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Abstract

Value representations in ventromedial prefrontal-cortex (vmPFC) are known to guide1

decisions. But how preferable available options are depends on one’s current task. Goal-2

directed behavior, which involves changing between different task-contexts, therefore3

requires to know how valuable the same options will be in different contexts. We4

tested whether multiple task-dependent values influence behavior and asked if they are5

integrated into a single value representation or are co-represented in parallel within6

vmPFC signals. Thirty five participants alternated between tasks in which stimulus7

color or motion predicted rewards. Our results provide behavioral and neural evidence8

for co-activation of both contextually-relevant and -irrelevant values, and suggest a link9

between multivariate neural representations and the influence of the irrelevant context10

and its associated value on behavior. Importantly, current task context could be decoded11

from the same region, and better context-decodability was associated with stronger12

(relevant-)value representations. Evidence for choice conflicts was found only in the13

motor cortex, where the competing values are likely resolved into action.14
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Introduction15

Decisions are always made within the context of a given task. Even a simple choice between two apples will16

depend on whether the task is to find a snack, for which their color might indicate the desired sweetness, or to buy17

ingredients for a cake, for which a crisp texture might be more crucial. In other words, the same objects can yield18

different outcomes under different task contexts. Context-dependent decision-making therefore requires to retrieve19

not only the outcomes that are associated with different objects. Rather, it is necessary to maintain separate20

outcome expectations for the same choice option, and to know in which task context which outcome expectation21

is relevant.22

Computing the reward a choice will yield given a task context is at the core of decisions [e.g. 1]. In line with23

this idea, previous studies have shown in a variety of species that the ventromedial prefrontal cortex (vmPFC)24

represents this so-called expected value (EV) [2–7], and thereby plays a crucial role in determining choices [8]. It25

is also known that the brain’s attentional control network enhances the processing of features that are relevant26

given the current task context [9, 10], and that this helps to shape which features influence EV representations in27

vmPFC [11–13]. Moreover, the vmPFC seems to also represent the EV of different features in a common currency28

[14, 15]; and thus is necessary for integrating the expectations from different reward predicting features of the29

same object [16–18]. It remains unclear however, how context-irrelevant value expectations of presented features,30

i.e. rewards that would be obtained in a different task-context, might affect neural representations in vmPFC.31

This is particularly relevant because we often have to do more than one task within the same environment, such as32

shopping in the same supermarket for different purposes. Thus we have to switch between the values that are33

relevant in the different contexts. Moreover, the separation between tasks can often be less than perfect, which can34

then lead to processing of task-irrelevant aspects. In line with this idea, several studies have shown that decisions35

are influenced by contextually-irrelevant information, and traces of the distracting features in cortical regions36

responsible on task execution [19–23]. Similarly, task-irrelevant valuation has been shown to influence attentional37

selection [24] as well as activity in posterior parietal [25] or ventromedial prefrontal cortex [26]. This raises the38

possibility that vmPFC represents different value expectations that could occur in different task contexts at the39

same time. In the present study we therefore investigated whether the vmPFC maintains multiple task-dependent40

values during choice, and how these representations influence choices, interact with the encoding of the relevant41

task-context, and with each other.42

Previous research has indeed suggested that the role of vmPFC in decision making seems not to be restricted to43

representing economic values. Rather, other aspects of the current task might be encoded in this region as well44

[27–31]. Of particular relevance, a number of investigations have indicated that vmPFC and adjacent overlapping45

medial orbitofrontal cortex represents the current context or task state in humans [32–35].This task state effectively46

encodes which features are currently relevant and thereby determines which value expectations will guide behavior.47

Note, however, that these value and task-state accounts do not need to be mutually exclusive, but rather might48

reflect multiplexed representations within the neural activity of the vmPFC/OFC [36, 37]. Conceptualizing the49

role of vmPFC as representing possible task states therefore bridges beyond its traditional role as controller of50

economic value to a more complex role of parallel representation of task-related information, EV included.51

If neural activity in vmPFC goes beyond signalling a single EV by representing more complex task structure,52

then it suggests that the task-context is represented in addition to the values. We therefore hypothesized that53

vmPFC indeed simultaneously represents the task-context, as well as task-relevant and task-irrelevant values.54

This idea – that values and task-context co-occur and interact – also predicts that a stronger activation of the55

relevant task-context will enhance the representation of task-relevant values. We investigated this question using56

a multi-feature choice task in which different features of the same stimulus predicted different outcomes and a57

task-context cue modulated which feature was relevant. We hypothesized that values associated with contextually58

irrelevant features affect value representations in vmPFC. Moreover, we tested whether different possible EVs were59
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integrated into a single value representation or processed in parallel. The former would support a unique role of60

the vmPFC for representing only the EV of choice, whereas the latter would indicate that the vmPFC encodes61

several aspects of a complex task structure, including separate value representations for the currently relevant and62

irrelevant task contexts.63

Results64
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Figure 1: Task and Design a. Staircasing procedure reduced differences in detection speed between features. Depicted
is the variance of reaction times (RTs) across different color and motion features (y axis). While participants’ RTs were
markedly different for different features before staircasing (pre), a significant reduction in RT differences was observed
after the procedure (post). The staircasing procedure was performed before value learning. RT-variance was computed
by summing the squared difference of each feature’s RT and the general mean RT per participant. N = 35, p < .001.
b. The task included eight features, four color and four motion directions. After the stair-casing procedure, a specific
reward was assigned to each motion and each color, such that one feature from each of the contexts had the same value as
it was associated with the same reward. Feature values were counterbalanced across participants. c. Participants were
trained on feature values shown in (b) and achieved near ceiling accuracy in choosing the highest valued feature afterwards
(µ = .89, σ = .06). d. Single- and dual-feature trials (1D, 2D, respectively). Each trial started with a cue of the relevant
context (Color or Motion, 0.6s), followed by a short fixation circle (0.6s). Participants were then presented with a choice
between two clouds (1.6s). Each cloud had only one feature in 1D trials (colored dots, but random motion, or directed
motion, but gray dots, top) and two features for 2D trials (motion and color, bottom). Participants were instructed to make
a decision between the two clouds based on the cued context and ignore the other. Choices were followed by a fixation
period (3.4s) and the value associated with the chosen cloud’s feature of the cued context (0.8s). After another short
fixation (1.25s) the next trial started. e. Variations in values irrelevant in the present task context of a 2D trial. For each
feature pair (e.g. blue and orange), all possible context-irrelevant feature-combinations were included in the task, except
the same feature on both sides. Congruency (left): trials were separated into those in which the irrelevant features favored
the same choice as the relevant features (congruent trials), or not (incongruent trials). EVback (right): based on this factor,
the trials were characterized by different hypothetically expected values of the contextually-irrelevant features, i.e. the
maximum value of both irrelevant features. Crucially, EV, EVback and Congruency were orthogonal by design. The example
trial presented in (d, bottom) is highlighted.

Behavioral results65

Participants had to judge either the color or motion direction of moving dots on a screen (random dot motion66

kinematogramms, [e.g. 38]). Four different colors and motion directions were used. Before entering the MRI67

scanner, participants performed a stair-casing task in which participants had to indicate which of two shown stimuli68

corresponded to a previously cued feature. Motion-coherence and the speed which dots changed from grey to a69

target color were adjusted such that the different stimulus features could be discriminated equally fast, both within70
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and between contexts. As intended, this led to significantly reduced differences in reaction times (RTs) between71

the eight stimulus features (t(34) = 7.29, p < .001, Fig.1a), also when tested for each button separately (t(34) =72

Left: 6.52, Right: 7.70, ps< .001, Fig. S1d)73

Only then, participants learned to associate each color and motion feature with a fixed number of points (10,74

30, 50 or 70 points), whereby one motion direction and one color each led to the same reward (counterbalanced75

across participants, Fig.1b). To this end, participants had to make a choice between clouds that had only one76

feature-type, while the other feature type was absent or ambiguous (clouds were grey in motion clouds and moved77

randomly in color clouds). To encourage mapping of all features on a unitary value scale, choices in this part (and78

only here) also had to be made between contexts (e.g. between a green and a horizontal-moving cloud). At the79

end of the learning phase, participants achieved near-ceiling accuracy in choosing the cloud with the highest valued80

feature (µ = .89, σ = 0.06, t-test against chance: t(34) = 41.8, p < .001, Fig. 1c), also when tested separately for81

Color, Motion and across context (µ = .88, .87, .83,σ = .09, .1, .1, t-test against chance: t(34) = 23.9, 20.4, 19.9,82

ps< .001, respectively, Fig. S1e). Once inside the MRI scanner, one additional training block ensured changes in83

presentation mode did not induce feature-specific RT changes (F(7,202) = 1.06, p = 0.392). These procedures84

made sure that participants began the main experiment inside the MRI scanner with firm knowledge of feature85

values; and that RT differences would not reflect perceptual differences, but could be attributed to the associated86

values. Additional information about the pre-scanning phase can be found in Online Methods and in Fig.S1.87

During the main task, participants had to select one of two dot motion clouds. In each trial participants were first88

cued whether a decision should be made based on color or motion features, and then had to choose the cloud that89

would lead to the largest number of points. Following their choice, participants received the points corresponding90

to the value associated with the chosen cloud’s relevant feature. To reduce complexity, the two features of the91

cued task-context always had a value difference of 20, i.e. the choices on the cued context were only between92

values of 10 vs. 30, 30 vs. 50 or 50 vs. 70. One third of the trials consisted of a choice between single-feature93

clouds of the same context (henceforth: 1D trials, Fig.1d, top). All other trials were dual-feature trials, i.e. each94

cloud had a color and a motion direction at the same time (henceforth: 2D trials, Fig.1d bottom), but only the95

color or motion features mattered as indicated by the cue. Thus, while 2D trials involved four features in total96

(two clouds with two features each), only the two color or two motion features were relevant for determining the97

outcome. The cued context stayed the same for a minimum of four and a maximum of seven trials. Importantly,98

for each comparison of relevant features, we varied which values were associated with the features of the irrelevant99

context, such that each relevant value was paired with all possible irrelevant values (Fig.1e). Consider, for instance,100

a color trial in which the color shown on the left side led to 50 points and the color on the right side led to 70101

points. While motion directions in this trial did not have any impact on the outcome, they might nevertheless102

influence behavior. Specifically, they could favor the same side as the colors or not (Congruent vs Incongruent103

trials, see Fig.1e left), and have larger or smaller values compared to the color features (Fig.1e right).104

We investigated the impact of these factors on RTs in correct 2D trials, where the extensive training ensured105

near-ceiling performance throughout the main task (µ = 0.91, σ = 0.05, t-test against chance: t(34) = 48.48,106

p < .0001, Fig.2a). RTs were log transformed to approximate normality and analysed using mixed effects models107

with nuisance regressors for choice side (left/right), time on task (trial number), differences between attentional108

contexts (color/motion) and number of trials since the last context switch. We used a hierarchical model comparison109

approach to asses the effects of (1) the objective value of the chosen option (or: EV), i.e. points associated with110

the features on the cued context; (2) the maximum points that could have been obtained if the irrelevant features111

were the relevant ones (the expected value of the background, henceforth: EVback, Fig 1e left), and (3) whether112

the irrelevant features favored the same side as the relevant ones or not (Congruency, Fig. 1e right). Any effect113

of the latter two factors would indicate that outcome associations that were irrelevant in the current context114

nevertheless influence behavior, and therefore could be represented in vmPFC.115
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Figure 2: Behavioral results a. Participants were at near-ceiling performance throughout the main task, µ = 0.905, σ = 0.05.
b. Participants reacted faster the higher the EV (x-axis) and slower to incongruent (purple) compared to congruent (green)
trials. An interaction of EV × Congruency indicated stronger Congruency effect for higher EV (p = .037). Error bars
represent corrected within subject SEMs [39, 40]. c. The Congruency effect was modulated by EVback, i.e. the more
participants could expect to receive from the ignored context, the slower they were when the contexts disagreed and
respectively faster when contexts agreed (x axis, shades of colours). Error bars represent corrected within subject SEMs
[39, 40]. d. Hierarchical model comparison for the main sample showed that including Congruency (p < .001), yet not
EVback (p = .27), improved model fit. Including then an additional interaction of Congruency × EVback improved the fit
even more (p < .001). e. We replicated the behavioral results in an independent sample of 21 participants outside of the
MRI scanner. Including Congruency (p = .009), yet not EVback (p = .63), improved model fit. Including an additional
interaction of Congruency × EVback explained the data best (p = .017).

