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Representational spaces in orbitofrontal and 
ventromedial prefrontal cortex: task states, 
values, and beyond 
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Highlights 
Orbitofrontal cortex (OFC) and 
ventromedial-prefrontal cortex (vmPFC) 
areas encode a rich diversity of variables 
that intertwine value, task state, and out-
come properties, using mixed selectivity. 

A core benefit of this representational 
space is that it can encode contextual 
variables that are not directly observable 
but are required for predicting outcomes. 

Task state representations emerge in 
deep reinforcement learning networks 
alongside value-like signals, offering in-
sights into why the brain multiplexes 
The orbitofrontal cortex (OFC) and ventromedial-prefrontal cortex (vmPFC) play 
a key role in decision-making and encode task states in addition to expected 
value. We review evidence suggesting a connection between value and state 
representations and argue that OFC / vmPFC integrate stimulus, context, and 
outcome information. Comparable encoding principles emerge in late layers of 
deep reinforcement learning (RL) models, where single nodes exhibit similar 
forms of mixed-selectivity, which enables flexible readout of relevant variables 
by downstream neurons. Based on these lines of evidence, we suggest that 
outcome-maximization leads to complex representational spaces that are insuf-
ficiently characterized by linear value signals that have been the focus of most 
prior research on the topic. Major outstanding questions concern the role of 
OFC/ vmPFC in learning across tasks, in encoding of task-irrelevant aspects, 
and the role of hippocampus–PFC interactions. 
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value with other task-related variables. 

The complex activity patterns in OFC/ 
vmPFC can be interpreted as an inter-
nal representation that maps internal 
states, sensory observations, and past 
knowledge onto values and choice 
preferences.
Computational and neural underpinnings of value-based decision-making 
Humans and other mammals are versatile decision-makers, skilled at quickly learning how to 
achieve their goals in diverse environments. To do so, we learn to anticipate the outcomes of 
our choices. But while learning outcome expectations is straightforward in simple tasks, optimiz-
ing real-world behavior is more complex. It requires generalizing expectations across events and 
understanding how changing goals affect outcome desirability. 

One prominent notion is that the goal of decision-making is to maximize the so-called expected 
value of a decision [1,2], which is defined as the (time-discounted) sum of all expected future re-
wards after a choice is made. The basic idea of value maximization goes back centuries to ex-
pected utility theory [3], which states that decisions aim to maximize the expected value of a 
utility function that represents our subjective preference. Expected utility theory has had a marked 
impact on psychological theory ever since it was observed that rational decision-makers will be-
have as if they are maximizing expected utility [4], although psychological literature has pointed 
out many important additional perspectives on what drives human choices [5,6]. 

In parallel to these discussions, several neuroscientific studies have found that vmPFC and adja-
cent OFC areas are implicated in value processing in humans, non-human primates, and rodents 
(e.g., [7,8], for reviews see [9,10] as well as Figure 1A), and interact with the wider corticolimbic 
dopaminergic reward system [11]. One influential study showed that when monkeys choose be-
tween different quantities of flavored juice or water, single neurons in the OFC reflect the animal’s 
subjective value of the different outcomes [7]. The existence of value signals throughout the 
vmPFC and OFC has since been confirmed in humans, monkeys, and rodents (e.g., [12]; see
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Figure 1. Values and task states in orbitofrontal and ventromedial prefrontal cortex. (A) A midsagittal section of the 
human brain (MNI template) overlaid with medial prefrontal regions identified as encoding value in a meta analysis of blood 
oxygen level-dependent (BOLD) fMRI experiments [9] in orange. This region overlaps with the OFC orbitofrontal cortex 
area reported by Schuck et al. [54] where representations of (partially-observable) states were found (pink), and the medial 
prefrontal cortex region reported in [46] where value and state representations coexist and interact (cyan). (B) Illustration of 
how task states influence option values. Task states reflect the combination of sensory and nonsensory variables that are 
predictive of future outcomes. The computation of task states therefore requires input from several other areas which 
supply sensory processing, memory function, and access to internal affective and arousal states, amongst others. This 
information serves to map options onto the values they have for a given goal, thereby allowing the same options to have 
different values in different contexts. Images of suitcase and apple were adapted from vectorportal (Licensed under CC 
BY 4.0) and Wikimedia Commons (Licensed under CC BY 1.0), respectively. See [9,46,54].

