parBcular decisions, and then perform model-based planning on that subset 

of opBons (Cushman & Morris, 2015; Morris et al., 2021).  

Based on proposals that the MTL and OFC serve as predicBve maps that encode 

informaBon about future states (De Cothi & Barry, 2020; Geerts et al. 2020; Muhle-Karbe et 

al., 2023; Stachenfeld et al. 2017; Wimmer & Büchel, 2019), we predicted that features 

expected under the opBmal training policies would be detected in these regions on test 

trials. We did not find evidence that this was the case. One possibility is that the features 

were not central to parBcipants’ decision process, which could occur if choices were 

primarily based on structural similariBes between the training and test cues. It is also 

possible that the features were used but that we were unable detect them. This could occur 

if feature numbers were represented with different neural pa\erns in the localiser task used 
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to train the neural decoders than the main task. Future experiments should develop designs 

in which feature informaBon can be remapped between the opBmal and subopBmal policies 

within each block of a single paradigm to train more sensiBve feature decoders. A second 

reason for not detecBng features could be because each test task was repeated five Bmes 

per block without feedback. This could have meant that feature triplets were used to 

compute expected rewards during iniBal test trials but that a policy was cached and used for 

remaining test trial repeats. Decoding predicBve feature representaBons remains a criBcal 

target in future neural tests of SF&GPI.  

The present study had two main limitaBons. One was that each trial involved a single 

decision step. This meant that mulB-step successor features were equivalent to single-step 

state features in the present design. This simplificaBon was made to meet the pracBcal 

constraints of fMRI scanning but future studies will need to devise pracBcal ways to retain a 

mulB-step element that can disBnguish between computaBonal processes using successor 

features and state features for generalisaBon. A second limitaBon was that the reward for 

the objecBve best policy was only 10-20 points higher than the more rewarding training 

policy (from among the opBmal training policies). While we observed a high degree of reuse 

as predicted under an SF&GPI algorithm, it could be that the computaBonal process would 

differ – with more equal evaluaBon across all opBons – if the reward prospect for previously 

unsuccessful policies had been higher at test. Future research could therefore manipulate 

the difference in reward between successful and unsuccessful training policies during test 

tasks, to be\er understand the condiBons under which an SF&GPI-like transfer process is (or 

is not) used. 

 Overall, the present study provides behavioural and neural evidence that 

generalisaBon to new tasks was more consistent with an SF&GPI-based algorithm than an 

MB algorithm. Successful past soluBons were prioriBsed as candidates for decision making 

on tasks outside the training distribuBon. This prioriBsaBon provides flexibility when faced 

with new decisions problems and has lower computaBonal cost than considering all 

available opBons. These findings take a step towards illuminaBng the flexible yet efficient 

nature of human intelligence. 
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Method 
Par.cipants 
Forty people parBcipated in the experiment. One parBcipant was excluded from the final 
sample due to low behavioural performance. The number of points earned in each scanning 
session was more than 2.5 standard deviaBons below the sample mean. Another parBcipant 
was excluded due to excessive head moBon. This was based on framewise displacement, 
which measures the change in head posiBon between adjacent data points (Jenkinson et al., 
2002). All funcBonal runs in the second scanning session for the parBcipant were more than 
2.5 standard deviaBons above the sample mean for framewise displacement. The resulBng 
38 parBcipants were between 18-35 years of age (mean=25 years, 23 female). All individuals 
had normal or corrected-to-normal vision and did not report an on-going neurological or 
psychiatric illness. €75 was paid for compleBng the experiment and €25 extra could be 
earned as a performance dependent bonus (€10 in session 1 and €15 in session two). Ethical 
approval was granted by the German Society for Psychology (the Deutsche Gesellscha_ für 
Psychologie) and parBcipants signed informed consent before each session. 
 
Materials 
Psychopy3 (RRID: SCR_006571, version 2021.2.3, Peirce et al., 2019) and Pavlovia 
(RRID:SCR_023320, h\ps://pavlovia.org/) were used to prescreen prospecBve parBcipants. 
SBmulus presentaBon during the scan sessions was controlled using Psychophysics Toolbox-3 
(RRID:SCR_002881, version 3.0.17) in MATLAB (RRID:SCR_001622). The sessions used sBmuli 
from Saryazdi et al. (2018) and city images from Rijan Hamidovic, Aleksander Pesaric, 
Pixabay and Burst that were retrieved from h\ps://pexels.com. Scan preparaBon was 
completed on a computer outside the scanner with a spaBal resoluBon of 2048 x 1152 and 
refresh rate of 60Hz (MATLAB version R2021b). The main experimental tasks were run on a 
sBmulus PC with a spaBal resoluBon of 1024 x 768 and a refresh rate of 60Hz, which 
projected to a magneBcally safe screen for parBcipants inside the scanner (MATLAB version 
R2017b). Responses were recorded using two fiber opBc bu\on boxes (Current Designs, 
Philadelphia, PA, USA). ParBcipants used two bu\ons on the le_ box (middle finger and 
index finger) and three bu\ons on the right box (index finger, middle finger and ring finger). 
Output files from the scanner were converted to the BIDs naming convenBon 
(RRID:SCR_016124) using ReproIn (RRID:SCR_017184, HeuDiConv version 0.9.0). 
Preprocessing and quality control were conducted using fMRIprep (Esteban et al., 2019, 
RRID:SCR_016216, version 20.2.4) and MRIQC (Esteban et al., 2017, RRID:SCR_022942, 
version 0.16.1). Behavioural analyses were performed in MATLAB (version 2021b). Neural 
analyses were performed in Python (RRID:SCR_008394, version 3.8.13), primarily using SciPy 
(RRID:SCR_008058, version 1.7.3), Pandas (RRID:SCR_018214, version 1.4.4), NumPy 
(RRID:SCR_008633, version 1.21.5), Matplotlib (RRID:SCR_008624, version 3.5.2), MNE 
(RRID:SCR_005972, version 1.4.2), Sklearn (RRID:SCR_019053, version 1.3.0) and Nilearn 
(RRID:SCR_001362, version 0.10.1).  
 