A baseline model including only the factor EV indicated that participants reacted faster in trials that yielded bigger116

rewards (χ2
(1) = 1374.6, p < .001, Fig. 2b), in line with previous literature [41–43]. In the first step, we added117

either Congruency or EVback to the model. We found that Congruency also affected RTs, i.e. participants reacted118

slower to incongruent compared to congruent trials (t-test: t(39) = 4.59, p < .001, likelihood ratio test to asses119

improved model fit: χ2
(1) = 29.9, p < .001, Fig. 2b). Interestingly, neither adding a main effect for EVback nor the120

interaction of EV × EVback improved model fit (LR-test with added terms: χ2
(1) = 1.21, p = .27 and χ2

(1) = .01,121

p = 0.9 respectively), meaning neither larger irrelevant values, nor their similarity to the objective value influenced122

participants’ behavior.123

In a second step, we investigated if the Congruency effect represents merely an agreement between the contexts,124

or if it interacted with the expected value of the best choice in the other context, i.e the points associated with125

the most valuable irrelevant stimulus feature (EVback). Indeed, we found that the higher EVback was, the faster126

participants were on congruent trials. In incongruent trials, however, higher EVback had the opposite effect (Fig. 2c,127

LR-test of model with added interaction: χ2
(1) = 18.19, p < .001). We found no effect of the value associated with128

the other, lower valued irrelevant feature that would not have been chosen (LR-test to baseline model: χ2
(1) = 0.92,129

p = .336), nor did it interact with Congruency (χ2
(1) = 2.76, p = .251). This means that the expected value of a130

’counterfactual’ choice resulting from consideration of the irrelevant features mattered, i.e. that the outcome such131

a choice could have led to, also influenced reaction times. The hierarchical model comparison is summarized in Fig.132

2d. All the effects above also hold when running the models nested across the levels of EV (as well as Block and133

Context, see Fig. S2). All nuisance regressors had a significant effect on RT (all ps< 0.03 in the baseline model).134

The main behavioral results were replicated in an additional sample of 21 participants that were tested outside135

of the MRI scanner (LR-tests: Congruency, χ2
(1) = 6.89, p = .009, ,EVback,χ2

(1) = .23, p = .63, Congruency ×136

EVback, χ2
(1) = 5.69, p = .017 ,Fig.2e).137

We note that similar to the EVback × Congruency interaction, we also found that higher EV slightly increased138

the Congruency effect (Fig. 2b, LR-test: χ2
(1) = 4.34, p = .037). However, the interaction of Congruency × EV139

did not survive model comparison in the replication sample (χ2
(1) = 0.23, p = .63).Alternative regression models140

considering for instance within-cloud or between-context value differences did not provide a better fit the RTs141
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(Fig.S3). An exploratory analysis investigating all possible 2-way interactions with all nuisance regressors can be142

found in Fig. S4.143

We took a similar hierarchical approach to model accuracy of participants in 2D trials, using mixed effects models144

with the same nuisance regressors as in the RT analysis. This revealed a main effect of EV (baseline model:145

χ2
(1) = 14.71, p < .001), indicating higher accuracy for higher EV. Introducing Congruency and then an interaction146

of Congruency × EVback further improved model fit (LR-test: χ2
(1) = 66.12, p < .001, χ2

(1) = 6.99, p = .03,147

respectively), reflecting decreased performance on Incongruent trials, with higher error rates occurring on trials148

with higher EVback. Unlike RT, error rates were not modulated by the interaction of EV and Congruency (LR-test149

with EV × Congruency: χ2
(1) = 0.05, p = .825). Out of all nuisance regressors, only switch had an influence on150

accuracy (χ2
(1) = 10.22, p = .001, in the baseline model) indicating increasing accuracy with increasing trials since151

the last switch trial.152

In summary, these results indicated that participants did not merely perform a value-based choice among features153

on the currently relevant context. Rather, both reaction times and accuracy indicated that participants also154

retrieved the values of irrelevant features and computed the resulting counterfactual choice.155

fMRI results156
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Figure 3: Multivariate value analyses. a. The union of the EV parametric
modulator allowed us to isolate a cluster in the vmPFC. Displayed coordinates
in the figure: x=-6, z=-6. b. We trained the classifier on behaviorally accurate
1D trials on patterns within the functionally-defined vmPFC ROI. c. The
classifier yielded for each testing example one probability for each class. d.
The classifier assigned the highest probability to the correct class (objective
EV) significantly above chance for 1D trials, but also generalized to 2D
and across all trials (p = .049, p = .039, p = .007 respectively). Error
bars represent corrected within subject SEMs [39, 40]. e. Analyses of all
probabilities revealed gradual value similarities. The y-axis represents the
probability assigned to each class, colors indicate the classifier class and the
x-axis represents the trial type (the objective EV of the trial). As can be
seen, the highest probability was assigned to the class corresponding to the
objective EV of the trial. Error bars represent corrected within subject SEMs
[39, 40]

Decoding multivariate value signal157

from vmPFC Our MRI analyses fo-158

cused on understanding the impact of ir-159

relevant reward expectations on value sig-160

nals in vmPFC. We therefore first sought161

to identify a value-sensitive region of in-162

terest (ROI) that reflected expected val-163

ues in 1D and 2D trials, following com-164

mon procedures in the literature [e.g. 4].165

Specifically, we analyzed the fMRI data166

using general linear models (GLMs) with167

separate onsets and EV parametric mod-168

ulators for 1D and 2D trials (at stimulus169

presentation, see online methods for full170

model). The union of the EV modula-171

tors for 1D and 2D trials defined a func-172

tional ROI for value representations that173

encompassed 998 voxels, centered on the174

vmPFC (Fig. 3a, p < .0005, smoothing:175

4mm, to match the multivariate analysis),176

which was transformed to individual sub-177

ject space for further analyses (mean num-178

ber of voxels: 768.14, see online meth-179

ods).180

In the next step we focused on the mul-181

tivariate activation patterns in the above-182

defined functional ROI. We trained a mul-183

tivariate multinomial logistic regression184

classifier to distinguish the EVs of accu-185

rate 1D trials based on fMRI data acquired approximately 5 seconds after stimulus onset (Fig. 3b; leave-one-run-out186
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training; see online methods for details). For each testing example, the classifier assigned the probability of each187

class given the data (i.e. ’30’,’50’ and ’70’, which sum up to 1, Fig. 3c). Because the ROI was constructed188

such as to contain significant information about EVs, the classifier should predict the correct EV. As expected,189

the class with the maximum probability corresponded to the objective outcome more often than chance in 1D190

trials (µ1D = .35, σ1D = .054). Importantly, EV decoding also generalized to a test set composed of 1D and191

2D trials (µall = .35, σall = .029, t(34) = 2.89, p = .007), and was significant when testing only on 2D trials192

(µ2D = .35, σ2D = .033, t(34) = 2.20,p = .034, Fig. 3d), even though the training data was restricted to 1D trials.193

The following analyses model directly the class probabilities estimated by the classifier. Probabilities were modelled194

with beta regression mixed effects models [44]. For technical reasons, we averaged across nuisance regressors used195

in behavioral analyses. An exploratory analysis of raw data including nuisance variables showed that they had no196

influence and confirmed all model comparison results reported below (see Fig S6 and S8).197
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and the objective EV of the trial (x axis) was related to a lower
probability assigned to that class (y axis) when tested in 1D, 2D
or all trials (all p < .002, grey shades). Hence, the multivariate
classifier reflected gradual value similarities. Note that when |EV -
class|=0, Pclass is the probability assigned to the objective EV of the
trial. Error bars represent corrected within subject SEMs [39, 40] b.
AIC values of competing models of value probabilities classified from
vmPFC. Hierarchical model comparison of 2D trials revealed not only
the differences between decoded class and objective EV (|EV-class|)
improved model fit (p < .002), but rather that EVback modulated
this effect (p = .013). Crucially, Congruency did not directly modu-
late the value similarity (p = .446). Light gray bars represent models
outside the hierarchical comparison. Including a 3-way interaction
(with both EVback and Congruency) did not provide better AIC
score. A perceptual model encoding the feature similarity between
each testing trial and the training classes (irrespective of values)
did not provide a better AIC score than the value similarity model
(|EV-class|). c-d. The higher the EVback was, the weaker the effect
of value similarity on the classifier’s probabilities (p = .013). Data
presented in (c) and model in (d). Error bars represent corrected
within subject SEMs [39, 40].

Multivariate neural value codes reflect198

value similarities and are negatively affected199

by contextually-irrelevant value information.200

We next asked whether EVs affected not only the201

probability of the corresponding class, but also in-202

fluenced the full probability distribution predicted203

by the classifier. We reasoned that if the classifier204

is decoding the neural code of values, then sim-205

ilarity between the values assigned to the classes206

will yield similarity in probabilities associated to207

those classes. Specifically, we expected not only208

that the probability associated with the correct209

class be highest (e.g. ‘70’), but also that the210

probability associated with the closest class (e.g.211

‘50’) would be higher than the probability with212

the least similar class (e.g. ‘30’, Fig. 3e). To213

test our hypothesis, we modelled the probabilities214

in each trial as a function of the absolute differ-215

ence between the objective EV of the trial and216

the class (|EV-class|, i.e. in the above example217

with a correct class of 70, the probability for the218

class 50 will be modelled as condition 70-50=20219

and the probability of 30 as 70-30=40). This220

analysis indeed revealed such a value similarity221

effect (χ2
(1) = 12.74, p < .001) also when tested222

separately on 1D and 2D trials (χ2
(1) = 14.22,223

p < .001, χ2
(1) = 9.99, p = .002, respectively,224

Fig. 4a). We compared this value similarity225

model to a perceptual model that merely encodes226

the amount of perceptual overlap between each227

training class and 2D testing (irrespective of their228

corresponding values) and found that our model229

explained the data best (Fig. 4b and Fig. S6).230

Our main hypothesis was that context-irrelevant231

values might influence neural codes of value in232
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the vmPFC. The experimentally manipulated background values in our task should therefore interact with the EV233

probabilities decoded from vmPFC. We thus tested the EV classifier only on 2D trials and asked whether the above234

described value similarity effect was influenced by EVback and\or Congruency. Analogous to our RT analyses, we235

used a hierarchical model comparison approach and tested if the interaction of value similarity with these factors236

improved model fit, using χ2 based LR-tests (Fig. 4b). We found that EVback, but not Congruency, modulated the237

value similarity effect (χ2
(1) = 6.16, p = .013, χ2

(1) = .58, p = .446, respectively, Fig. 4c). This effect indicated238

that the higher the EVback was, the less steep was the value similarity effect. Although including a 3-way interaction239

also improved model fit over a baseline model (Congruency × EVback × |EV-class|, χ2
(1) = 7.2,p = .027), the AIC240

score did not surpass the model with only the 2-way interaction (-3902.5,-3901.6, respectively). These results also241

hold when running the models nested within the levels of EV (Fig.S6). Replacing the EVback with a parameter242

that encodes the presence of the perceptual feature corresponding to EVback in the training class (Similarityback: 1243

if the feature was preset, 0 otherwise, see Fig. S7) did not provide a better AIC score (-3897.1) than including the244

value of EVback (-3902.5). Note that main effects of EVback or Congruency would not be sensible to test in this245

analysis because both factors don’t discriminate between the classes, but rather assign the same value to all three246

probabilities from that trial (which sum to 1).247

In summary, this indicates that the neural code of value in the vmPFC is affected by contextually-irrelevant value248

expectations, such that larger alternative values disturb neural value codes in vmPFC more than smaller ones. This249

was the case even though the alternative value expectations were not relevant in the context of the considered250

trials. The effect occurred irrespective of the agreement or action-conflict between the relevant and irrelevant251

values, unlike participants’ behaviour, which were mainly driven by Congruency and it’s interaction with EVback.252