Glossary 
Actor–critic: a policy-based RL 
algorithm that learns the reward-
maximizing probability of choosing 
among possible actions in a given state 
of the task (the actor). The model also 
learns an estimate of the state’s value, 
independent of which action will be 
chosen, and uses it as a learning signal 
to optimize the policy (the critic). 
Convolutional layer: the building block 
of convolutional neural networks (CNNs). 
Each node receives input from a small 
set of spatially confined nodes (receptive 
field). With network training, the 
restricted connectivity leads to nodes 
acting as filters which detect a specific 
input feature within their receptive field. 
Convolutions are typically applied over 
successive layers, allowing the network 
to form more complex filters. 
Deep Q network (DQN): a value-
based deep RL model which receives 
inputs and maps them to the values of 
possible actions, with each action being 
an output node of the network. 
Deep reinforcement learning (RL) 
models: deep neural network models 
trained with reward signals, instead of 
supervised teaching signals. This fusion 
integrates the representation learning 
abilities of deep learning with the 
decision-making abilities of RL and 
allows powerful machine-learning 
solutions to real life tasks such as 
autonomous driving. 
Fully-connected layer: usually 
contrasted with usually contrasted with 
convolutional layer, a fully connected 
layer is composed of artificial units which 
are all connected to each other by 
adjusted weights. 
Objective function: the function the 
model is trained to minimize, usually 
expressed as the difference between a 
model prediction, and a target (i.e., what 
the model should have predicted). For 
example, a deep RL model can be 
trained using a Q-loss function, in which 
the output nodes are trained to match 
the current and future reward resulting 
from each action in a given state. In 
supervised neural networks, the most 
common objective function is cross 
entropy. 
Recurrent layer: a recurrent layer 
holds previous observations in its 
memory and allows them to shape its 
responses to current inputs. This can be 
especially useful for solving partially 
observable tasks, where the estimation 
of the current state of the world cannot
[8,9] for reviews) and is broadly supported by lesion studies [12–15]. Note that we will use the 
term expected value hereafter to denote the subjective belief of the subject about the expected 
outcome of a decision. While in many cases the objective and subjective values align, some ex-
perimental paradigms can dissociate the two types of value. 

In this review, we argue that the role of OFC/vmPFC goes beyond providing a (subjective) value 
signal and suggest instead that they have a broader function focused on integrating information 
in the service of learning to predict outcomes in rich and partially observable environments. We 
first summarize findings from human, primate, and rodent studies that relate hidden task state 
(see Glossary) representations to these regions and show that value and task state codes are in-
tertwined (Figure 1B). We then show that a similar intertwining occurs in value-maximizing neural 
networks capable of performing complex tasks. Finally, we argue that these deep RL models 
indicate that value maximizing computations do not necessitate the dominance of value repre-
sentations as envisaged in neuroscientific research and might serve as a useful model of OFC/ 
vmPFC function that emphasizes the integration of predictive and possibly unobservable task 
states with expected values. 

While our focus is on learning, our conception of OFC/vmPFC function includes a deep interaction 
with memory processes which can reinstantiate pre-existing value or policy knowledge when 
needed [16–22]. This process is also crucial when old knowledge needs to be recombined in 
the service of inference (e.g., [23]) and during continual learning processes that involve ongoing
1056 Trends in Neurosciences, December 2024, Vol. 47, No. 12
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be fully determined by the current 
sensory inputs. Recurrent layers are 
usually contrasted with feed-forward 
layers which process each observation 
independently of previous ones. 
Task state: collection of observable 
and non-observable information 
necessary to predict decision outcomes. 
The transitions between task states 
constitute a Markov decision process 
that allows RL algorithms to solve the 
reward maximization problem. 
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refinement. We propose that the interaction between OFC/vmPFC and the hippocampus is crit-
ical for such a reinstatement.

We also acknowledge that vmPFC and adjacent OFC are anatomically diverse regions with many 
subdivisions [24]. Although many studies hint at differences between subregions [25], anatomical 
differences between species and lack of terminological agreement make integration of evidence 
at a finer anatomical scale difficult. Our focus on the ‘OFC/vmPFC’ region reflects the most pro-
nounced distinction between medial and lateral areas (e.g., [26]), in line with previous work [27], 
and broadly corresponds to the ‘orbital and medial prefrontal cortex (OMPFC)’ region as defined 
by Öngür and Price [28]. 

All you need is value? 
Inspired by early economic theory (e.g., [4]), some researchers have proposed that value signals 
reflect a ‘common currency’ that acts as a stable cardinal desirability scale guiding individuals’ de-
cisions [27,29]. According to this conceptualization, one of OMPFC’s main functions is to map 
incommensurable options onto a unidimensional, cardinal scale. Early observations that OFC 
value signals were independent of sensory features, motor aspects, or other choice options 
[7,30,31] support this idea, leading to the assumption that OMPFC signals are tailored to gener-
alize across aspects that are represented in other brain areas. This is supported by the finding 
that vmPFC signals can be decoded across tasks with different goals [17,32–39] and  even
when cognitive effort [37], or acquisition of knowledge [38] drive valuation or choice. 

Other lines of research, however, challenged this idea. Choice preferences, for instance, are affected 
by irrelevant alternatives, and the range of outcomes [40,41], counter to the predictions of common 
currency accounts. Contextual information is also important for value encoding, as illustrated in sev-
eral studies (e.g., [42]; for a review see [43]). Internal states, such as tiredness, modulate choices and 
also affect values in the brain [44,45], in line with the observation that desirability and neural value sig-
nals are goal-dependent; for instance, a hammer is better than a spoon if you want to drive a nail into 
the wall, while the opposite is true if you want to eat soup [17,33,46–48]. Some evidence also sug-
gests that OMPFC is involved in optimizing other objective functions. Decision confidence, for in-
stance, affects OMPFC firing, suggesting that this region might support maximizing confidence 
[49–52], even when it is orthogonal to expected values [53]. 