Online Prescreening 
ParBcipants completed an online prescreening task prior to study admission. This was 
conceptually similar to the main task in MRI session two. However, it had different sBmuli, 
different state features and a different theme to avoid biasing parBcipants during scanning. 
The market values used for the prescreening were: wtrain = {[1, −1, 0], [−1, 1, 0], [1, −2, 0], 
[−2, 1, 0]}. The state features were: ɸ = {[100, 0, 0], [30, 30, 160], [100, 100, 0], [0, 100, 70]}. 
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The vector elements in each triplet were shuffled with a randomly selected permutaBon rule 
for each parBcipant. The theme used for prescreening was from Tomov et al. (2021). 
ParBcipants completed 80 trials with equal numbers of each training task (wtrain) in a random 
order. No test tasks (wtest) were presented. Trials had the same structure as Figure 1A but 
with different event Bming. Market values were shown for 2.5s, no response limit was 
imposed, and feedback was shown for 3s. The cue-target interval was set to 0s and the inter-
trial interval to 1s. ProspecBve parBcipants needed to achieve an average reward above zero 
points to pass the prescreening and parBcipate in the experiment. Up to three a\empts 
could be made. 95% of people who passed the prescreening did so on their first a\empt. 
Four prospecBve parBcipants did not pass and were not admi\ed to the experiment.  
 
Session One 
During the first experimental session, parBcipants completed an associaBve retrieval task 
inside the MRI scanner. Session one was designed to produce a localiser dataset that could 
be as training data for neural decoders. Data from this session were not analysed for the 
present paper but are included in the open dataset. For the procedure behind the gem 
collector game, see session two. 
  
Scan Prepara5on 
In preparaBon for the first MRI scan, parBcipants learned associaBons between cartoon 
objects (e.g. a balloon) and ciBes or number sBmuli that would appear during session two. 
There were 4 ciBes (Sydney, Tokyo, New York, London) and 12 numbers (20, 40, 50, 60, 80, 
90, 110, 120, 140, 150, 190, 200) in total. Each target was associated with two cartoon 
images, resulBng in 32 associaBons. The associaBons between sBmuli were randomly 
determined for each person. ParBcipants completed a structured training procedure to learn 
the associaBons. The training began with the 8 object-city associaBons. On each trial, 
parBcipants were shown a cartoon object (e.g. a balloon) for 1.5s, followed by a 0.25s blank 
delay. The four ciBes were then shown on screen in a random order. ParBcipants needed to 
press the key (D, F, J, K, or L) corresponding to the screen posiBon of the correct city within 
5s. Following a response, feedback was shown for 2s (‘Correct!’ or ‘Incorrect!’). If the 
response was incorrect, parBcipants were shown the correct object-city pairing. The trial 
concluded with a blank inter-trial interval (ITI) lasBng 1s. Each block had 8 trials in total. This 
included one trial per associaBon (e.g. four ciBes with two associated objects each), 
presented in a random order. ParBcipants conBnued to complete blocks unBl achieving 8/8 
correct responses. To reduce training Bme, the object duraBon on screen was shortened 
from 1.5s to 0.5s a_er the first block for each set of 8 associaBons. Using the same training 
structure, parBcipants then learned 8 associaBons for each of the following number sets in 
turn: [20, 40, 50, 60], [80, 90, 110, 120], [140, 150, 190, 200]. To conclude the training, 
parBcipants were tested on longer blocks with one trial for each of the 32 associaBons. 
Blocks conBnued unBl parBcipants scored at least 90% correct (29/32 trials). A_er passing 
the 90% criterion once, parBcipants had to do so one more Bme but with a shorter response 
deadline of 1.5s. 
 