Our finding suggests that the (counterfactual) value of irrelevant features must have been computed and poses253

the power to influence neural codes of objective EV in vmPFC.254

Larger irrelevant value expectations are related to reduced relevant EV signals, influencing behavior.255

While modelling the full probability distribution over values offers important insights, it only indirectly sheds light256

on the neural representation of the objective EV that reflects participants’ choices in correct trials. We next257

focused on modelling the probability associated with the class corresponding to the objective EV of each 2D trial258

(henceforth: PEV). This also resolved the statistical issues arising from the dependency of the three classes (i.e.259

for each trial they sum to 1). As can be inferred by Fig 3e above, the median probability of the objective EV on260

2D trials was higher than the the average of the other non-EV probabilities (t(34) = 2.50, p = .017) In line with261

the findings reported above, we found that EVback had a negative effect on PEV (χ2
(1) = 5.96, p = .015, Fig. 5a),262

meaning that higher EVback was associated with a lower probability of the objective EV, PEV. Interestingly, and263

unlike in the behavioral models, we found that neither Congruency nor its interaction with EV or with EVback264

influenced PEV (χ2
(1) = 0.035, p = .852,χ2

(1) = 0.48, p = .787, χ2
(1) = .99, p = .317, respectively, Fig. 5b).265

The effect of EVback also holds when running the model nested inside the levels of EV (χ2
(1) = 5.99, p = 0.014,266

Fig.S8b). A model including an additional regressor that encoded trials in which EV=EVback (or: match) did not267

improve model fit, and no evidence for an interaction of the match regressor with the EVback was found (LR test268

with added terms: χ2
(1) = 0.45, p = .502, χ2

(1) = 0.77, p = .379, respectively). This might indicate that when269

value expectations of both contexts matched, there was neither an increase nor a decrease of PEV. Lastly, we270

verified that replacing EVback with the perception-based Similarityback regressor did not provide a better model fit271

(AICs: -1229.2,-1223.3, respectively). These findings confirm that EVback is not only disturbing the neural code of272

values in the vmPFC but also specifically decreases the decodability of the objective EV.273

As in our behavioral analysis, we evaluated alternative models of PEV that included a factor reflecting within-option274

or between-context value differences, or alternatives for EVback (Fig.S8). This exploratory analysis revealed that275

our model provides the best fit for PEV in all cases except when EVback was replaced with the sum of irrelevant276

values (-1229.6, -1229.2, respectively, Fig. S8). In contrast, AIC scores of behavioral models’ favored EVback as277

modulator of Congruency, over the sum of irrelevant values (-6626.6, -6619.9, respectively, Fig.S3). However, both278
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Figure 5: Multivariate results: decoding the EV a. Higher EVback was related to a decreased decodability of EV (p = .015).
Yellow line reflects data, dashed line model fit from mixed effects models described in text. Error bars represent corrected
within subject SEMs [39, 40]. b. Hierarchical model comparisons revealed that the effect of EVback alone explained data
best (p = .015) and no main effect or interaction with Congruency was indicated (Congruency main effect, p = .852,
Congruency × EVback, p = .317). c. Participants who had a stronger effect of EVback on the EV decodability (y-axis,
more negative values indicate stronger decrease of PEV as a result of EVback, see panel a) also had a stronger modulation
of EVback on the effect of Congruency on their RT (x-axis, more positive values indicate stronger influence on the slow
incongruent and fast congruent trials). d. The probability associated with EVback (PEVback , y-axis) was increased when
participants chose the option based on EVback. Specifically, in incongruent trials (purple), high PEVback was associated a
wrong choice, whereas in Congruent trials (green) it was associated with correct choices. This effect is preserved when
modeling only wrong trials (main effect of Congruency: χ2

(1) = 4.36, p = .037). Error bars represent corrected within
subject SEMs [39, 40]. e. The correlation of PEV and PEVback was stronger than with POther, p = .017. f. Participant
that had a stronger (negative) correlation of PEV and PEVback (x-axis, more negative values indicate stronger negative
relationship) also had a stronger effect of Congruency on their RT (y-axis, larger values indicate a stronger RT decrease in
incongruent compared to congruent trials)

parameters were strongly correlated (ρ = .87, σ = .004) and therefore our task was not designed to distinguish279

between these two alternatives.280

If the effect of EVback indeed reflects an influence of contextually-irrelevant values on neural representations of the281

relevant expected value, then this might impact participants’ behavior. We therefore asked whether the influence282

on the representation in vmPFC might relate to participants’ reaction times. In line with this idea, we found that283

participants with a stronger EVback effect on PEV also had a stronger EVback × Congruency interaction effect on284

their RT (r = −.43,p = .01, Fig. 5c).285

Next, we tested whether vmPFC represents EVback directly. A classifier trained on accurate 2D trials with the286

labels of EVback could not successfully detect the correct class (t-test against chance: t(34) = 0.73, p = .47).287

Note, however, that 2D trials were not fully balanced across the values of EVback (Fig. 1e), which complicated288

obtaining enough trials for classifier training. We thus turned to look at the probability the classifier trained on 1D289

trials assigned to the class corresponding to EVback (henceforth: PEVback
). When focusing only on behaviorally290

accurate trials, we found no effect of EV nor Congruency on PEVback
(χ2

(1) = 0.07, p = .794, χ2
(1) = 0.00, p = .987291

respectively). However, motivated by our behavioral analyses that indicated an influence of the irrelevant context292
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on accuracy, we asked whether PEVback
was different on behaviorally wrong or incongruent trials. We found an293

interaction of accuracy × Congruency (χ2
(1) = 4.51, p = .034, Fig. 5d) that indicated increased PEVback

for294

accurate congruent trials and a decrease for wrong incongruent trials. Effectively, this means that in trials in which295

participants erroneously chose the option with higher valued irrelevant features, PEVback
was increased.296

Parallel representation of task-relevant and task-irrelevant expected values in vmPFC. Our previous297

analyses indicated that the probability of the objective EV decreased with increasing EVback. This decrease298

could reflect a general disturbance of the value retrieval process caused by the distraction of competing values.299

Alternatively, if the irrelevant values are represented within the same neural code as the objective EV, then the300

probability assigned to the class corresponding to EVback would increase in exchange for a decrease in PEV – even301

though the classifier was trained in the absence of task-irrelevant values, i.e. the objective EV of 1D trials. In302

order to test this idea, we took the same trained classifier and tested it only on trials in which EV 6= EVback, i.e.303

in which the value expected in the current task context was different than the value that would be expected for304

the same choice in a different task-context. This allowed us to re-label the classes of each trial to PEV, PEVback
305

and Pother, where ’other’ corresponds to the class that is neither the EV nor EVback of the trial, and examine306

directly the correlation between each pair of classes. To prevent a bias between the classes, we only included trials307

in which the class corresponding to ’other’ appeared on the screen as either relevant or irrelevant value.308

For each trial, the three class probabilities sum up to 1 and hence are strongly biased to correlate negatively309

with each other. Not surprisingly, we found such strong negative correlations across participants of both pairs of310

probabilities, i.e. between PEV and PEVback
(ρ = −.56, σ = .22) as well as between PEV and Pother (ρ = −.40,311

σ = .25). However, we found that the former correlation was significantly stronger than the latter (t(34) = −2.77,312

p = .017, Fig. 5e), indicating that when the probability assigned to the EV decreased, it was accompanied by a313

stronger increase in the probability assigned to EVback, akin to a competition between both types of expectations.314

Additionally, a formal model predicting PEV by PEVback
resulted in a smaller (i.e. better) AIC (-567.13), compared315

to using Pother as predictor (-475.32, see online methods). In line with this finding, we turned to test if this316

potential competition is reflected in participants’ behavior. Of particular relevance in this regard is the behavioral317

Congruency effect, which similarly reflects a competition between the different values. Strikingly, we found that318

the more negatively PEV correlated with PEVback
, the stronger Congruency influenced participants’ behavior319

(r = −.45,p = .008, Fig. 5f).320
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Figure 6: Context decodability in the vmPFC directly relates to the representation of the objective outcome a. We
trained the same classifier on the same data only this time we split the training set to classes corresponding to the two
possible contexts: Color (left) or Motion (right), irrespective of the EV, though we kept the training sets balanced for EV
(see online methods). b. The classifier could decode the trial’s context above chance also when sub-setting the data to
1D, 2D and when testing on all trials (p < .001,p = .002,p < .001, respectively). Error bars represent corrected within
subject SEMs [39, 40] c. The trial-context decodability improved prediction of the objective outcome probability, beyond
the EVback (p = .001). d. The objective outcome was strongly represented (PEV), the more the context was decodable
from the vmPFC (modeled as logit-transformed probability assigned to the trial-context of the trial, x-axis)
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In summary, the neural code in vmPFC is mainly influenced by the contextually relevant EV. However, if an321

alternative context would lead to a large expected value, the representation of the relevant expected value is322

weakened, irrespective of their agreement on the action to be made. Moreover, weakening of the EV representation323

is accompanied by a strengthening of the representation of EVback on a trial by trial basis. Lastly, participants324

with a stronger influence of high alternative values on the EV representation also had a stronger influence of325

EVback on the Congruency RT effect. Likewise, participants who exhibited a larger negative association between326

the decodability of EV and the decoded probability of EVback, also reacted slower when the contexts pointed to327

different actions. As will be discussed later in detail, we consider this to be evidence for parallel processing of two328

task aspects in this region, EV and EVback.329
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Figure 7: Neural representations of context and value in
vmPFC jointly guide behavior a. Lower context decodabil-
ity of the relevant context (x axis) was associated with less
behavioral accuracy (y-axis) in incongruent trials (p = .051).
This effect was modulated by the representation of EVback

in vmPFC (p = .012, shades of gold), i.e. it was stronger in
trials where EVback was strongly decoded from the vmPFC
(shades of gold, plotted in 5 quantiles). Shown are fitted slopes
from analysis models reported in the text. b. Decodability of
both EV (p = .058, blue, left) and EVback (p = .009, gold,
right) had a positive relation to behavioral accuracy (y axis) in
congruent trials. Shown are fitted slopes from analysis models
reported in the text.

Task-context representations interact with value330

codes within vmPFC Above we reported that331

vmPFC activity is influenced by multiple value expec-332

tations. Which value expectation is currently relevant333

depended on the task context. We therefore hypoth-334

esized that, in line with previous work, vmPFC would335

also encode the task context, although this is not di-336

rectly value-related. We thus turned to see if we can337

decode the trial’s context from the same region that338

was univariately sensitive to EV. For this analysis we339

trained the same classifier on the same accurate 1D340

trials as before, only it was trained to distinguish the341

trial types ’Color’ and ’Motion’ (Fig. 6a). Crucially, the342

classifier had no information as to what was the EV of343

each given trial, and training sets were up-sampled to344

balance the EVs within each set (see online methods).345

The classifier was above chance for decoding the correct346

context in 1D, 2D and all trials (t(34) = 3.95, p < .001,347

t(34) = 3.2, p = .003, t(34) = 3.93, p < .001, respec-348

tively, Fig.6b). Additionally, the context is decodable349

also when only testing on 2D trials in which value differ-350

ence in both contexts was the same (i.e. when keeping351

the value difference of the background 20, since the352

value difference of the relevant context was always 20,353

t(34) = 2.73, p = .01).354

Importantly, if vmPFC is involved in signaling the trial355

context as well as the values, then the strength of con-356

text signal might relate to the strength of the contextu-357

ally relevant value. Strikingly, we found that Pcontext358

had a positive effect on the decodability of EV and359

that adding this term in addition to EVback to the PEV360

model improved model fit (χ2
(1) = 10.5, p = .001, Fig. 6c-d). In other words, the more the context was decodable,361

the higher was the probability assigned to the correct EV class.362

Lastly, we investigated how neural representations in vmPFC of EV, EVback and the relevant Context influence363

participants’ accuracy. Note that the two contexts only indicate different choices in incongruent trials, where a364

wrong choice might be a result of a strong influence of the irrelevant context. The behavioral effect on accuracy365

could therefore be particularly relevant in this condition. This was also indicated by the analysis of PEVback
shown366
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in Fig 5d. We therefore modeled congruent and incongruent trials separately. This showed that that a weaker367

representation of the relevant context was marginally associated with an increased error rate (negative effect of368