Context matters: how tasks shape choice and neural value signals 
Much work has highlighted context-dependency of decisions, further underlining the aforemen-
tioned challenges to common currency ideas (see, e.g., [43,55–58]). Decisions made across con-
texts, for instance, can systematically violate the principle of value maximization [41,59–61]. In 
one study, participants were trained to decide between outcomes ranging either from 14 to 50 
points or from 14 to 86 points [59]. Asked to pick options across sets, participants chose 
based on the within-set relative rather than the absolute values, making seemingly irrational deci-
sions. This suggests that values are normalized within each context. Similarly, single cell record-
ings in macaque OFC found that value signals are normalized by the range of the current context 
[62,63], in line with human fMRI findings [64], and modeling work [65]. Interestingly, value range 
adaptation does not seem to appear in OFC during forced choices, suggesting that this form 
of context-sensitivity is itself context-dependent [66]. 

One of our recent studies has provided additional insights into the relation between context and 
value signals in vmPFC [46]. Participants first learned discrete values of four colors and four 
movement directions while undergoing fMRI. They were then asked to make a choice between 
two moving and colored stimuli, based only on either the color or motion direction, but not
Trends in Neurosciences, December 2024, Vol. 47, No. 12 1057
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both (feature relevance was explicitly cued, and changed every four to seven trials; Figure 2A). 
Standard analyses confirmed that value was decodable from vmPFC. Nonetheless, using only 
value-responsive voxels, current task context was also decodable – although contexts were 
matched in value (Figure 2B). Two keys observations were made: first, value and context were 
related [i.e., stronger context signals correlated with a stronger value signal within participants 
(Figure 2C), as well as with the degree to which behavior was influenced by the irrelevant context 
(Figure 2D)]. Moreover, these two effects were related: a strong connection between vmPFC con-
text and value signals was linked to less influence of ‘irrelevant’ context on behavior (Figure 2E). 
Context thus seemed to coexist with and enhance value representations and determined 
which values influenced behavior. Second, behavior and vmPFC signals were influenced by the 
irrelevant feature with the highest value, which sometimes was not the chosen option. This implies 
a hypothetical calculation of the maximal possible value, assuming the alternative context, and 
possibly another choice (Figure 3A,B). Results hence suggested that vmPFC calculated the
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Figure 2. Interlinked ventro-medial prefrontal cortex (vmPFC) representations of task state and expected
value. (A) Schematic illustration of the experimental paradigm in [46]. After learning to associate rewards with a set o
colors and motion directions, participants made choices between two color-motion stimuli. Before each decision, a
context cue indicated whether rewards were dependent on color or direction (here: color). The expected value of a tria
was the maximum reward of the cued features (here: 70). On congruent trials, choosing the maximally rewarding cued
feature also selected the most rewarding uncued feature; on incongruent trials, the reverse was true (see example)
Outcome presented after each choice only depended on the features of the cued context. (B) Pattern classifiers were
trained on vmPFC data to either distinguish between different values (irrespective of context) or trial context (irrespective o
value). The region of interest is indicated in Figure 1A in the main text. (C) Expected value and context could both be
decoded from the same vmPFC area, which was defined based on value only (main effect not shown). Moreover, these
decoding strengths were related to one another: a stronger context signal (x-axis) accompanied a stronger expected value
signal (y-axis). Shown are mixed effects models testing the association between expected value and context decoding. (D
Participants were slower on incongruent compared with congruent trials (i.e., when the contexts did not agree which
decision was best), showing that alternative context influenced behavior. (E) Participants who showed a weake
relationship between context and value representations in vmPFC (y-axis, C) also showed a stronger behavioral influence
of the irrelevant context (congruency effect, x-axis, D). Plot shows the correlation of the betas from an expected value
decoding model (y-axis) with the congruency effect in reaction times (x-axis). Panels modified from [46].
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Figure 3. Context encoding modulates irrelevant value signals. (A) Schematic illustration of the experimental paradigm 
in [46]. Participants made choices between two color-motion stimuli, cued to focus only on color or only on motion. Reward was 
only predicted by the cued context (here, color). In the trial presented, the best choice according to the cued dimension is on the 
right (denoted expected value), while the maximum rewarding feature of the cued-to-ignore context is on the left, making this 
trial incongruent. Thus, the ‘alternative’ expected value reflects the maximum number of points that would have been 
obtained in the alternative context (i.e., if the irrelevant features were the relevant ones). (B) Alternative expected value 
influenced behavior, but only in relation to the congruency of contexts. Larger irrelevant values led to faster reaction times in 
congruent trials (green), and slower reaction times on incongruent trials (brown). Note that on incongruent trials, the irrelevant 
expected value reflected a different, hypothetical choice (cf. panel A). (C) Relationship between neural signals for expected 
value (y-axis) and the strength of irrelevant expected value (x-axis), separately for trials in which the context signal was weak, 
medium, or strong. The neural representation of both expected values (stemming from the relevant and irrelevant contexts) 
was negatively related. However, this negative relation was modulated by the context signal. When the context signal was 
strong, the influence of the irrelevant values on the ventro-medial prefrontal cortex (vmPFC) signal was reduced, akin to an 
arbitrating effect between competing value signals. Shown relationships reflects mixed effects model testing the association 
between expected value decoding and alternative expected value decoding. 
values of each context, which then competed for representation. Strikingly, context signals modu-
lated which value signal dominated vmPFC – the true value or the aforementioned hypothetical 
value (Figure 3C). Hence, task-context signals, not options or actions, organized value representa-
tions and choices (Figure 3 and Box 1), providing a way for vmPFC value signals to reflect possible 
future goals in addition to ongoing tasks.
Box 1. Representation and compression of task-irrelevant values 