Scan Task 
The MRI task for session one was a cued retrieval task. The setup was similar to the final 
training stage outlined in the previous secBon. On each trial, parBcipants were shown a 
cartoon object for 0.5s and asked to imagine its associated target (i.e. the city or number 
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associated with it). Following a blank delay, parBcipants were presented with four possible 
response opBons in a random order on screen and needed to select the associated item 
within 1.5s. A feedback screen was then shown and the trial concluded with a blank ITI. The 
delay between the cartoon object offset and the response phase onset was drawn from a 
truncated exponenBal distribuBon, with a mean of 3s (lower bound=1.5s, upper 
bound=10s). Feedback (‘+10’ or ‘+0’) was shown for 0.5s. The ITI was drawn from a 
truncated exponenBal distribuBon with a mean of 2s (lower bound=1.5s, upper bound=10s). 
ParBcipants completed 64 trials per block and 10 blocks in total. The trial order was 
constrained so that the correct target was not repeated on consecuBve trials. Trials could 
also be labelled based on the following categories: ciBes (Sydney, Tokyo, New York, London), 
number set 1 (20, 40, 50, 60), number set 2 (80, 90, 110, 120) and number set 3 (140, 150, 
190, 200). ConsecuBve trials with the same category were allowed to occur a maximum of 
two Bmes per block. To moBvate good performance, parBcipants were shown their average 
accuracy, median RT and their bonus earnings up to that point at the end of each block. 
Fieldmaps and an T1w anatomical image were collected a_er the 5th block. This scan 
resulted in 640 retrieval trials, with 40 trials for each target sBmulus. 
 
Session Two 
During the second experimental session, parBcipants completed the gem collector game 
described in the main text. Sessions were held on consecuBve days, with session two 
occurring the day a_er the session one.  
 
Scan Prepara5on 
ParBcipants completed a brief preparaBon task to orient them to the gem collector theme 
and trial events. This included 30 pracBce trials. PracBce trials had the same event structure 
as those shown in Figure 1. The market values used in the preparaBon task were: wtrain = {[1, 
−1, 0], [−1, 1, 0]}. The state features were: ɸ = {[100, 0, 0], [30, 30, 160], [100, 100, 0], [0, 
100, 70]}. The vector elements in each triplet were shuffled with a randomly selected 
permutaBon rule for each parBcipant. The assignment between ciBes and state feature 
triplets was also randomised. ParBcipants were told how the game profit was calculated on 
each trial and had to correctly calculate the profit for three example trials to confirm their 
understanding. The first 10 pracBce trials provided feedback a_er each choice. The 
remaining 20 trials consisted of 15 trials with feedback and 5 trials without feedback. Event 
Bming was reduced across pracBce to prepare parBcipants for the event speed during 
scanning. Market values were presented for 3.5s and a 5s response deadline was imposed 
for the first 10 trials. This was reduced to 2s and 1.5s for the remaining trials. The feedback 
(2.5s), cue-target interval (1s) and inter-trial interval (2s) had consistent duraBons. 
ParBcipants did not need to reach a performance threshold on the pracBce trials to proceed 
to the scan task. 
 
Scan Task 
The cogniBve task used in the second scanning session is described in the main text. On each 
trial, parBcipants were shown the selling prices of three gem sBmuli (2s). This was followed 
by a ji\ered blank delay. The specific duraBon on each trial was drawn from a truncated 
exponenBal distribuBon with a mean of 3.5s, a lower bound of 3s and an upper bound of 
10s. Four city sBmuli then appeared on screen in a random order. The random ordering 
prevented parBcipants from preparing a motor response before seeing the choice sBmuli. 
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ParBcipants had up 1.5s to choose a city. Upon entering a response, a feedback screen was 
presented (2.5s) that showed the selling prices, the number of gems in the selected city and 
the profit (or loss). The feedback screen was omi\ed on certain trials (described below). In 
the event that no response was made within 1.5s, ‘Too slow!’ was printed to the screen as 
feedback. The trial concluded with a ji\ered ITI. The specific duraBon on each trial was 
drawn from a truncated exponenBal distribuBon with a mean of 3s, a lower bound of 2.5s 
and an upper bound of 10s. 

Each event in the trial sequence had a specific funcBon. The selling prices were used 
to define the ‘task’ on each trial. A task is a context that specifies which features of the 
environment should be prioriBsed during decision making. For example, if square gems have 
a high selling price and the other gems sell for $0 per unit, the task on that trial is to choose 
the opBon with the highest number of square gems. In this way, the selling prices (which 
were numeric weight vectors) allowed us to manipulate the task on each trial in a precise 
manner. Another important trial event was the feedback. Each city was had unique number 
of gems. For example, Sydney might have 120 square gems, 50 triangle gems and 110 circle 
gems. The number of gems were state features (ɸ) associated with each city. The following 
set was used during scanning: ɸ = {[120, 50, 110], [90, 80, 190], [140, 150, 40], [60, 200, 
20]}. The profit (or loss) on each trial was the dot product of the task weight triplet (the 
selling prices) and the state feature triplet (the gem numbers in the selected city). 

The experiment had two main trial types. Training trials allowed parBcipants to learn 
about the state features for each city because they showed feedback a_er each choice. Test 
trials were used to assess parBcipants’ generalisaBon strategy and did not provide feedback. 
ParBcipants were informed that the reward from all trials counted towards the €15 
performance bonus in the session, even if feedback was not shown. Training and test trials 
were also disBnguished based on the tasks (selling prices) shown to parBcipants. The 
training tasks used in the experiment were: wtrain = {[1, −1, 0], [−1, 1, 0], [1, −2, 0], [−2, 1, 0]}. 
The test tasks were: wtest = {[2, -1, -1], [-1, 1, 1], [1, -1, 1], [1, 1, -1]}.  