Pcontext) on accuracy, LR-test with Pcontext): χ2
(1) = 3.66, p = .055). Moreover, if stronger representation of the369

wrong context (i.e. 1-Pcontext)) is reducing accuracy, than stronger representation of the value associated with370

this context (EVback) should strengthen that influence. Indeed, we found that adding a Pcontext × PEVback
term371

to the model explaining error rates improved model fit (χ2
(1) = 6.33, p = .012, Fig. 7a). Yet, the representation of372

EV and EVback did not directly influence behavioral accuracy (PEV: χ2
(1) = 0.28, p = .599,PEVback

: χ2
(1) = 0.0,373

p = .957). In congruent trials choosing the wrong choice is unlikely a result of wrong context encoding, since both374

contexts lead to the same choice. Indeed, there was no influence of Pcontext) on accuracy for congruent trials375

(LR-test: χ2
(1) = 0.0, p = .922). However, strong representation of either relevant or irrelevant EV would lead to a376

correct choice.Indeed, we found that both an increase in PEVback
and (marginally) in PEV had a positive relation377

to behavioral accuracy (PEVback
: χ2

(1) = 6.48, p = .011, PEV: χ2
(1) = 3.5, p = .061, Fig. 7b).378
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Figure 8: Univariate results Depicted
are T-maps for each contrast. A de-
tailed table of clusters can be found in
the SI S1. a. The intersection of the
EV parametric modulators of 1D and 2D
trials revealed several regions including
right Amygdala, bilateral Hippocampus
and Angular Gyrus, the lateral and me-
dial OFC and overlapping vmPFC. Vox-
elwise threshold p < .001, FDR cluster-
corrected. b 2D trials were characterized
by increased activation in an attentional
network involving occipital, parietal and
frontal clusters (2D > 1D, p < .001
FDR cluster corrected). c. A region in
the Superior Temporal Gyrus was neg-
atively modulated by EVback, i.e. the
higher the EVback, the lower the signal
in this region. p < .001, FDR cluster-
corrected. No overlap with (b), see S9.
d. A cluster in the primary motor cortex
was negatively modulated by Congruency
× EVback, i.e. the difference between In-
congruent and Congruent trials increased
with higher EVback, similar to the RT ef-
fect, p < .005, FDR cluster-corrected.
No overlap with (b), see S9

No evidence for univariate modu-379

lation of contextually irrelevant in-380

formation on expected value sig-381

nals in vmPFC The above analy-382

ses indicated that multiple value ex-383

pectations are represented in paral-384

lel within vmPFC. Lastly, we asked385

whether whole-brain univariate analy-386

ses could also uncover evidence for pro-387

cessing of multiple value representa-388

tions. In particular, we asked whether389

we could find evidence for a single rep-390

resentation that integrates the multi-391

ple value expectations into one signal.392

To this end, we first analyzed the fMRI393

data using GLMs with separate onsets394

and EV parametric modulators for 1D395

and 2D trials (see online methods for396

details). As expected, several regions397

were modulated by EV in both trial398

types, including vmPFC (EV1D > 0 ∩399

EV2D >0, Fig.8a). Hence, the vmPFC400

signaled the expected value of the cur-401

rent context in both trial types as expected – even though 2D trials likely required higher attentional demands402

(and indeed, the attention network was identified for the 2D>1D contrast, p<.001, Fig.8b)403

Next, we searched for univariate evidence for processing of irrelevant values by modifying the parametric modulators404

assigned to 2D trials in the above-mentioned GLM (for full models, see Fig S9). Specifically, in addition to EV2D,405

we added Congruency (+1 for congruent and -1 for incongruent) and EVback as additional modulators of the406

activity in 2D trials. This GLM revealed no evidence for a Congruency contrast anywhere in the brain (even at a407

liberal voxel-wise threshold of p < .005), but an unexpected negative effect of EVback in the Superior Temporal408

Gyrus (p < .001, Fig.8c). Notably, unlike the multivariate analysis, no effect in any frontal region was observed.409

Motivated by our behavioral analysis, we then turned to look for the interaction of each relevant or irrelevant410

value with Congruency. An analysis including only a Congruency × EV2D parametric modulator revealed no411

cluster (even at p < .005). Another analysis including Congruency × EVback in addition to EV2D as parametric412
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modulators, however, revealed a negative effect in the primary motor cortex at a liberal threshold, which indicated413

that the difference between Incongruent and Congruent trials increased with higher EVback, akin to a response414

conflict (p < .005, Fig.8d). Lastly, we re-ran all above analyses concerning Congruency and EVback only inside415

the identified vmPFC ROI. No voxel survived for Congruency, EVback nor the interactions, even at threshold of416

p < .005.417

Additional exploratory analyses such as contrasting the onsets of congruent and incongruent trials, confirmed the418

lack of Congruency modulation in any frontal region (Fig. S9). Interestingly, at a liberal threshold of p < .005419

we found stronger activity for 1D over 2D trials in a cluster overlapping with vmPFC (1D > 2D, p < .005, S9).420

Although this could be interpreted as a general preference for 1D trials, splitting the 2D onsets by Congruency421

revealed no cluster for 1D > Incongruent (also at p < .005) but a stronger cluster for 1D > Congruent (p < .001,Fig.422

S9). In other words, the signal in the vmPFC was weaker when both contexts indicate the same action, compared423

to when only one context is present.424

In summary, our univariate analyses indicated the well-known sensitivity of vmPFC to values expected within the425

relevant context. Yet, unlike our multivariate analyses, we found no evidence for signal modulation by contextually426

irrelevant values outside the motor cortex, where we found a negative modulation of Congruency × EVback. This427

contrasts with the idea that competing values would have been integrated into a single EV representation in the428

vmPFC, because this account would have predicted a higher signal for Congruent compared to Incongruent trials.429

If at all, we found a general decrease in signal for Congruent trials.430

Discussion431

In this study, we investigated how contextually-irrelevant value expectations influence behavior as well as neural432

vmPFC activation patterns. We asked participants to make choices between options that had different expected433

values in different task-contexts. Participants reacted slower when the expected values in the irrelevant context434

favored a different choice, compared to trials in which relevant and irrelevant contexts favored the same choice.435

This Congruency effect increased with increasing reward associated with the hypothetical choice in the irrelevant436

context (EVback). We then identified a functional ROI that is univariately sensitive to the objective expected437

values (EV), i.e. the contextually-relevant rewards. Multivariate analyses revealed that a high EVback disrupts438

the value-code of the vmPFC. Specifically, higher EVback was associated with a degraded representation of the439

objective EV (PEV) in vmPFC. At the same time, increased representation of EVback in the vmPFC during stimuli440

presentation was associated with an increased chance of choosing accordingly, irrespective of its agreement with441

the relevant context. Moreover, the decrease in decodability of the value in the relevant context was associated442

with an increase in the value that would be obtained in the other task-context (PEVback
), akin to a conflict of443

the two value representations. Both these effects were associated with the congruency-related behavioral slowing.444

Importantly, we also found that the task context (color/motion) could be decoded from the same brain region.445

This decodability of the context was related to the decodability of the value in the current context. Lastly, we are446

aware that in binary decoding, low decodability of the correct class doesn’t necessarily point to high decodability447

of the alternative class. Nevertheless, when the irrelevant context pointed to the wrong choice in incongruent448

trials, stronger vmPFC representation of the alternative (wrong) context and its corresponding value were related449

to higher error rates. However, when both contexts agreed on the action to be made, stronger representation of450

either of their EVs were strongly related to making a correct choice.451

We found no evidence that the signal in vmPFC is sensitive to Congruency. The only region that was univariately452

modulated by Congruency was the primary motor cortex. These data suggest a complex multi-faceted value453

representation in vmPFC, in which multiple values of the same option under different task-contexts are reflected454

and influence behavior. While we could not directly decode EVback, it had a significant and value-dependent effect455

on EV representations, hinting at a complex form of co-represention within the vmPFC. Moreover, we could also456
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decode the current task-context from vmPFC, and the strength of context encoding is related to the strength of457

the representation of the context associated value.458

Behavioral analyses showed outcome-irrelevant values are not completely filtered. In our experiment the relevant459

features were cued explicitly and the rewards were never influenced by the irrelevant features. Nevertheless,460

participants’ reactions were influenced by not only the contextually relevant outcome, but also the counterfactual461

choice, based on values irrelevant in the given context. These results raise the question how internal value462

expectation(s) of the choice are shaped by the possible contexts. One hypothesis could be that rewards expected463

in both contexts integrate into a single EV for a choice, which in turn guides behavior. This perspective suggests464

that the expected value of options valuable in both contexts will increase, relative to options that are valuable only465

in the current but not in the alternative context. In other words, in trials in which the irrelevant context agreed466

with the decision, the (subjective) EV of choice might increase, in proportion to how large the irrelevant value was.467

However, if the alternative context disagrees, the (subjective) EV might decrease. This approach would treat RT468

as a direct measure of EV.469

An alternative hypothesis would be that both values are kept separate, and will be processed in parallel. In this case,470

their conflict would have to be resolved in a different brain region, such as the motor cortex. This would suggest471

that behavior is guided by two value expectations that are resolved into action, likely outside the value-network.472

To differentiate these possibilities motivated us to focus our analysis on the vmPFC, where we could distinguish473

between a single integrated value and simultaneously oc-occuring representations. Notably, the interaction of474

values could be also influenced by a representation of the current task context, which is known to be represented in475

the same region and the overlapping orbitofrontal cortex [e.g., 32, 34, 35, 45]. It therefore seemed to be a good476

candidate region to help illuminate how values stemming from different contexts, as well as information about the477

contexts themselves, might interact in the brain.478

The lack of a Congruency effect on univariate vmPFC signals contradicted the integration hypothesis. Even479

before considering the specific outcomes of the two contexts, it would predict an increased signal for congruent480

compared to incongruent trials. If at all, we find the univariate vmPFC activation in 1D trials to be stronger than481

in Congruent 2D trials.482

Interestingly, the univariate analysis was not sensitive enough to detect an influence of the irrelevant values in483

vmPFC. Only an investigation into the multivariate analyses revealed a degraded EV representation in trials with484

stronger alternative values, suggesting that the two potential values are in representational conflict. This impact485

on value representations occurred irrespective of choice congruency, but correlated with the behavioral modulation486

of EVback on congruency. Due to limitations of our design, we could not successfully train a classifier directly487

on EVback of 2D trials. Moreover, the objective class was not strongly represented when both expected values488

(EV and EVback) were the same, suggesting some differences in the underlying representations of relevant and489

irrelevant values. However, a classifier trained on EV in 1D trials in which no irrelevant values were present, was490

still sensitive to the expected value of the irrelevant context in 2D trials. This could suggest that within the vmPFC491

‘conventional’ expected values and counterfactual values are encoded using at least partially similar patterns.492

This interpretation would also be supported by our findings that both representations contributed to choice493

accuracy in Congruent trials, and that PEVback
and PEV were negatively correlated, such that decreases in the EV494

representation were accompanied by an increased EVback representation. This might also explain how the reducing495

effect EVback had on the EV representation aligns well with behavioral changes observed in incongruent trials (i.e.496

reducing both RT and accuracy), but also our finding of improved performance on congruent trials, even though497

there EVback could still be large: in the first case, when choices for the two context differ, competing EV and498

EVback lead to performance decrements; in the second case, when choices are the same, both of the independently499

contributing representations would support the same reaction and therefore benefit performance. Our results500
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therefore are in line with the interpretation that both relevant and irrelevant values are retrieved, represented in501

parallel within the vmPFC and influence behavior.502

At the same time, our results also suggest that while the EVback influenced the representation of EV, the latter503

largely dominated population activity. This is in line with our task requirements and participant’s high behavioral504

accuracy that indicated accurate choices were driven by EV in the vast majority of cases. However, even when505

focusing only on behavioral accurate trials, we see that the signal in vmPFC encompass a representational conflict506

between the two EVs, which was related to Congruency-dependent RT effects in those trials. Interestingly,507

univariate analyses were not sensitive enough to detect an influence of the outcome-irrelevant values in the vmPFC.508