A major role of state representations is to define which information is needed to predict outcomes in a given context. State 
representations have been linked to OMPFC [54,74], where lesions hinder the ability to ignore irrelevant choice options [142]. 
Moreover, OMPFC activity compresses inputs to focus on goal-relevant information [82,104,143] and guides hippocampus 
in forming reward-predictive relational maps [93]. Compression also occurs in deep neural networks, although contingent on 
factors such as activation functions [144] or  weight  initialization  [145]. This raises the question how complete such compres-
sion is, that is, if OMPFC still maintains some representation of (i) irrelevant task/stimulus information, and (ii) irrelevant values. 

In a study addressing the first question, participants were initially instructed to focus on one of two stimulus features, but 
later, unbeknownst to participants, the previously irrelevant feature suddenly became task-relevant [139]. Some partici-
pants did notice the changed relevance – even when this was never needed to complete the task [146] – and MRI results 
showed irrelevant information processing arose in mPFC before participants abruptly changed choices to tap into 
changed relevance (note that the region found in this study was more dorsal than commonly seen in value studies). Neural 
network simulations of the same task demonstrate that regularized gating can lead to preserved latent knowledge of 
irrelevant aspects which can be accessed rapidly if needed and leads to similarly abrupt and spontaneous behavioral 
switches as those observed in humans [147,148]. Broadly in line with this idea, some studies have shown that task-
irrelevant features can be decoded from the frontal eye fields in monkeys and motor cortex in humans [149,150]. 

If some representation of task-irrelevant information is maintained, what happens to task-irrelevant If some representation 
of task-irrelevant information is maintained, what happens to task-irrelevant values values ? Many fMRI studies reported 
task-relevant values within vmPFC, but no univariate evidence of task-irrelevant values has been found ([17,33,78,79]; 
but see for [16–19,151] for task-independent value-like signals). However, using multivariate methods, recent work from 
our group showed that such task-irrelevant values do exist in vmPFC [46], interact with other value and non-value 
representations, and influence behavior (Figures 2 and 3). This raises the possibility that multivariate fMRI methods are 
better suited to uncover compressed representations.

Trends in Neurosciences, December 2024, Vol. 47, No. 12 1059
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That vmPFC representations of contexts and values interact with each other, is broadly in line with 
evidence for context signals alongside values in OMPFC [36,67–69], but also extends previous 
work by demonstrating an intricate interplay of value and context signals. 

From context to task states: how cognitive maps influence values 
The context-sensitivity of value signals in the brain might not be surprising given that adaptive be-
havior needs to reflect how goals and contexts influence outcome desirability. But how exactly 
should ‘context’ be defined? One perspective, albeit not the only one, comes from RL theory 
[2], which formalizes how agents can learn reward maximizing behavior from trial-by-trial feed-
back. The simplest RL algorithms receive handcrafted information about the current ‘state’, or  
context, of the environment, which does not have to be directly observable but can for instance 
be defined by past events or internal needs. If RL models activate the wrong state they will also 
retrieve the wrong value, which means that reward learning is always contingent on current 
state knowledge (Figure 1B). While this perspective agrees with other theories that values are ab-
stract in nature and enable comparison of incommensurable options, it suggests that relevant 
task details might exist in the same region – a level of specificity that has been de-emphasized 
in particular by common currency approaches. The aforementioned findings of context signals 
that reside alongside value in OMPFC [36,54,67–69] and their close connection to value signals 
in the same area [46] support this perspective. 

What are states, specifically? First, RL accounts emphasize that states must (exclusively) reflect in-
formation that is needed to predict future reward. This can be sensory information (whether the sun 
is shining or not), but it can also be something that cannot be observed directly, such as how much 
time has passed. The second major aspect is that, in some RL models, states are part of a cogni-
tive map that specifies transitions between them. This emphasis on predicting future states is core 
to RL approaches that provide additional flexibility (e.g., model-based RL [70]; successor represen-
tations [71] or  replay  approaches  [72], see later). In sum, the RL perspective therefore emphasizes 
the role of reward and state predictiveness as defining features of context. Both aspects are in line 
with research on state representations in OMPFC [54,73–75] as well as on OFC role in generaliza-
tion and inference [67,76,77]. More broadly, it can also explain the dominance of goal-aligned value 
signals in OMPFC in cases where values depend on goal context [17,33,46,78,79] (see later). 