Each block had 68 trials. The order of training and test trials were pseudo-
randomised based on a set of constraints. The block was divided into two phases. The first 
32 trials were training trials (phase 1). The remaining 36 trials were a mixture of 16 training 
trials and 20 test trials (phase 2). Trials in the first phase were constrained so that: 1) equal 
numbers of the four training tasks were shown, 2) the same task was not repeated on 
consecuBve trials and 3) trials with a parBcular opBmal choice under SF&GPI (e.g. Sydney) 
were preceded by an equal number of trials with the same or a different opBmal choice (e.g. 
50% Sydney and 50% New York). Equivalent constraints were applied to the remaining trials 
(i.e. phase 2). Trials in phase 2 had the addiBonal constraints that: 4) the phase did not begin 
with a test trial and 5) no more than 3 test trials were presented in a row. The two phases in 
each block were recorded as separate fMRI runs to aid leave-one-run-out cross-validaBon 
(described in the secBon on neural analyses). 

ParBcipants completed 6 blocks in total (12 fMRI runs). There were six possible 
permutaBon rules that could be used to order the numeric elements within each task and 
state feature triplet: {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}. One 
configuraBon was used for each block. The configuraBon sequence across blocks was 
randomised. The state features for each city were also varied across blocks. We ensured that 
each city was paired with each state feature triplet at least once. A random mapping was 
used for the remaining two blocks. The mapping was pseudo-randomised across blocks so 
that no city had the same state feature triplet in consecuBve blocks. The screen posiBon of 
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the three gem sBmuli was randomised for each parBcipant but remained consistent 
throughout the experiment. PermuBng the triplet elements and changing the state features 
in each city across blocks preserved the logical structure of the experiment, while giving the 
appearance of new game rounds for parBcipants.  

  
Post Scan 
To conclude session two, parBcipants were asked to esBmate the number of triangle, square 
and circle gems that had appeared in each city during the final block of the scan task. 
EsBmates were restricted to a range between 0-250 gems. ParBcipants were also asked to 
rate their confidence for each esBmate on a scale from 0 (not confident at all) to 100 
(completely confident). These measures were not probed during the scan itself to avoid 
biasing parBcipants’ learning strategy. 
 
MRI Parameters 
MRI acquisiBon parameters were based on Wi\kuhn et al. (2021). Data were acquired using 
a 32-channel head coil on a 3-Tesla Siemens Magnetom TrioTim MRI scanner. FuncBonal 
measurements were whole brain T2* weighted echo-planar images (EPI) with mulB-band 
acceleraBon (voxel size=2x2x2xmm; TR=1250ms; echo Bme (TE)=26ms; flip angle (FA)=71 
degrees; 64 slices; matrix = 96 x 96; FOV = 192 x 192mm; anterior-posterior phase encoding 
direcBon; distance factor=0%; mulB-band acceleraBon=4). Slices were Blted +15 relaBve to 
the corpus callosum, with the aim of balancing signal quality from MTL and OFC (Weiskopf et 
al., 2006). FuncBonal measurements began a_er five TRs (6.25s) to allow the scanner to 
reach equilibrium and help avoid parBal saturaBon effects. Up to 401 volumes (session one) 
or 333 volumes (session two) were acquired during each task run; acquisiBon was ended 
earlier if parBcipants had completed all trials. Fieldmaps were measured using the same 
scan parameters, except that two short runs of 20 volumes were collected with opposite 
phase encoding direcBons. Fieldmaps were later used for distorBon correcBon in fMRIPrep 
(Esteban et al., 2019, RRID: SCR_016216, version 23.0.2). Anatomical measurements were 
acquired using T1 weighted MagneBzaBon Prepared Rapid Gradient Echo (MPRAGE) 
sequences (voxel size=1x1x1xmm; TR=1900ms; TE=2.52ms; flip angle FA=9 degrees; 
inversion Bme (TI)=900ms; 256 slices; matrix = 192 x 256; FOV = 192 x 256mm). 
 
MRI Preprocessing 
Results included in this manuscript come from preprocessing performed 
using fMRIPrep 23.0.2 (Esteban et al. (2019); Esteban et al. (2018); RRID:SCR_016216), 
which is based on Nipype 1.8.6 (K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018); 
RRID:SCR_002502). 

Preprocessing of B0 Inhomogeneity Mappings 
A total of 2 fieldmaps were found available within the input BIDS structure per subject. A B0-
nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar 
imaging (EPI) references with topup (Andersson, Skare, and Ashburner (2003); FSL 
6.0.5.1:57b01774). 