Univariate analyses revealed a weak negative modulation of primary motor cortex activity by Congruency. Akin509

to a response conflict, this corresponds to recent findings that distracting information can be traced to areas510

involved in task execution cortex in humans and monkeys [21, 22]. Crucially however, unlike in previous studies the511

modulation found in our study was dependent on the specific values of the alternative context. This could suggest512

that the outcome-representation conflict in the vmPFC is resolved in the primary motor cortex. This would also be513

in line with our interpretation that the vmPFC does not integrate both tasks into a single EV representation.514

One important implication of our study concerns the nature of neural representations in the vmPFC/mOFC. A515

pure perceptual representation should be equally influenced by all four features on the screen. Yet, our decoding516

results could not have been driven by the perceptual properties of the chosen feature, and effects of background517

values could also not be explained by perceptual features of the ignored context (Fig. 3 and Fig. S7). Moreover,518

we show that the signal in vmPFC reflects more than expected values of the choice, and we did not find any519

evidence for value integration. Finally, investigating trials on which both expected values, EV and EVback, were520

the same, we did not find a stronger signal for the objective class. This indicates that our classifier was neither521

exclusively sensitive to the perceptual features, nor to values regardless of whether they were relevant or not. Both522

those accounts would predict an increased representation of the objective class in those trials. Instead, we show523

that vmPFC simultaneously represents option values as well as information about the current task-context, and524

that both these representations interact with each other as well as behavior. One possible solution which has525

been suggested in previous research is that vmPFC/mOFC might be tasked with representing a task-state, which526

effectively encodes the current state of all information relevant to the task, in particular if information is partially527

observable [32, 45]. Note that the task context, which we decode from vmPFC activity in the present paper, could528

be considered as a superset of the more fine grained task states that reflect the individual motion directions/colors529

involved in a comparison. Any area sensitive to these states would therefore also show decoding of context as530

defined here. Whether vmPFC has access to such detailed information about the states cannot be conclusively531

answered with the present research for power reasons.532

Of note, some work has found that EV could be one additional aspect of OFC activity [36] that is multiplexed533

with other task-related information. Crucially, the idea of task-state as integration of task-relevant information534

[28, 46] could explain why this region was found crucial for integrating valued features, when all features of an535

object are relevant for choice [16, 28], although some work suggests that it might even reflect features not carrying536

any value [29]. Moreover, the link between context and EV decodability as well as to behavioral accuracy suggests537

a multi-faceted vmPFC representation which not only contains multiple values, but also links information about538

the relevant task context to the corresponding values, just as the task-state framework might suggest.539

To conclude, the main contribution of our study is that we elucidated the relation between task-context and value540

representations within the vmPFC. By introducing multiple possible values of the same option in different contexts,541

we were able to reveal a complex representation of task structure in vmPFC, with both task-contexts and their542

associated values activated in parallel. The decodability of both context and value(s) independently from vmPFC,543

and their relation to choice behavior, hints at integrated computation of these in this region. We believe that this544

bridges between findings of EV representation in this region to the functional role of this region as representing545
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task-states, whereby relevant and counterfactual values can be considered as part of a more encompassing state546

representation.547
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Online Methods560

Participants561

Forty right-handed young adults took part in the experiment (18 women, µage = 27.6, σage = 3.35) in exchange562

for monetary reimbursement. Participants were recruited using the participant database of Max-Planck-Institute563

for Human Development. Beyond common MRI-safety related exclusion criteria (e.g. piercings, pregnancy, large or564

circular tattoos etc.), we also did not admit participants to the study if they reported any history of neurological565

disorders, tendency for back pain, color perception deficiencies or if they had a head circumference larger than 58566

cm (due to the limited size of the 32-channel head-coil). After data acquisition, we excluded five participants from567

the analysis; one for severe signal drop in the OFC, i.e. more than 15% less voxels in functional data compared to568

the OFC mask extracted from freesurfer parcellation of the T1 image [47, 48]. One participant was excluded due569

to excessive motion during fMRI scanning (more than 2mm in any axial direction) and three participants for low570

performance (less than 75% accuracy in one context in the main task). In the behavioral-replication, 23 young571

adults took part (15 women, µage = 27.1, σage = 4.91) and two were excluded for the same accuracy threshold.572

Due to technical reasons, 3 trials (4 in the replication sample) were excluded since answers were recorded before573

stimulus was presented and 2 trials (non in the replication) in which RT was faster than 3 SD from the mean574

(likely premature response). The monetary reimbursement consisted of a base payment of 10 Euro per hour (8.5575

for replication sample) plus a performance dependent bonus of 5 Euro on average. The study was approved the576

the ethics board of the Free University Berlin (Ref. Number: 218/2018).577

Experimental procedures578

Design Participants performed a random dot-motion paradigm in two phases, separated by a short break579

(minimum 15 minutes). In the first phase, psychophysical properties of four colors and four motion directions were580

first titrated using a staircasing task. Then, participants learned the rewards associated with each of these eight581

features during a outcome learning task. The second phase took place in the MRI scanner and consisted mainly of582

the main task, in which participants were asked to make decisions between two random dot kinematograms, each583

of which had one color and/or one direction from the same set. Note there were two additional mini-blocks of 1D584

trials only, at the end of first- and at the start of the second phase (during anatomical scan, see below). The585

replication sample completed the same procedure with the same break length, but without MRI scanning. That is,586

both phases were completed in a behavioral testing room. Details of each task and the stimuli are described below.587

Behavioral data was recorded during all experiment phases. MRI data was recorded during phase 2. We additionally588

collected eye-tracking data (EyeLink 1000; SR Research Ltd.; Ottawa, Canada) both during the staircasing and589

the main decision making task to ensure continued fixation (data not presented). The overall experiment lasted590

XXX minutes on average.591

Room, Luminance and Apparatus Behavioral sessions were conducted in a dimly lit room without natural592

light sources, such that light fluctuations could not influence the perception of the features. A small lamp was593

stationed in the corner of the room, positioned so it would not cast shadows on the screen. The lamp had a light594

bulb with 100% color rendering index, i.e. avoiding any influence on color perception. Participants sat on a height595

adjustable chair at a distance of 60 cm from a 52 cm horizontally wide, Dell monitor (resolution: 1920 x 1200,596

refresh rate 1/60 frames per second). Distance from the monitor was fixed using a chin-rest with a head-bar.597

Stimuli were presented using psychtoolbox version 3.0.11 [49–51] in MATLAB R2017b [52]In the MRI-scanner598

room lights were switched off and light sources in the operating room were covered in order to prevent interference599

with color perception or shadows cast on the screen. Participants lay inside the scanner at distance of 91 cm from600

a 27 cm horizontally wide screen on which the task was presented a D-ILA JVC projector (D-ILa Projektor SXGA,601
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resolution: 1024x768 , refresh rate: 1/60 frames per second). Stimuli were presented using psychtoolbox version602

3.0.11 [49–51] in MATLAB R2012b [53] on a Dell precision T3500 computer running windows XP version 2002.603

Stimuli Each cloud of dots was presented on the screen in a circular array with 7◦ visual angle in diameter. In604

all trials involving two clouds, the clouds appeared with 4◦ visual angle distance between them, including a fixation605

circle (2◦ diameter) in the middle, resulting in a total of 18◦ field of view [following total apparatus size from 38].606

Each cloud consisted of 48 square dots of 3x3 pixels. We used four specific motion and four specific color features.607

To prevent any bias resulting from the correspondence between response side and dot motion, each of the four608

motion features was constructed of two angular directions rotated by 180◦, such that motion features reflected an609

axis of motion, rather than a direction. Specifically, we used the four combinations: 0◦-180◦ (left-right), 45◦-225◦610

(bottom right to upper left), 90◦-270◦ (up-down) and 135◦-315◦ (bottom left - upper right). We used a Brownian611

motion algorithm [e.g. 38], meaning in each frame a different set of given amount of coherent dots was chosen612

to move coherently in the designated directions in a fixed speed, while the remaining dots moved in a random613

direction (Fig. S1). Dots speed was set to 5◦ per second [i.e. 2/3 of the aperture diameter per second, following614

38]. Dots lifetime was not limited. When a dot reached the end of the aperture space, it was sent ’back to start’,615

i.e. back to the other end of the aperture. Crucially, the number of coherent dots (henceforth: motion-coherence)616

was adjusted for each participant throughout the staircasing procedure, starting at 0.7 to ensure high accuracy [see617

38]. An additional type of motion-direction was ’random-motion’ and was used in 1D color clouds. In these clouds,618

dots were split to 4 groups of 12, each assigned with one of the four motion features and their adjusted-coherence619

level, resulting in a balanced subject-specific representation of random motion.620

In order to keep the luminance fixed, all colors presented in the experiment were taken from the YCbCr color621

space with a fixed luminance of Y = 0.5. YCbCr is believed to represent human perception in a relatively accurate622

manner [cf. 54]. In order to generate an adjustable parameter for the purpose of staircasing, we simulated a623

squared slice of the space for Y = 0.5 (Fig. S1) in which the representation of the dots color moved using a624

Brownian motion algorithm as well. Specifically, all dots started close to the (gray) middle of the color space, in625

each frame a different set of 30% of dots was chosen to move coherently towards the target color in a certain626

speed whereas all the rest were assigned with a random direction. Perceptually, this resulted in all the dots being627

gray at the start of the trial and slowly taking on the designated color. Starting point for each color was chosen628

based on pilot studies and was set to a distance of 0.03-0.05 units in color space from the middle. Initial speed in629

color space (henceforth: color-speed) was set so the dots arrive to their target (23.75% the distance to the corner630

from the center) by the end of the stimulus presentation (1.6s). i.e. distance to target divided by the number of631

frames per trial duration. Color-speed was adjusted throughout the staircasing procedure. An additional type of632

color was ’no color’ for motion 1D trials for which we used the gray middle of the color space.633

Staircasing task In order to ensure RTs mainly depended on associated values and not on other stimulus634

properties (e.g. salience), we created a staircasing procedure that was conducted prior to value learning. In this635

procedure, motion-coherence and color-speed were adjusted for each participant in order to minimize between-636

feature detection time differences. As can be seen in Fig. S1, in this perceptual detection task participants were637

cued (0.5s) with either a small arrow (length 2◦) or a small colored circle (0.5◦ diameter) to indicate which638

motion-direction or color they should choose in the upcoming decision. After a short gray (middle of YCbCr)639

fixation circle (1.5s, diameter 0.5◦), participants made a decision between the two clouds (1.6s). Clouds in this part640

could be either both single-feature or both dual-features. In dual feature trials, each stimulus had one color and641

one motion feature, but the cue indicated either a specific motion or a specific color. After a choice, participants642

received feedback (0.4s) whether they were (a) correct and faster than 1 second, (b) correct and slower or (c)643

wrong. After a short fixation (0.4s), another trial started. All timings were fixed in this part. Participants were644

instructed to always look at the fixation circle in the middle of the screen throughout this and all subsequent tasks.645

To motivate participants and continued perceptual improvements during the later (reward related) task-stages,646
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participants were told that if they were correct and faster than 1 second in at least 80% of the trials, they will647

receive an additional monetary bonus of 2 Euros.648

The staircasing started after a short training (choosing correct in 8 out of 12 consecutive trials mixed of both649

contexts) and consisted of two parts: two adjustment blocks an two measurement blocks. All adjustments of650

color-speed and motion-coherence followed this formula:651

θt+1
i = θti + αθti

RT ti −RT 0

RT 0
(1)

where θt+1
i represents the new coherence/speed for motion or color feature i during the upcoming time interval/block652

t+ 1, θti is the level at the time of adjustment, RT ti is the mean RT for the specific feature i during time interval653

t, RT0 is the “anchor” RT towards which the adjustment is made and α represents a step size of the adjustment,654

which changed over time as described below.655

The basic building block of adjustment blocks consisted of 24 cued-feature choices for each context (4 × 3 ×656