Adopting this perspective, one study showed that OFC lesions in rats affect reward-related dopa-
mine firing in line with predictions from an account that assumes OFC is needed to signal, latent 
task states that are independent from sensory input (known as ‘partially observable’) [74]. An 
fMRI study in humans also found that partially observable states can be decoded from medial 
OFC [54], in line with a number of other studies [46–48,69,75,80–82]. Hence, OMPFC may infer 
latent states that are needed to retrieve context-sensitive values, which is crucial when the same 
choices lead to different outcomes given partially observable states. Some studies suggest that 
OFC represents task structures and rules even without any explicit value [54,83,84], akin to 
‘schemas’ that also seem to reside in OMPFC [85,86]. OFC representations also appear similar 
when the same task is done with and without rewards, presumably reflecting stimulus–stimulus as-
sociations [87], akin to latent learning ideas [88] that emphasize how stimulus–stimulus learning 
done in the absence of rewards can be used for later reward tasks. This suggests that OMPFC 
might serve more broadly as a cognitive map that guides decisions [89–91], a function that is likely 
to occur in close connection with the hippocampus (see later for further discussion and cf. [92–95]). 

In sum, a state representation perspective envisages a dynamic process in which choice options 
can be flexibly projected onto different expected values, depending on goals and past history that 
influences how desirable an option is. States also support efficient learning by forming a cognitive
1060 Trends in Neurosciences, December 2024, Vol. 47, No. 12
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map that facilitates generalization and planning in information-rich environments with complex 
temporal structure (see e.g., [73,91,96]). 

While the evidence discussed earlier generally supports this perspective, several questions remain. 
One notable deviation is that OMPFC systematically represents task-irrelevant information and 
even ‘irrelevant’ values – a finding that we discuss in Box 1. A second issue concerns cases in 
which non-value quantities are optimized, such as distance to a non-value goal (see later), where 
the predictiveness of OMPFC signals will not refer to future rewards, but closeness to goal. Finally, 
we acknowledge that while some have presented direct computational or empirical evidence that 
context and cognitive maps can be understood as states that arise in RL machinery (e.g., [71,97]), 
further evidence is needed. 

A complex and versatile code in OMPFC 
The evidence reviewed so far suggests that values are part of a complex activation manifold with 
multiple dimensions related to choice values, (partially observable) task states, and alternative 
values [46,54,62,63,74]. Electrophysiological studies support this idea and indicate diverse infor-
mation encoding in OFC [69,98,99]. For instance, neurons in OMPFC encode summary statistics 
of the current task such as previous offers and outcomes, or the location of the currently attended 
offer [100]. Recording studies have also shown that the same neurons in OFC often encode mul-
tiple variables at once, a phenomenon known as mixed selectivity [101]. One study recorded neu-
rons from monkeys performing a choice between options characterized by the flavor and 
probability of a juice reward. The authors reported that most neurons in OFC showed mixed se-
lectivity for probability and flavor [102]. Another study showed that the same neurons in macaque 
OFC can represent both spatial and reward information, even when those are unrelated [103]. Al-
though different variables can be encoded by the same neurons [104] or voxels [46], merely rep-
resenting different variables does not mean that they are integrated. Perhaps the most direct 
evidence for such an integration comes from [46] (see earlier), where context signal strength co-
varied with value signal strength and behavioral markers or context adaptive behavior. 

This line of evidence raises a major conundrum: how can the findings that OMPFC activity multi-
plexes many task variables with reward expectations be reconciled with the reports of generaliz-
able, content-independent value representations discussed earlier? One explanation could be 
that, on a population level, neurons with mixed selectivity can still form a high dimensional repre-
sentation in which mostly orthogonal planes reflect different variables [105]. This means that 
downstream neurons can easily ready out independent codes for each variable. Indeed, in 
[102] the subspaces of population activity within OFC reflected probability and flavor and were 
minimally dependent (i.e., nearly orthogonal). We note that mixed selectivity is not unique to 
OMPFC and prevalent throughout the frontal cortex [101,106]. This suggests that mixed selectiv-
ity has a very broad function in high-order and flexible cognition that goes beyond the specific 
computations in OMPFC. Another, not exclusive, possibility is that goal-independent representa-
tions emerge during a late computational stage when state-dependent values transform into spe-
cific action-selection signals. In support of this idea, it has been shown that while the same OFC 
neuron population can be involved in evaluation and selection during value-guided choice, activa-
tions during these different phases lie on almost orthogonal subspaces [107]. Others found ex-
pected values in OMPFC arise only when the task requires a selection ([33], but see [16]), 
without encoding motor signals [7,46,58,108]. 

A neural network perspective on value and state representations 
As reviewed earlier, OMPFC does not appear to be exclusively committed to signaling only value or 
only task states. But can an exclusive focus on univariate codes for either value or task states even
Trends in Neurosciences, December 2024, Vol. 47, No. 12 1061
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be expected from a complex computational system like the brain? One avenue for addressing this 
question is to study deep RL models, which reflect an integration of RL with deep neural networks 
[109]. In addition to being powerful AI tools that can master games [110,111], or control self-driving 
cars [112], deep RL models can be useful for neuroscientific research of learning and decision-
making (Box 2). 