Anatomical Data Preprocessing 
A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset per subject. 
All of them were corrected for intensity non-uniformity (INU) 
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with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 
2008, RRID:SCR_004757). The T1w-reference was then skull-stripped with 
a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 
using fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823, Zhang, Brady, and Smith 2001). An 
anatomical T1w-reference map was computed after registration of 2 T1w images (after INU-
correction) using mri_robust_template (FreeSurfer 7.3.2, Reuter, Rosas, and Fischl 2010). 
Brain surfaces were reconstructed using recon-all (FreeSurfer 7.3.2, RRID:SCR_001847, Dale, 
Fischl, and Sereno 1999), and the brain mask estimated previously was refined with a 
custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 
segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et al. 
2017). Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym, 
MNI152NLin2009cAsym) was performed through nonlinear registration 
with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and 
the T1w template. The following templates were were selected for spatial normalization and 
accessed with TemplateFlow (23.0.0, Ciric et al. 2022): FSL’s MNI ICBM 152 non-linear 6th 
Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012), 
RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], ICBM 152 Nonlinear Asymmetrical 
template version 2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: 
MNI152NLin2009cAsym]. 

Func5onal Data Preprocessing 
For each of the 22 BOLD runs found per subject (across all tasks and sessions), the following 
preprocessing was performed. First, a reference volume and its skull-stripped version were 
generated using a custom methodology of fMRIPrep. Head-motion parameters with respect 
to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 
6.0.5.1:57b01774, Jenkinson et al. 2002). The estimated fieldmap was then aligned with 
rigid-registration to the target EPI (echo-planar imaging) reference run. The field coefficients 
were mapped on to the reference EPI using the transform. BOLD runs were slice-time 
corrected to 0.588s (0.5 of slice acquisition range 0s-1.18s) using 3dTshift from AFNI (Cox 
and Hyde 1997, RRID:SCR_005927). The BOLD reference was then co-registered to the T1w 
reference using bbregister (FreeSurfer) which implements boundary-based 
registration (Greve and Fischl 2009). Co-registration was configured with six degrees of 
freedom. Several confounding time-series were calculated based on the preprocessed BOLD: 
framewise displacement (FD), DVARS and three region-wise global signals. FD was 
computed using two formulations following Power (absolute sum of relative motions, Power 
et al. (2014)) and Jenkinson (relative root mean square displacement between 
affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both 
using their implementations in Nipype (following the definitions by Power et al. 2014). The 
three global signals are extracted within the CSF, the WM, and the whole-brain masks. 
Additionally, a set of physiological regressors were extracted to allow for component-based 
noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated after 
high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 
128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components are then calculated from the top 2% variable voxels 
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within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined 
CSF+WM) are generated in anatomical space. The implementation differs from that of 
Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, a mask of 
pixels that likely contain a volume fraction of GM is subtracted from the aCompCor masks. 
This mask is obtained by dilating a GM mask extracted from the 
FreeSurfer’s aseg segmentation, and it ensures components are not extracted from voxels 
containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space 
and binarized by thresholding at 0.99 (as in the original implementation). Components are 
also calculated separately within the WM and CSF masks. For each CompCor decomposition, 
the k components with the largest singular values are retained, such that the retained 
components’ time series are sufficient to explain 50 percent of variance across the nuisance 
mask (CSF, WM, combined, or temporal). The remaining components are dropped from 
consideration. The head-motion estimates calculated in the correction step were also placed 
within the corresponding confounds file. The confound time series derived from head 
motion estimates and global signals were expanded with the inclusion of temporal 
derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a 
threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. 
Additional nuisance timeseries are calculated by means of principal components analysis of 
the signal found within a thin band (crown) of voxels around the edge of the brain, as 
proposed by (Patriat, Reynolds, and Birn 2017). The BOLD time-series were resampled into 
standard space, generating a preprocessed BOLD run in MNI152NLin6Asym space. First, a 
reference volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep. The BOLD time-series were resampled onto the following 
surfaces (FreeSurfer reconstruction nomenclature): fsnative. All resamplings can be 
performed with a single interpolation step by composing all the pertinent transformations 
(i.e. head-motion transform matrices, susceptibility distortion correction when available, 
and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings 
were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation 
to minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) 
resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.9.1 (Abraham et al. 2014, 
RRID:SCR_001362), mostly within the functional processing workflow. For more details of 
the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Computa.onal Models 
TheoreBcal predicBons for choices on test tasks were generated using code from Tomov et 
al. (2021). The code was adapted to the current task design, which included changing the 
training tasks, test tasks, state features and the state space. Model training procedures 
remained the same.  