2 = 24, i.e. 4 colors, each discriminated against 3 other colors, on 2 sides of screen). The same feature was657

not cued more than twice in a row. Due to time constrains, we could not include all possible feature-pairing658

combinations between the cued and uncued features. We therefore pseudo-randomly choose from all possible659

background combinations for each feature choice (unlike later stages, this procedure was validated on and therefore660

included also trials with identical background features). In the first adjustment block, participants completed 72661

trials, i.e. 36 color-cued and 36 motion-cued, interleaved in chunks of 4-6 trials in a non-predictive manner. This662

included, for each context, a mixture of one building block of 2D trials and half a block of 1D trials, balanced663

to include 3 trials for each cued-feature. 1D or 2D trials did not repeat more than 3 times in a row. At the end664

of the first adjustment block, the mean RT of the last 48 (accurate) trials was taken as the anchor (RT 0) and665

each individual feature was adjusted using the above formula with α = 1. The second adjustment block started666

with 24 motion-cued only trials which were used to compute a new anchor. Then, throughout a series of 144667

trials (72 motion-cued followed by 72 color-cued trials, all 2D), every three correct answers for the same feature668

resulted in an adjustment step for that specific feature (Eq. 1) using the average RT of these trials (RT ti ) and the669

motion anchor RT 0 for both contexts. This resulted in a maximum of six adjustment steps per feature, where670

alpha decreased from 0.6 to 0.1 in steps of 0.1 to prevent over-adjustment.671

Next, participants completed two measurement blocks identical in structure to the main task (see below) with two672

exceptions: First, although this was prior to learning the values, they were perceptually cued to chose the feature673

that later would be assigned with the highest value. Second, to keep the relevance of the feature that later would674

take the lowest value (i.e. would rarely be chosen), we added 36 additional trials cued to choose that feature (18675

motion and 18 color trials per block).676

Outcome learning task After the staircasing and prior to the main task, participants learned to associate each677

feature with a deterministic outcome. Outcomes associated with the four features on each contexts were 10, 30,678

50 and 70 credit-points. The value mapping to perceptual features was assigned randomly between participants,679

such that all possible color- and all possible motion-combinations were used at least once (4! = 24 combinations680

per context). We excluded motion value-mapping that correspond to clockwise or counter-clockwise ordering. The681

outcome learning task consisted only of single-feature clouds, i.e. clouds without coherent motion or dots ‘without’682

color (gray). Therefore each cloud in this part only represented a single feature. To encourage mapping of the683

values for each context on similar scales, the two clouds could be either of the same context (e.g. color and color)684

or from different contexts (e.g. color and motion). Such context-mixed trials did not repeat in other parts of the685

experiment.686

The first block of the outcome learning task had 80 forced choice trials (5 repetitions of 16 trials: 4 values × 2687

Context × 2 sides of screen), in which only one cloud was presented, but participants still had to choose it to688
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observe its associated reward. These were followed by mixed blocks of 72 trials which included 16 forced choice689

interleaved with 48 free choice trials between two 1D clouds (6 value-choices: 10 vs 30/50/70, 30 vs 50/70, 50690

vs 70 × 4 context combinations × 2 sides of screen for highest value). To balance the frequencies with which691

feature-outcome pairs would be chosen, we added 8 forced choice trials in which choosing the lowest value was692

required. Trials were pseudo-randomized so no value would repeat more than 3 times on the same side and same693

side would not be chosen more the three consecutive times. Mixed blocks repeated until participants reached at694

least 85% accuracy of choosing the higher valued cloud in a block, with a minimum of two and a maximum of695

four blocks. Since all clouds were 1D and choice could be between contexts, these trials started without a cue,696

directly with the presentation of two 1D clouds (1.6s). Participants then made a choice, and after short fixation697

(0.2s) were presented with the value of both chosen and unchosen clouds (0.4s, with value of choice marked with698

a square around it, see Fig. S1). After another short fixation (0.4s) the next trial started. Participants did not699

collect reward points in this stage, but were told that better learning of the associations will result in more points,700

and therefore more money later. Specifically, in the MRI experiment participants were instructed that credit points701

during the main task will be converted into a monetary bonus such that every 600 points they will receive 1 Euro702

at the end. The behavioral replication cohort received 1 Euro for every 850 points.703

Main task preparation In preparation of the main task, participants performed one block of 1D trials at the704

end of phase 1 and then at the start of the MRI session during the anatomical scan. These blocks were included to705

validate that changing presentation mediums between phases (computer screen versus projector) did not introduce706

a perceptual bias to any features and as a final correction for post value-learning RT differences between contexts.707

Each block consisted of 30 color and 30 motion 1D trials interleaved in chunks of 4-7 trials in a non-predictive708

manner. The value difference between the clouds was fixed to 20 points (10 repetitions of 3 value comparisons ×709

2 contexts). Trials were pseudo-randomized so no target value was repeated more than once within context (i.e.710

not more than twice all in all) and was not presented on the same side of screen more than 3 consecutive trials711

within context and 4 in total. In each trial, they were first presented with a contextual cue (0.6s) for the trial,712

followed by short fixation (0.5s) and the presentation of two single-feature clouds of the cued context (1.6s) and713

had to choose the highest valued cloud. After a short fixation (0.4s), participants were presented with the chosen714

cloud’s outcome (0.4s). The timing of the trials was fixed and shorter than in the remaining main task because no715

functional MRI data was acquired during these blocks. Participants were instructed that from the first preparation716

block they started to collect the rewards. Data from these 1D block were used to inspect and adjust for potential717

differences between the MRI and the behavior setup. First, participants reacted generally slower in the scanner718

(t(239) = −9.415, p < .001, paired t-test per subject per feature). Importantly, however, we confirmed that this719

slowing was uniform across features, i.e. no evidence was found for a specific feature having more RT increase720

than the rest (ANOVA test on the difference between the phases, F (7, 232) = 1.007, p = .427). Second, because721

pilot data indicated increased RT differences between contexts after the outcome learning task we took the mean722

RT difference between color and motion trials in the second mini-block in units of frames (RT difference divided by723

the refresh rate), and moved the starting point of each color relative to their target color, the number of frames ×724

its speed. Crucially, the direction of the move (closer/further to target) was the same for all colors, thus ensuring725

not to induce within-context RT differences.726

Main task Finally, participants began with the main experiment inside the scanner. Participants were asked to727

choose the higher-valued of two simultaneously presented random dot kinematograms, based on the previously728

learned feature-outcome associations. As described in the main text, each trial started with a cue that indicated729

the current task context (color or motion). In addition, both clouds could either have two features (each a color730

and a motion, 2D trials) or one feature only from the cued context (e.g., colored, but randomly moving dots).731

The main task consisted of four blocks in which 1D and 2D trial were intermixed. Each block contained 36 1D732

trials (3 EV × 2 Contexts × 6 repetitions) and 72 2D trials (3 EV × 2 Contexts × 12 feature-combinations, see733
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fig1c). Since this task took part in the MRI, the duration of the fixation circles were drawn from an truncated734

exponential distribution with a mean of µ=0.6s (range 0.5s-2.5s) for the interval between cue and stimulus, a735

mean of µ=3.4s (1.5s-9s) for the interval between stimulus and outcome and a mean of µ=1.25s (0.7s-6s) for736

the interval between outcome and the cue of the next trial. The cue, stimulus and outcome were presented for737

0.6s, 1.6sand 0.8s, respectively. Timing was optimized using VIF-calculations of trial-wise regression models (see738

Classification procedure section below).739

The order of trials within blocks was controlled as follows: the cued context stayed the same for 4-7 trials (in a740

non-predictive manner), to prevent context confusion caused by frequent switching. No more than 3 repetitions of741

1D or 2D trials within each context could occur, and no more than 5 repetition overall. The target did not appear742

on the same side of the screen on more than 4 consecutive trials. Congruent or incongruent trials did not repeat743

more than 3 times in a row. In order to avoid repetition suppression, i.e. a decrease in the fMRI signal due to a744

repetition of information [e.g. 55, 56], no target feature was repeated two trials in a row, meaning the EV could745

repeat maximum once (i.e. one color and one motion). As an additional control over repetition, we generated746

1000 designs according the above-mentioned rules and choose the designs in which the target value was repeated747

in no more than 10% of trials across trial types, as well as when considering congruent, incongruent or 1D trials748

separately.749

Behavioral analysis750

RT data was analyzed in R (R version 3.6.3 [57], RStudio version 1.3.959 [58]) using linear mixed effect models751

(lmer in lme4 1.1-21: [59]). When describing main effects of models, the χ2 represents Type II Wald χ2 tests,752

whereas when describing model comparison, the χ2 represents the log-likelihood ratio test. Model comparison753

throughout the paper was done using the ’anova’ function. Regressors were scaled prior to fitting the models for754

all analyses. The behavioral model that we found to fit the behavioral RT data best was:755

logRT tk = β0 + γ0k + β1EV + β2Congruencyt + β3Congruencyt × EVbackt + β4Congruencyt × EVt
+ν1t+ ν2sidet + ν3switcht + ν4contextt

(2)

where logRT tk is the log reaction time of subject k in trial t, β0 and γ0k represent global and subject-specific756

intercepts, ν-coefficients reflect nuisance regressors (side of target object, trials since last context switch and the757

current context), β1 to β4 captured the fixed effect of EV, Congruency, Congruency × EVback and Congruency ×758

EV, respectively. The additional models reported in the SI included intercept terms specific for each factor level,759

nested within subject (for EV, Block and Context, see Fig. S2). Investigations of alternative parametrizations of760

the values can be found in Fig. S3.761

Accuracy data was analyzed in R (R version 3.6.3 [57], RStudio version 1.3.959 [58]) using generalized linear mixed762

effect models (glmer in lme4 1.1-21: [59]) employing a binomial distribution family with a ’logit’ link function.763

Regressors were scaled prior to fitting the models for all analyses. No-answer trials of were excluded from this764

analysis. The model found to fit the behavioral accuracy data best was almost equivalent to the RT model, except765

for the fourth term involving Congruency × switch:766

ACCtk = β0 + γ0k + β1EV + β2Congruencyt + β3Congruencyt × EVbackt + β4Congruencyt × switcht
+ν1t+ ν2sidet + ν3switcht + ν4contextt

(3)
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where ACCtk is the accuracy (1 for correct and 0 for incorrect) of subject k in trial t and all the rest of the767

regressors are equivalent to Eq. 2. We note that the interaction Congruency × switch indicates that participants768

were more accurate the further they were from a context switch point.769

fMRI data770

fMRI data acquisition MRI data was acquired using a 32-channel head coil on a research-dedicated 3-Tesla771

Siemens Magnetom TrioTim MRI scanner (Siemens, Erlangen, Germany) located at the Max Planck Institute for772

Human Development in Berlin, Germany. High-resolution T1-weighted (T1w) anatomical Magnetization Prepared773

Rapid Gradient Echo (MPRAGE) sequences were obtained from each participant to allow registration and brain774

surface reconstruction (sequence specification: 256 slices; TR = 1900 ms; TE = 2.52 ms; FA = 9 degrees;775

inversion time (TI) = 900 ms; matrix size = 192 x 256; FOV = 192 x 256 mm; voxel size = 1 x 1 x 1 mm).776

This was followed with two short acquisitions with six volumes each that were collected using the same sequence777

parameters as for the functional scans but with varying phase encoding polarities, resulting in pairs of images778

with distortions going in opposite directions between the two acquisitions (also known as the blip-up / blip-down779

technique). From these pairs the displacements were estimated and used to correct for geometric distortions due to780

susceptibility-induced field inhomogeneities as implemented in the the fMRIPrep preprocessing pipeline. In addition,781

a whole-brain spoiled gradient recalled (GR) field map with dual echo-time images (sequence specification: 36782

slices; A-P phase encoding direction; TR = 400 ms; TE1 = 4.92 ms; TE2 = 7.38 ms; FA = 60 degrees; matrix783

size = 64 x 64; 619 FOV = 192 x 192 mm; voxel size = 3 x 3 x 3.75 mm) was obtained as a potential alternative784

to the method described above. However, this GR frield map was not used in the preprocessing pipeline. Lastly,785

four functional runs using a multi-band sequence (sequence specification: 64 slices in interleaved ascending order;786

anterior-to-posterior (A-P) phase encoding direction; TR = 1250 ms; echo time (TE) = 26 ms; voxel size = 2 x 2787

x 2 mm; matrix = 96 x 96; field of view (FOV) = 192 x 192 mm; flip angle (FA) = 71 degrees; distance factor =788