Deep RL models’ advantage over classic RL is their ability to master reward learning in complex 
environments by learning task-specific representations in their late layers, positioned close to 
the output. Classic RL models directly receive information about a small number of hand-
crafted and discrete states, such as their position in an artificially discretized spatial environ-
ment. Deep RL models, by contrast, can learn directly from a high-dimensional, continuous, 
and noisy sensory description (e.g., perceived distance to the wall) by relying on their represen-
tation learning power to form task-appropriate lower dimensional representations of the input 
[113] (Figure 4). Critically, these emergent representations arise without explicit guidance 
other than the network’s objective function, which for deep RL is typically the optimal reward 
(e.g., [110]) or policy (e.g., [100,114,115]), and they often end up having many features of 
the (partially-observable) task states we reviewed earlier. A reward-focused objective function 
therefore does not only lead to value representations, but also to task-appropriate abstractions 
of the sensory input, as we discuss later.

Because of their densely connected multilayer architecture, deep RL models also learn differently. 
Standard models only update the currently activated state when receiving input. But in deep RL 
models input and output are connected via many intermediate hidden layers that often feature 
mixed-selectivity [116–119], similar to what has been observed in the OMPFC (see earlier). A single 
weight-update will therefore affect many representations, and learning is never confined to just one 
state (Figure 4B). 
Box 2. Using deep RL models for the neuroscientific study of decision-making and learning 

The core idea of deep RL models is to train a deep neural network through trial-and-error reward feedback, rather than 
through supervised training. These models usually receive sensory observations as inputs, such as image pixels, and 
are trained to output expected values and/or actions that maximize reward. Most deep RL models process visual inputs 
in early convolutional layers, on top of which fully-connected layers are stacked. A popular type are deep Q networks 
(DQNs), which approximate the expected values of a set of discrete actions, given the input. Important additions to this 
standard architecture are recurrent layers that provide the network with memory and replay buffers that allow offline sam-
pling [109,138]. 

Deep RL models are regarded as a useful tool in neuroscience because they share some basic properties with the brain. 
They process information through layers of connected and distributed nodes in a stage-like fashion and learn by adjusting 
the connection strength between nodes as a function of feedback. These broad principles are reminiscent of the distrib-
uted information processing and synaptic plasticity found in real neurons. Although these similarities are relatively superfi-
cial – substantial differences exist, for instance, in how synaptic weight updates are propagated throughout the networks – 
the main promise of deep RL networks is to offer a useful level of abstraction for studying algorithmic aspects of cognition. 
Because deep RL models can perform complex cognitive tasks on par with humans [110,124], they seem to retain at least 
some of the necessary ingredients for complex cognitive skills. A burgeoning field now uses deep RL as models for behavior 
[152]. Some work has made progress by deriving analytical solutions of learning dynamics in simplified neural networks which 
yield explanations for observed learning trajectories [153]. Others have used them to derive testable neurobiological predic-
tions about context-dependent learning [145] or to provide explanations about why certain computational ingredients are es-
sential for achieving human-like learning [64,154]. Finally, deep RL models are useful because they allow studying the 
interaction of learning algorithms, behavior, and representations, providing, for instance, ideas about which representations 
can be expected in value maximizing networks. One example that showcases this strength comes from the area of distribu-
tional RL models [155], which suggests benefits of computing many diversely tuned reward prediction errors (RPEs), rather 
than only the single RPE assumed in standard RL. While the single RPE signal has famously been found in the firing rate of 
dopamine neurons [156], the notion of distributional RL in midbrain circuits has recently gained empirical support [119,157]. 
In a similar vein, deep RL models might help refine understanding of OMPFC codes in the brain.
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Figure 4. Principles of deep reinforcement learning (RL) models and emergent representations in late hidden 
layers (A) General scheme of a deep RL model. High-dimensional inputs (e.g., thousands of pixels) are first processed 
through stacked convolutional layers (akin to sensory processing), usually followed by non-convolutional fully-connected layers 
(‘late layers’, marked here by the yellow-orange arrow). Adding recurrency to the network (green arrows) allows to incorporate 
past events with present observations for representing partially-observable states. In the case of purely value-based models, 
such as deep Q networks, the output nodes are trained to approximate the expected action values; for more policy oriented 
models, output nodes are trained to reflect action probabilities, sometimes in addition to value estimates (such as in actor–critic). 
Once an action is chosen and rewarded, the error is used to update the weights of the model, incrementally forming hidden 
representations. While the learning process is focused on achieving maximally accurate value or action probability estimates, 
it also shapes the representations in the late layers such as to form distributed representations of task and value relevant vari-
ables that represent a compact world model, or ‘cognitive map’, of the task. (B) A schematic exemplifying the formation of hid-
den task representations in late layers of the deep RL network, while multiplexing value with non-value task variables. The axes 
reflect reduced dimensions of the population code (e.g., through principal component analysis or other dimensionality reduction 
methods). Note that context is not explicitly signaled in the input and the network needs to infer contexts, often based on ob-
servations that go beyond those currently observed (as is the case in partially-observed tasks).
Value and state representations in deep RL models 
Using the principles outlined earlier, deep RL models solve complex tasks by learning to extract 
multiple layers of representations, with an increasing level of abstraction [120]. A major question is 
what characterizes late layer representations that are only a few computations away from the de-
cision output, and whether their features correspond to what we know about OMPFC. One no-
table paper has shown that a recurrent deep RL model can capture several core aspects of 
OFC function and might reconcile value and state accounts on this brain area [121]. Other 
evidence from neural network studies also suggests late layer representations are not merely 
sorted by the value of the input they correspond to. In one study, [110] a  deep Q network
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(DQN) (a form of deep RL model) was trained to play various Atari games. Visually investigating 
the DQN’s last layer representations showed that the different input frames were not uniformly 
sorted by the value that the network predicted for them. Rather, value led to some clustering, but 
other factors such as perceptual or strategic similarity were reflected too. A subsequent study 
[122] found that the geometry of representations in late layers of the same DQN (i.e., their pairwise 
similarities) correlated with a hand-crafted geometry which retains abstract information about input 
features (e.g., the ball position, or the position of the two paddles in the game pong). Such abstract 
signals are reminiscent of the task states discussed earlier. Counter to our argument, however, in 
[122], no link was found between these representations and human participants’ OMPFC activity. 