The models were situated in a standard reinforcement learning formalism called a 
Markov Decision Process 𝑀 = (𝑆, 𝐴, 𝑝, 𝑟, 𝛾), where 𝑆 is a set of states, 𝐴 is a set of 
acBons, 𝑝(𝑠!|	𝑠, 𝑎) is the probability of transiBoning to a subsequent state (s’) from an iniBal 
state (s) a_er taking acBon a, 𝑟(𝑠) is the reward received when entering state 𝑠, and 𝛾 is a 
discount factor between 0 and 1 that down-weights future rewards. The environment also 
contained state features ɸ(s) and tasks w. Policies defining the acBon an agent takes in each 
state are denoted 𝜋. 
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Model Based (MB) 
The MB algorithm had perfect knowledge about the environment. To decide what to do on 
each test task, it computed expected values for all possible acBons. Each expected value was 
defined as:  

𝑄!(𝑠, 𝑎) = 	)𝑝(𝑠"

#!
|	𝑠, 𝑎)	𝑟(𝑠)	 

 
The experimental design used determinisBc transiBons and thus each entry in 𝑝(𝑠!|	𝑠, 𝑎) 
was 0 or 1. The reward, 𝑟(𝑠), was computed as: 

𝑟(𝑠) = 𝜙(𝑠)$𝑤 
 
The MB algorithm selected the policy on the current test task with the highest expected 
value: 

𝜋! = 𝑎𝑟𝑔𝑚𝑎𝑥%𝑄!(𝑠, 𝑎) 
 
Successor Features and Generalised Policy Improvement (SF&GPI) 
The SF&GPI algorithm is designed to learn esBmates of the state features called successor 
features: 

𝜓&(𝑠, 𝑎) = 𝜙(𝑠) +	)𝑝(𝑠"

#!
|	𝑠, 𝑎)𝛾𝜙(𝑠′)	 

 
Since no further acBon could be taken in the terminal state (s’), this simplified to: 

𝜓&(𝑠, 𝑎) = 		)𝑝(𝑠"

#!
|	𝑠, 𝑎)𝜙(𝑠′)	 

 
This simplificaBon meant that successor features were equivalent to state features in the 
present design. The SF&GPI algorithm then performs generalised policy improvement, which 
computes a policy for the current test task based on earlier training policies. The first step in 
this process is to compute expected values on the current test task under a set of earlier 
policies {𝜋"…	𝜋#}: 

𝑄!
&"(𝑠, 𝑎) = 	𝜓&"(𝑠, 𝑎)$𝑤 

 
An interesBng property of the SF&GPI algorithm is that it is flexible with respect to the 
policies it considers from training. When considering all policies experienced during training, 
an SF&GPI algorithm makes the same predicBons as an MB algorithm in the present design. 
However, when generalised policy improvement is restricted to the opBmal training policies, 
its predicBons on test tasks differ:  

𝜋! = 𝑎𝑟𝑔𝑚𝑎𝑥%	𝑚𝑎𝑥&∈(	𝑄!&(𝑠, 𝑎) 
 
Here the set of policies, Π, contains the opBmal training policies but not all policies. We used 
this formulaBon of SF&GPI to disBnguish between a model of generalisaBon that evaluates 
opBmal training soluBons on test tasks and an MB generalisaBon process that evaluates all 
possible soluBons. 
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Behavioural Analyses 
16 staBsBcal tests are reported in the main text for behavioural data. The corresponding p-
values reported were therefore corrected for 16 tests using the Bonferroni-Holm correcBon 
(Holm, 1979). 
 
Average Performance 
The average points per choice on training trials was computed for each parBcipant. To 
compare this performance against a sensible baseline, we simulated an equivalent sample of 
38 agents that made random choices on the same trials. To ensure comparability, points 
from random choices were replaced with 0 points for trials where the equivalent human 
parBcipant omi\ed a response. The average points per choice was calculated for each agent. 
The two distribuBons (human and agent) were then compared using an independent two-
tailed t-test. This process was repeated to assess average performance on the test trials.  
 
State Analysis 
The present experiment contained four terminal states. Each terminal state was defined by a 
unique feature triplet from the following set: ɸ = [120, 50, 110], [90, 80, 190], [140, 150, 40], 
[60, 200, 20]. The order of individual elements within each triplet varied across blocks in the 
experiment. The most rewarding terminal states during training trials were associated with 
ɸ(1) or ɸ(4). To assess whether parBcipants made more choices leading ɸ(1) or ɸ(4), we 
recorded the proporBon of choices leading to each terminal state across all training trials in 
the experiment. We then compared the proporBons between each pair of states using 
paired two-tailed t-tests. The one excepBon was that we did not compare the choice 
numbers between ɸ(2) and ɸ(3), as this comparison was less related to the computaBonal 
modelling predicBons. To assess whether the same choice profile was recapitulated at test, 
the process above was repeated for test trials.  
 
Reuse Behaviour 
To further quanBfy the reuse of policies leading to ɸ(1) or ɸ(4) on test tasks, we computed 
the proporBon of test trials in which choices to ɸ(1) or ɸ(4) were selected for each 
parBcipant. To assess whether the proporBons were above chance, the distribuBon was 
compared to a mean of 0.5 in a one sample two-tailed t-test. To understand whether policy 
reuse was sensiBve to prospecBve rewards, we computed the proporBon of test trials in 
which parBcipants selected the more rewarding opBmal policy from training. While the 
previous analysis counted choices to either ɸ(1) or ɸ(4) regardless of outcome, this analysis 
counted choices to ɸ(1) or ɸ(4) only when the more rewarding of the two was selected. 
Since parBcipants had a ¼ chance of selecBng the more rewarding opBmal training policy at 
random from the response array, the empirical proporBons were compared to a mean of 
0.25 in a one sample two-tailed t-test. The same process was used to quanBfy how o_en the 
opBmal policy was selected on training trials.  
 