0, MB acceleration factor = 4). A tilt angle of 30 degrees from AC-PC was used in order to maximize signal from789

the orbitofrontal cortex (OFC, see [60]). For each functional run, the task began after the acquisition of the first790

four volumes (i.e., after 5.00 s) to avoid partial saturation effects and allow for scanner equilibrium. Each run was791

about 15 minutes in length, including a 20 seconds break in the middle of the block (while the scanner is running)792

to allow participants a short break. We measured respiration and pulse during each scanning session using pulse793

oximetry and a pneumatic respiration belt part of the Siemens Physiological Measurement Unit.794

BIDS conversion and defacing Data was arranged according to the brain imaging data structure (BIDS) specifi-795

cation [61] using the HeuDiConv tool (version 0.6.0.dev1; freely available from https://github.com/nipy/heudiconv).796

Dicoms were converted to the NIfTI-1 format using dcm2niix [version 1.0.20190410 GCC6.3.0; [62]]. In order797

to make identification of study participants highly unlikely, we eliminated facial features from all high-resolution798

structural images using pydeface (version 2.0; available from https://github.com/poldracklab/pydeface). The data799

quality of all functional and structural acquisitions were evaluated using the automated quality assessment tool800

MRIQC [for details, [see 63], and the MRIQC documentation]. The visual group-level reports confirmed that the801

overall MRI signal quality was consistent across participants and runs.802

fMRI preprocessing Data was preprocessed using fMRIPrep 1.2.6 (Esteban et al. [64]; Esteban et al.803

[65]; RRID:SCR_016216), which is based on Nipype 1.1.7 (Gorgolewski et al. [66]; Gorgolewski et al. [67];804

RRID:SCR_002502). Many internal operations of fMRIPrep use Nilearn 0.5.0 [68, RRID:SCR_001362], mostly805

within the functional processing workflow.806

Specifically, the T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) using807

N4BiasFieldCorrection [69, ANTs 2.2.0], and used as a T1w-reference throughout the workflow. The anatomi-808

cal image was skull-stripped using antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as the target template.809

Brain surfaces were reconstructed using recon-all [FreeSurfer 6.0.1, RRID:SCR_001847, 48], and the brain810
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masks were estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and811

FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle [RRID:SCR_002438, 47]. Spatial812

normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c [70, RRID:SCR_008796] was813

performed through nonlinear registration with antsRegistration [ANTs 2.2.0, RRID:SCR_004757, 71], using814

brain-extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF),815

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast [FSL 5.0.9,816

RRID:SCR_002823, 72].817

To preprocess the functional data, a reference volume for each run and its skull-stripped version were generated818

using a custom methodology of fMRIPrep. A deformation field to correct for susceptibility distortions was estimated819

based on two echo-planar imaging (EPI) references with opposing phase-encoding directions, using 3dQwarp [73]820

(AFNI 20160207). Based on the estimated susceptibility distortion, an unwarped BOLD reference was calculated821

for a more accurate co-registration with the anatomical reference. The BOLD reference was then co-registered822

to the T1w reference using bbregister (FreeSurfer), which implements boundary-based registration [74]. Co-823

registration was configured with nine degrees of freedom to account for distortions remaining in the BOLD reference.824

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corresponding825

rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt [FSL 5.0.9,826

75]. BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 [73, RRID:SCR_005927] and827

aligned to the middle of each TR. The BOLD time-series (including slice-timing correction) were resampled onto828

their original, native space by applying a single, composite transform to correct for head-motion and susceptibility829

distortions. First, a reference volume and its skull-stripped version were generated using a custom methodology of830

fMRIPrep.831

Several confound regressors were calculated were calculated during preprocessing: Six head-motion estimates (see832

above), Framewise displacement, six anatomical component-based noise correction components (aCompCorr) and833

18 physiological parameters (8 respiratory, 6 heart rate and 4 of their interaction). The head-motion estimates834

were calculated during motion correction (see above). Framewise displacement was calculated for each functional835

run, using the implementations in Nipype [following the definitions by 76]. A set of physiological regressors were836

extracted to allow for component-based noise correction [CompCor, 77]. Principal components are estimated after837

high-pass filtering the BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor838

variants: temporal (tCompCor, unused) and anatomical (aCompCor). For aCompCor, six components are calculated839

within the intersection of the aforementioned mask and the union of CSF and WM masks calculated in T1w space,840

after their projection to the native space of each functional run (using the inverse BOLD-to-T1w transformation).841

All resamplings can be performed with a single interpolation step by composing all the pertinent transformations842

(i.e. head-motion transform matrices, susceptibility distortion correction, and co-registrations to anatomical843

and template spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs),844

configured with Lanczos interpolation to minimize the smoothing effects of other kernels [78]. Lastly, for the845

18 physiological parameters, correction for physiological noise was performed via RETROICOR [79, 80] using846

Fourier expansions of different order for the estimated phases of cardiac pulsation (3rd order), respiration (4th847

order) and cardio-respiratory interactions (1st order) [81]: The corresponding confound regressors were created848

using the Matlab PhysIO Toolbox ([82], open source code available as part of the TAPAS software collection:849

https://www.translationalneuromodeling.org/tapas. For more details of the pipeline, and details on other850

confounds generated but not used in our analyses, see the section corresponding to workflows in fMRIPrep’s851

documentation.852

For univariate analyses, BOLD time-series were re-sampled to MNI152NLin2009cAsym standard space in the853

fMRIPrep pipeline and then smoothed using SPM [83, SPM12 (7771)] with 8mm FWHM, except for ROI854

generation, where a 4mm FWHM kernel was used. Multivariate analyses were conducted in native space, and data855

was smoothed with 4mm FWHM using SPM [83, SPM12 (7771)]. Classification analyses further involved three856

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.17.435844doi: bioRxiv preprint 

https://www.translationalneuromodeling.org/tapas
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://doi.org/10.1101/2021.03.17.435844
http://creativecommons.org/licenses/by-nc-nd/4.0/


preprocessing steps of voxel time-series: First, extreme-values more than 8 standard deviations from a voxels mean857

were corrected by moving them by 50% their distance from the mean towards the mean (this was done to not bias858

the last z scoring step). Second, the time-series of each voxel was detrended, a high-pass filter at 128 Hz was859

applied and confounds were regressed out in one action using Nilearn 0.6.2 [68]. Lastly, the time-series of each860

voxel for each block was z scored.861

Univariate fMRI analysis862

All GLMs were conducted using SPM12 [83, SPM12 (7771)] in MATLAB [52]. All GLMs consisted of two regressors863

of interest corresponding to the onsets of the two trial-types (1D/2D, except for one GLM where 2D onsets were864

split by Congruency) and included one parametric modulator of EV assigned to 1D onset and different combinations865

of parametric modulators of EV, Congruency, EVback and their interactions (see Fig. S9 for GLM visualization). All866

parametric modulators were demeaned before entering the GLM, but not orthogonalized. Regressors of no interest867

reflected cue onsets in Motion and Color trials, stimulus onsets in wrong and no-answer trials, outcome onsets868

and 31 nuisance regressors (e.g. motion and physiological parameters, see fMRI-preprocessing). The duration of869

stimulus regressors corresponded to the time the stimuli were on screen. The durations for the rest of the onset870

regressors were set to 0. Microtime resultion was set to 16 (64 slices / 4 MB factor) and microtime onset was set to871

the 8 (since slice time correction aligned to middle slice, see fMRI-preprocessing). Data for all univariate analyses872

were masked with a whole brain mask computed as intercept of each functional run mask generated from fMRIprep873

[47, 48]. MNI coordinates were translated to their corresponding brain regions using the automated anatomical874

parcellation toolbox [84–86, AAL3v1] for SPM. We verified the estimability of the design matrices by assessing875

the Variance Inflation Factor (VIF) for each onset regressor in the HRF-convolved design matrix. Specifically, for876

each subject, we computed the VIF (assisted by scripts from https://github.com/sjgershm/ccnl-fmri) for877

each regressor in the HRF-convolved design matrix and averaged the VIFs of corresponding onsets across the878

blocks. None of the VIFs surpassed a value of 3.5 (a value of 5 is considered a conservative indicator for overly879

colinear regressors, e.g. [87], see Fig.S9 for details). Detailed descriptions of all GLMs are reported in the main880

text. Additional GLMs verifying the lack of Congruency in any frontal region can be found in Fig.S9.881

vmPFC functional ROI In order to generate a functional ROI corresponding to the vmPFC in a reasonable882

size, we re-ran the GLM with only EV modulators (i.e. this GLM had no information regarding the contextually883

irrelevant context) on data that was smoothed at 4mm. We then threshold the EV contrasts for 1D and 2D884

trials (EV1D + EV2D >0) at p < .0005. The group ROI was generated in MNI space and included 998 voxels.885

Multivariate analyses were conducted in native space and the ROI was transformed to native space using ANTs886

and nearest neighbor interpolation [ANTs 2.2.0 71] while keeping only voxels within the union of subject- and887

run-specific brain masks produced by the fMRIprep pipeline [47, 48]. The resulting subject-specific ROIs therefore888

had varying number of voxels (µ = 768.14, σ = 65.62, min = 667, max = 954).889

Multivariate analysis890

Classification procedure The training set for all analyses consisted of fMRI data from behaviorally accurate 1D891

trials. For each trial, we took the TR corresponding to approx. 5 seconds after stimulus onset (round(onset+ 5))892

to match the peak of the Haemodynamic Response Function (HRF) estimated by SPM [83]. Classification training893

was done using a leave-one-run-out scheme across the four runs with 1D trials. To avoid bias in the training set894

after sub-setting only to behaviorally accurate trials (i.e. over-representation of some information) we up-sampled895

each training set to ensure equal number of examples in the training set for each combination of EV (3), Context896

(2) and Chosen-Side (2). Specifically, if one particular category was less frequent than another (e.g., more value-30,897

left, color trials than value-50, left-color trials) we up-sampled that example category by randomly selecting a trial898

from the same category to duplicate in the training set, whilst prioritising block-wise balance (i.e., if one block899
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had 2 trials in the chunk and another block had only 1, we first duplicated the trial from under-represented block900

etc.). We did not up-sample the testing set. Decoding was conducted using multinomial logistic regression as901

implemented in scikit-learn 0.22.2 [88] set to multinomial (in opposed to one-vs-all) with C-parameter 1.0, lbgfs902

solver with a ’l2’ penalty for regularization. The classifier provided for each trial in the testing block one probability903

(or: predicted probability) per class that was given to it. To avoid bias in the modeling of the classifier’s predictions904

(i.e. one probability for each class) we performed outlier-correction, i.e. rounded up values smaller than 0.00001905

and down values bigger than 0.99999. Due to technical reasons, we averaged the classifier probabilities across the906

nuisance effects, i.e. obtaining one average probability for each combination of relevant and irrelevant values. This907

resulted in 36 probabilities per participant, one for each combination of EV level (three levels), irrelevant value of908

the chosen side and irrelevant value of the non-chosen side (12 combinations, see Fig. 1). Note that the relevant909

value of the unchosen cloud was always EV - 20 and therefore we did not include this as a parameter of interest.910

After averaging, we computed for each combination of values the EVback, Congruency and alternative parameters911

(see Fig. S8). The main model comparison, as well as the lack of effects of any nuisance regressor, was confirmed912

on a dataset with raw, i.e. non-averaged, probabilities (see Fig S6 and S8). Throughout all the analyses, each913

regressor was scaled prior to fitting the models. Lastly, for the analysis of PEVback
(Fig. 5d.) and for Fig. 7 we914

also included behaviorally wrong trials.915

Verifying design trial-wise estimability To verify that the individual trials are estimatable and as a control916

over multi-colinearity [87], we convolved a design matrix with the HRF for each subject with one regressor per917

stimuli (432 regressors with duration equal to the stimulus duration), two regressor across all cues (split by context)918

and three regressor for all outcomes (one for each EV). We then computed the VIF for each stimulus regressor (i.e.919

how predictive is each regressor by the other ones). None of the VIFs surpassed 1.57 across all trials and subjects920

(µV IF = 1.42, σV IF = .033, min = 1.34). When repeating this analysis with a GLM in which also outcomes were921

split into trialwise regressors, we found no stimuli VIF larger than 3.09 (µV IF = 2.64, σV IF = .132, min = 1.9).922