Other work has used encoding models to ask whether hidden units reflect human-generated 
concepts. One study [123] demonstrated this approach on a deep RL model for chess, 
AlphaZero [124]. The authors found that late hidden layers come to represent many concepts 
other than the expected value of the current board, such as whether the player is in check, or 
whether the opponent can capture the queen. The selectivity profile of single units of deep RL 
models portrays a similar picture. In a deep RL model trained to solve a spatial reward task, a re-
cent study [125] found that good performance was related to the emergence of value selective 
units. But these units made up only 10% to 50% of the population and units not related to 
value were also highly correlated with the performance of the model (although this analysis was 
performed on units taken from all four model layers, so its result is not exclusive to the late layers). 

Similar observations have been made for different deep RL architectures. Hidden units in a deci-
sion network of an actor–critic-based recurrent RL model (Box 2) show mixed selectivity to com-
binations of task conditions, such as context and stimulus coherence levels [116]. Other work on 
recurrent RL models has shown that hidden representations capture task structure by retaining 
information about recent choices and rewards [118,126,127]. Another line of work has demon-
strated the importance of non-value representations more broadly by showing that adding 
other constraints on hidden representations than a reward maximization objective helps perfor-
mance [128,129]. Unsupervised pretraining of neural networks, for instance, can speed up 
later training with a specific objective function [130]. In addition, maximizing mutual information 
between hidden representations of inputs that are adjacent in time and space can enable better 
abstraction and generalization in Atari games [131]. Further, a deep RL architecture can benefit 
from being endowed with grid-like representations prior to learning [132] or self-supervised learn-
ing objectives [133]. 

In sum, we argue that the late layers of deep RL networks offer a useful model to understand the 
computational role of OMPFC. This role consists in using (reward) feedback signals to shape a 
mixed selectivity code in a way that emphasizes outcome predictive state and value representa-
tions. This process depends critically on input from many other regions, which, for instance, pro-
vide appropriately processed sensory information, or access to working memory. Perhaps the 
biggest challenge to this idea is that studies that directly compare late layers in deep RL models 
and OMPFC signals are largely lacking and available evidence is inconclusive. Future experiments 
should test the extent to which deep RL models truly align with observed OMPFC signals. 

Beyond standard deep RL: flexibility through long-term memory, meta learning, 
and model-based RL 
If OMPFC signals reflect computations akin to late layers in deep RL models, how can this ac-
count for value or liking signals in OMPFC that occur when no learning or action are needed? A 
potential explanation is that once value information has been established (e.g., value of known 
food items), the information can be reinstantiated in the network, for instance when conditioned
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Outstanding questions 
Do late layers of deep RL models offer a 
model for representations in OMPFC? If 
so, which network architectures and 
layers therein best match OMPFC 
regions? 

Can recurrent neural network 
architectures reveal previously 
unidentified links between deep RL 
models and OMPFC, given their role 
in partially-observable tasks and 
meta learning? 

What influences encoding of non-value 
signals and information irrelevant for 
the current task in OMPFC? Can this 
be linked to objective functions, weight 
initialization, and activation functions in 
neural networks? 

What controls the amount of 
compression and (dis)entanglement in 
OMPFC representations? 

Learning is a dynamic process that 
evolves over time. Is OMPFC’s role in  
decision-making most prominent dur-
ing early learning stages? 

How do the representation learning 
dynamics of deep RL on a trial-by-trial 
level, and across episodes, compare 
with those in OMPFC? 

Does OMPFC guide value-free decision-
making processes in the brain? How can 
one disentangle value-based versus 
value-free learning and choice? 

How do ventromedial and orbital areas 
interact with the hippocampus during 
offline replay and during on-task pe-
riods to guide decision-making?
stimuli are presented. This reinstatement is also critical for inference or when past goals are 
revisited and may even occur spontaneously in the absence of a choice task. 