Neural Analyses 
Decoding was performed separately for each ROI. The voxel acBvity on each trial was 
extracted from the current ROI and smoothed 2-4mm. The specific smoothing was 
determined in validaBon analyses that did not use the trials needed to test our hypothesis. 
The resulBng data were detrended, z-scored and moBon confounds (idenBfied by fMRIPrep) 
were removed. Data cleaning was performed separately for each funcBonal run using 
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Nilearn signal clean. Trials without a response were then removed. The decoding procedure 
next entered a cross-validaBon loop. One block was held out to use as test data. The 
remaining blocks were used to train the decoder. A random sub-sample was taken to match 
the number of trials for each training class. It is important to note that only trials with 
feedback were used for decoder training (see Fig. 1A). Voxel acBvity 4-6s following feedback 
onset was extracted and the city shown on the feedback screen was used as the training 
label. The specific Bme lag was determined in validaBon analyses (see Fig. S5). The resulBng 
voxel pa\erns and labels were used to train a logisBc regression model. This was 
implemented in Sklearn with an L2 penalty term and a one-vs-the-rest mulBclass strategy. 
For more details, please see the Sklearn documentaBon. The trained decoder was then 
tested on each trial in the held-out run. TesBng was performed at mulBple TRs on each trial, 
from cue onset (TR0) through to 15s a_er it (TR+12). This resulted in one probability score per 
city sBmulus at each TR in the held-out test trial. Each score was the probability – according 
to the model - that a parBcular city was the correct label for the neural data provided. The 
class probabiliBes at a specific data point did not need to sum to 1 (due to the one-vs-the-
rest approach). The cross-validaBon procedure was repeated unBl all funcBonal runs had 
been used as held-out test data. For robustness, the analysis procedure was repeated 100 
Bmes with random sub-sampling on each iteraBon. The results were based on model 
probabiliBes averaged across iteraBons. These probabiliBes are interpreted as decoding 
evidence throughout the paper. 
 
ROIs 
To extract voxel pa\erns from specific regions, we generated masks for the four ROIs using 
Freesurfer corBcal parcellaBons. Each mask was composed of one or more bilateral 
parcellaBons. Masks were specific to each parBcipant. DLPFC was based on the rostral 
middle frontal gyrus parcellaBon. MTL combined the hippocampus, parahippocampal gyrus 
and entorhinal cortex parcellaBons. OFC combined the medial and lateral OFC parcellaBons. 
OTC combined the cuneus, lateral occipital, pericalcarine, superioparietal, lingual, 
inferioparietal, fusiform, inferiotemporal, parahippocampal and middle temporal 
parcellaBons. For more informaBon, please see Desikan et al. (2006) and the Freesurfer 
documentaBon: 
h\ps://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT 
 
Valida5on 
To validate the decoding pipeline, we trained neural decoders to classify the city observed 
during feedback on training trials. We then tested how well we could recover the chosen city 
on held out training trials. One funcBonal run was held out at a Bme to assess decoding 
performance. As training trials were not related to our hypothesis, we used the validaBon 
procedure to explore three possible Bme shi_s (+4s, +5s, +6s seconds following feedback 
onset) and three possible smoothing levels (0mm, 2mm, 4mm) that could be used to 
opBmise decoder training. The validaBon results were based on 25 iteraBons. Data were 
subsampled at random on each iteraBon to match the number of trials from each class. The 
highest performing decoding parameters were selected for each ROI based on the validaBon 
results (Fig. S5). These parameters were later used when tesBng our hypothesis about neural 
reacBvaBon during test tasks. 
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Policy Decoding  
The choice on each test trial could fall into one of four categories: 1) the more rewarding 
policy (among the opBmal training policies); 2) the less rewarding policy (among the opBmal 
training policies); 3) the objecBve best policy; and 4) the remaining policy. To examine the 
neural evidence for these categories, we extracted decoding probabiliBes for the four choice 
sBmuli on test trials – that is, on trials that did not show feedback (Fig. 1B). This extracBon 
was first performed for the Bme point closest to cue onset (TR0). The four decoding 
probabiliBes on each test trial at this Bme point – one for each choice sBmulus - were 
divided into the four categories above. To avoid contaminaBon from the previous trial, 
probabiliBes were removed in cases where the policy category on the current test trial was 
the same as the previous trial. Once this operaBon had been performed for all test trials, the 
probabiliBes in each category were averaged over trials. This process was repeated at each 
Bme point unBl 15s a_er cue onset (TR+12). The output of this process was one decoding 
Bme course per policy category, per parBcipant. These were stored in a 38 x 4 x 12 matrix, in 
which dimensions were parBcipants x categories x Bme points (TRs). A separate matrix was 
generated for each ROI. To test the average decoding strength on test trials against chance, 
we averaged the matrices above from 2.5s a_er cue onset (TR+2) through to 12.5s (TR+10). 
This Bme window was selected based on average test trial duraBon of 10s (Fig. 1B) and the 
hemodynamic delay. The 2.5s starBng point was selected based on validaBon analysis (Fig. 
S5), which showed that an event o_en took two TRs to have a discernible impact on the 
decoding probabiliBes. The average probabiliBes for the opBmal training policies were 
compared to the chance rate of 0.25, using one-sample two-tailed t-tests. The resulBng p-
values were corrected for 8 comparisons (2 policy categories x 4 ROIs) using the Bonferroni-
Holm correcBon. To assess the evidence for the opBmal training policies within OTC and 
DLPFC in a Bme resolved manner, we conducted one-sample cluster-based permutaBon 
tests against a populaBon mean of 0.25 (window tested=2.5-12.5s) using 
mne.stats.permutaBon_cluster_1samp_test. To assess neural prioriBsaBon in each ROI, we 
took the average decoding evidence for each of the opBmal training policies and subtracted 
the average evidence for the objecBve best policy on test tasks. PrioriBsaBon scores were 
tested against for significance using one-sample two-tailed t-tests. The two prioriBsaBon 
scores within each ROI were further compared with two-sample two-tailed t-tests. The 
resulBng p-values were corrected for 12 comparisons (2 prioriBsaBon scores x 4 ROIs and 4 
follow up tests) using the Bonferroni-Holm correcBon.  
 