The importance of flexible access to long-term memory has often been overlooked because most 
laboratory tasks capture ‘isolated’ learning processes that start from a blank slate and are com-
pleted after a few hours of experience. Yet, the perhaps most remarkable aspect of animal and 
human learning is the flexibility with which subjects apply previously gained insights to new prob-
lems [134] and learn over long time spans to extract commonalities between learning problems 
[135]. A notable recent advance that captures this idea, and can make deep RL models more flex-
ible, is deep ‘meta-RL’. Deep meta-RL uses a meta-learning approach in which slow weight 
changes enable fast learning in the activity dynamics of a recurrent network [136]. The resulting 
models capture instances of accelerating learning over a set of new but related problems [127]. No-
tably, recent findings have shown that plasticity within OFC is necessary for such a process [126]. 
Hence, the combination of access to previously established knowledge with the aforementioned 
learning powers could give OMPFC a unique power to meta-learn and integrate fast with slow 
learning processes. One aspect of neural processing of potential relevance for this notion is the in-
teraction between OMPFC and hippocampus, given the important role of the hippocampus in 
long-term memory and memory reactivation, the functional similarities between both regions, 
and their close connectivity [28]. It should be noted that this idea suggests a more complex 
deep RL architecture with separate long-term value storage systems that interact with OMPFC. 

A second approach within RL frameworks to support flexibility when adapting to new problems is 
model-based RL, which learns a model of state transitions separately from values. The combina-
tion of values and a state transition model can then be used to make on-the-fly value calculations. 
Yet, most deep RL models we discussed so far are in fact model-free (i.e., they do not incorporate 
structural knowledge) and consequently tend to be inflexible. When it comes to the brain, one 
possibility is that transition knowledge is stored outside of the OMPFC, but can still influence 
OMPFC computations via offline updating [137]. In line with this idea, previous work has found 
that replay in the hippocampus – a putative mechanism used by the brain to sample from a 
model of the task during rest [138] – is linked to state representations in the OFC [72], suggesting 
a role of hippocampal–OFC interactions in the service of flexibility. 

A final consideration concerns the availability of task-irrelevant signals in deep RL models that is in 
line with findings about irrelevant signals in the OMPFC discussed earlier [18,19,46,139]. An intrigu-
ing open question is whether such irrelevant signals are intentionally retained to accommodate for a 
dynamic environment with constantly changing contexts (‘a feature’), or whether the computational 
machinery is limited in suppressing them fully (‘a bug’). Further studying such cross-task signals in 
deep RL models trained on several tasks might help elucidate the origins of their neural counterparts. 

Concluding remarks and future perspectives 
We provided an overview of information encoded in OMPFC during decision-making tasks. 
OMPFC representations are multifaceted, shaped not only by immediate and expected rewards, 
but also by sensory and non-sensory information required for optimizing behavior in current 
tasks. As discussed in previous sections, such representational richness aligns with the concept 
of task states in RL and with late hidden layer activations that arise in deep RL models that learn to 
perform complex tasks. Ultimately, this suggests that value-oriented computations do not neces-
sarily lead to simple representations of expected value in the form of a universal currency for 
decision-making. Instead, we propose a perspective in which the OMPFC provides an integration 
of value and task states in the service of decision-making in complex environments. We also high-
lighted the important observation from neurophysiological as well as simulation work that single
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neurons are characterized by mixed selectivity to linear and nonlinear mixtures of value, outcome, 
task state, and other variables. Notably, while information is mixed on the single neuron level, it is 
still possible for different variables to be read out independently on the population level (example 
visualized in Figure 4B). This implies that complex neural codes which feature information integra-
tion on the single neuron level do not contradict the existence of more abstract, independent rep-
resentations on the population level [106]

While deep RL can offer useful insights for OMPFC function, we believe a number of important 
aspects need to be considered. Of particular relevance is the need to complement on-task learn-
ing powers of standard models with access to long-term memory in a way that enables learning 
across tasks over larger horizons. Some promising first results have indicated a link between 
OMPFC and meta-learning and memory replay, but more work will be needed, in particular con-
cerning the role of hippocampus–OMPFC interactions in this regard. We also argue that reinstate-
ment of established (value) knowledge could explain the documented role OMPFC plays for 
flexible generalization, as well as in tasks that neither require learning nor choices. Another impor-
tant observation that requires deeper investigation is that value signals can reflect not only current 
but also future or hypothetical tasks (see [46]), suggesting OMPFC decision-making function re-
flects not only past tasks, but also future ones. 

While neural network-based computational models might inspire new concepts and predictions 
concerning representations in OMPFC, another remaining challenge is the lack of a clear corre-
spondence between network components or computations and specific brain regions. Most ob-
servations about similarities of deep RL models and OMPFC remain qualitative, and a previous 
study [122] failed to find any direct relation between the model representations and fMRI activity 
in OMPFC. Additional in-depth investigations are therefore critical (see Outstanding questions). 

Finally, we believe that it is time to reconceptualize value as a multidimensional signal that tracks 
distance to the current task-goal, rather than accumulated reward [17,43,140]. This approach 
could open the door for frameworks that integrate goal and value signals [141], integrate confi-
dence into the decision [49–52], and even ones which assume no explicit computation of value 
at all [55]. Together, we believe these shifts in focus will help gain better understanding of the 
full complexity of OFC/vmPFC function. 
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