Control Analyses 
We performed two control analyses to examine the policy results from OTC and DLPFC. To 
disBnguish between neural reacBvaBon and processing of opBons during the response 
screen, we re-ran the decoding analysis but tested the decoder on Bme points locked to the 
response phase onset. To be cauBous about interpreBng evidence at the onset itself, we set 
TR0 to be the earlier TR closest to each response phase onset (rather than rounding to the 
closest TR which could potenBally contain signal further into the response phase). We then 
performed cluster-based permutaBon tests from 0s to +7.5s relaBve to the response phase 
onset. Trials with feedback were used to establish a baseline Bme lag for the decoding of 
policy informaBon. This was contrasted with the Bme course observed on trials without 
feedback. To control for the impact of choice on the core results, we examined decoding 
evidence for the opBmal training policies on test trials where parBcipants did not select the 
corresponding policy. For example, when extracBng decoding probabiliBes for the more 
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rewarding policy (among the opBmal training policies), we extracted probabiliBes from trials 
where parBcipants selected a different policy. We then repeated staBsBcal tests for the 
average decoding evidence and cluster-based permutaBon tests across Bme. The Bonferroni-
Holm correcBon was applied for the four staBsBcal tests comparing average decoding 
strength against chance (2 policy categories x 2 ROIs). 
 
Feature Decoding 
To decode feature informaBon, logisBc decoders were trained on fMRI data described in 
Session One. Trials in which parBcipants selected the correct number target were eligible as 
training data. The response phase onset was taken for each eligible trial and Bme shi_ed 4-
6s. The closest TR to this Bme point was used the neural training data from that trial. The 
training label was the selected number target. Training data was locked to the response 
phase (rather than feedback events for policy decoding) because feedback was only 
presented on error trials in session one. The Bme shi_ and spaBal smoothing used were the 
same as policy decoding. A_er training, the logisBc decoders were evaluated on each TR 
from the test trials from Session Two. This resulted in a separate decoding probability for the 
12 feature numbers at each TR on each test trial. We then iterated over the test trials and 
extracted the decoding probabiliBes for the features associated with more (or less) 
rewarding training policy and averaged them. Feature probabiliBes were excluded from the 
average in cases where a feature number was the same as one of the opBmal rewards from 
training. ProbabiliBes were also excluded in cases where the features being decoded were 
the same as those selected on the previous trial. These control measures were intended to 
get an esBmate of feature evidence that was independent from the previous trial and could 
not be explained as a reward predicBon. The remaining procedure was the same as policy 
decoding. The extracted probabiliBes were averaged over test trials for each ROI and then 
averaged from 2.5s a_er cue onset through to 12.5s. The average probabiliBes for features 
associated with the opBmal training policies were compared to a chance rate of 1/12, using 
one-sample two-tailed t-tests. The resulBng p-values were corrected for 8 comparisons (2 
policy categories x 4 ROIs) using the Bonferroni-Holm correcBon. 
 
Associa5ons with Reuse Behaviour 
Spearman correlaBons were used to test whether policy decoding effects were associated 
with choices during the experiment. The average decoding evidence for the more rewarding 
training policy was correlated with the proporBon of test trials on which parBcipants made 
the choice predicted by SF&GPI. The decoding evidence had a precauBonary measure to 
avoid contaminaBon from the previous trial (see the earlier secBon on Policy Decoding). For 
consistency, the behavioural proporBon used in correlaBon tests was calculated with the 
same trials used for the decoding evidence. The correlaBon was run twice, once for OTC and 
once for DLPFC. The process was then repeated but using neural prioriBsaBon as the neural 
measure (the difference in decoding evidence for the more rewarding training policy and the 
objecBve best policy). Since this second set of correlaBons was not independent from the 
first, p-values were corrected for the two ROIs tested using the Bonferroni-Holm correcBon. 
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