Note that 1 is the minimum (best) value and 5 is a relatively conservative threshold for colinearity issues ([e.g.923

87]). This means that the BOLD responses of individual trials can be modeled separately and should not have924

colinearity issues with other stimuli nor with the outcome presentation of each trial.925

Modelling class probabilities The classifier provided one probability to each class, given the data (all probabilities926

for each trial sum to 1). Probabilities were analyzed in R (R version 3.6.3 [57], RStudio version 1.3.959 [58])927

with Generalized Linear Mixed Models using Template Model Builder (glmmTMB, [89]) models, employing a beta928

distribution family with a ’logit’ link function. When describing main effects of models, the χ2 represents Type II929

Wald χ2 tests, whereas when describing model comparison, the χ2 represents the log-likelihood ratio test. Model930

comparison throughout the paper was done using the ’anova’ function.931

The value similarity analyses asked whether the predicted probabilities reflected the difference from the objective932

probability class. The model we found to best explain the data was:933

P kt,c = β0 + γ0k + β1|EVt − Classc,t|+ β2|EVt − Classc,t|EVbackt (4)

where Pkt,c is the probability assigned to class c in trial t for subject k, β0 and γ0k represent global and subject-934

specific intercepts, |EVt − Classc,t| is the absolute difference between the EV of the trial and the class the935

probability is assigned to and |EVt − Classc,t|EVbackt is the interaction of this absolute difference with EVback.936

For models nested in the levels of EV, we included ζ0kv
, which is the EV-specific intercept nested within each937

within each subject level.938

For the feature similarity model we substituted |EVt − Classc,t| with a “similarity” parameter that encoded the939

perceptual similarity between each trial in the test set and the perceptual features that constituted the training940

examples of each class of the classifier. For 1D trials, this perceptual parameter was identical to the value similarity941
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parameter (|EVt − Classc,t|). This was because from the shown pairs of colors, both colors overlapped between942

training and test if the values were identical; one color overlapped if the values were different by one reward level943

(e.g. a 30 vs 50 comparison corresponded to two trials that involved pink vs green and green vs orange, i.e. sharing944

the color green); and no colors overlapped if the values were different by two levels (30 vs 70). On 2D trials945

however, due to changing background features and their value-difference variation, perceptual similarity of training946

and test was not identical to value similarity. Even though both the value similarity and the perceptual similarity947

parameter correlated (ρ = .789, σ = .005), we found that the value similarity model provided a better AIC score948

(value similarity AIC: -3898, Feature similarity AIC: -3893, Fig. 4). Detailed description with examples can be949

found in Fig. S6. Crucially, even when keeping the value difference of the irrelevant features at 20, thus limiting the950

testing set only to trials with feature-pairs that were included in the training, our value similarity model provided a951

better AIC (-1959) than the feature similarity model (-1956). To test for a perceptual alternative of EVback we952

substituted the corresponding parameter from the model with Similarityback. This perceptual parameter takes on953

1 if the perceptual feature corresponding to the EVback appeared in the 1D training class (as highest or lowest954

value) and 0 otherwise. As described in the main text, none of the perceptual-similarity encoding alternatives955

provided a better fit than our models that focused on the expected values the features represented.956

When modelling the probability of the objective EV, the model we found to explained the data best was:957

P kt,EV = β0 + γ0k + β1EVbackt (5)

where Pkt,EV is the probability assigned to the objective class (corresponding to EV of the trial t) for subject k, β0958

and γ0k represent global and subject-specific intercepts and EVback is the maximum of the two ignored values (or959

the EV of the contextually irrelevant context). For models nested in the levels of EV, we included ζ0kv which960

is EV specific intercept nested within each within each subject level (see Fig. S8). Investigations of alternative961

parametrizations of the values can be found in Fig. S8.962

When modelling the probability of EVback, we did not average across nuisance regressors. Our baseline model was:963

P kt,EVback
= β0 + γ0k + ν1side(t) + ν2switch(t) + ν3context(t). Neither including a main effect nor interactions964

between EV, EVback and Congruency improved model fit. When including behaviorally wrong trials in the model, we965

used drop1 in combination with χ2-tests from lmer4 package [59] to test which of the main effects or interactions966

improves the fit. This resulted in the following model as best explaining the data:967

P kt,EVback
= β0 + γ0k + β1EVt × EVbackt + β2Congruencyt ×Accuracyt

+ν1t+ ν2sidet + ν3switcht + ν4contextt
(6)

where Pkt,EVback
is the probability assigned to the EVback class (corresponding to EVback of trial t) for subject k,968

β0 and γ0k represent global and subject-specific intercepts, EV is the maximum of the two relevant and EVback969

is the maximum of the two ignored values. Congruency reflects whether the actions chosen in the relevant vs.970

irrelevant context would be the same, and the Accuracy regressor has 1 if participants chose the highest relevant971

value and 0 otherwise. We note that the interaction EV × EVback (χ2
(1) = 4.18, p = .041) indicates higher in972

trials in which EV and EVback were more similar, the probability assigned to EVback was higher. However, we find973

this effect hard to interpret since this corresponds to the value similarity effect we previously reported.974

Parallel representation of outcomes in vmPFC. To compute the correlations between each pair of classes975

we transformed the probabilities for each class using a multinomial logit transform. For example, for class 30976

we performed probabilities were transformed with mlogit(Pt,30) = 0.5(log
Pt,30

Pt,50
+ log

Pt,30

Pt,70
). To examine the977

relationship between EV and EVback, we only included 2D trials in which EV 6= EVback. This allowed us to978

categorize all three probabilities as either EV, EVback or Other, whereby Other reflected the value that was neither979

the EV, nor the EVback. To prevent bias we included only trials in which Other was presented on screen (as relevant980
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or irrelevant value). We then averaged across nuisance regressors (see Classification procedure) and computed981

the correlation across all trials. Lastly, we Fisher z-transformed the correlations (0.5 log 1+ρ
1−ρ ) to approximate982

normality for the t test. To validate these results, we performed an additional model comparison in which we983

added a term of the logit transformed PEVback
or of Pother to Eq. 5 (β2mlogit(Pt,EVback

) or β2mlogit(Pt,Other)984

,respectively). As reported in the main text, adding a term reflecting PEVback
resulted in a smaller (better) AIC985

score than when we added a term for Pother (-567,-475, respectively). This was also preserved when running986

the analysis including nuisance regressors (see νs in Eq. 2) on the non-averaged data (AICs: -5913.3,-5813.3).987

We note that subsetting the data the way we did resulted in a strong negative correlation in the design matrix988

between EV and EVback (ρ = −0.798, averaged across subjects). Although this should not directly influence our989

interpretation, we validated the results by using alternative models with effects hierarchically nested within the990

levels of EV and EVback (Averaged data AICs: -560, -463, Raw data AICs: -5906.8,-5804.3)991

Linking MRI effects to behavior We showed that subjects who had a stronger effect of Congruency on their992

RT also had a stronger effect of EVback on PEV, as well as a stronger correlation between PEV and PEVback
.993

The model used to obtain subject-specific Congruency and Congruency x EVback slopes was:994

logRT kt = β0 + γ0k + β1EV + β2Congruencyt + β3CongruencytEVbackt

+γ1kCongruency + γ2kCongruency + γ3kEVbackt

+ν1t+ ν2sidet + ν3switcht + ν4contextt

(7)

where all the notations are the same as in Eq. 2. γ1k represents the subject-specific slope for Congruency for995

subject k and γ2k for the interaction of Congruency and EVback.996

To extract subject-specific slopes for the effect of EVback on PEV we included a term for this effect (γ1kEVbackt)997

in Eq. 5. Due to model convergence issues, the we had to drop the subject-specific intercept (γ0k) in that model.998

For the correlation of PEV and PEVback
we only used trials in which EV 6= EVback. Probabilities were first999

multinomial logit and then Fisher z-transformed (see above) and averaged across trials to achieve one correlation1000

value per subject. In the main text and in Fig 5 we did not average the data to achieve maximum sensitivity1001

to trial-wise variations. The results reported in the main text replicate when running the same procedure while1002

averaging the data across nuisance regressors following the multinomial logit transformation (R = .38, p = .023).1003

Context decoding Classification of task context followed the same procedures as when decoding of EV (see1004

’Classification procedure’), albeit the classes given to the classifier for each 1D train example were the context, i.e.1005

’Color’ or ’Motion’. Up-sampling was done in the same manner, resulting in 4 training sets that are each balanced1006

across EV, Context and Side of target object, and balanced block-wise as much as possible.1007

To perform the analysis shown in Fig. 6d, we included a main effect of Pcontext in Eq. 5 that was logit-transformed1008

(logit(P ) = log P
1−P ) and scaled for each subject, thus adding the term β2logit(PContext). Note that since there1009

are only 2 classes, there is no need for multinomial logit transformation.1010

Neural representations of EV, EVback and Context as predictors of behavioral accuracy We used hierarchi-1011

cal model comparison to directly test the influence of neural representation of EV, EVback and Context on behavioral1012

accuracy separately for congruent and incongruent trials. First, we tested if adding logit(Pt,Context), mlogit(Pt,EV )1013

or mlogit(Pt,EVback
) to Eq. 3, would help to explain the behavioral accuracy better. Because the analysis was1014

split for congruent and incongruent trials, we excluded the terms involving a Congruency effect. For incongruent1015

trials, only logit(Pt,Context) improved the fit (LR-tests: logit(Pt,Context): χ2
(1) = 3.66, p = .055, mlogit(Pt,EV ):1016

χ2
(1) = 0.28, p = .599, mlogit(Pt,EVback

): χ2
(1) = 0.0, p = .957). In a second step we then separately tested the1017

interactions logit(Pt,Context) × mlogit(Pt,EV ) or logit(Pt,Context) × mlogit(Pt,EVback
) and found that only the1018
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latter had improved the fit (χ2
(1) = 1.78, p = .183, χ2

(1) = 6.33, p = .012, respectively). For congruent trials,1019

only mlogit(Pt,EVback
) and marginally mlogit(Pt,EV ) improved the fit (LR-tests: logit(Pt,Context): χ2

(1) = 0.0,1020

p = .922, mlogit(Pt,EV ): χ2
(1) = 3.5, p = .061, mlogit(Pt,EVback

): χ2
(1) = 6.48, p = .011). In a second step we1021

tested separately the interactions logit(Pt,Context) × mlogit(Pt,EV ) ,logit(Pt,Context) × mlogit(Pt,EVback
) or1022

mlogit(Pt,EVback
) × mlogit(Pt,EV ) and found none of these improved model fit when adding them to a model1023

that included both main effects from the previous step (χ2
(1) = 0.34, p = .560, χ2

(1) = .278, p = .598, χ2
(1) = 2.49,1024

p = .115, respectively).1025
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Supplementary Information1265

• Fig. S1: Full procedure and experimental design for all phases, related to Fig 11266

• Fig. S2: Nested RT models, related to Fig 21267

• Fig. S3: Alternative RT models, extended RT model comparisons and correlation matrix of all regressors,1268

related to Fig 21269

• Fig. S4: Exploratory analysis of RT model presented in Main Text, related to Fig 21270

• Fig. S5: Behavioral accuracy results: related to Fig 21271

• Fig. S6: Supplementary information for Value similarity analysis: related to Fig. 41272

• Fig. S7: Supplementary information for perceptual similarity analysis: related to Fig. 41273

• Fig. S8: Modelling probability assigned to the EV class: related to Fig. 51274

• Fig. S9: Additional univariate results, related to Fig. 81275

• Table S1: Detailed univariate results: Clusters for whole brain univariate analysis, related to Fig. 81276
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Figure S1: Full procedure and experimental design for all phases

Figure S1: Full procedure and experimental design for all phases, related to Fig 1. a. Brownian algorithm1277

for color and motion. Each illustration shows the course of 3 example dots; ’S’ and ’E’ marked dots reflect Start1278

and End positions, respectively. Remaining dots represent location in space for different frames. Left panel:1279

Horizontal motion trial. Shown are framewise dot positions between start and end. In each frame, a different set1280

of dots moved coherently in the designated direction (gray) with a fixed speed; remaining dots moved in a random1281

direction [conceptually taken from 38]. Right panel: Example of a pink color trial. We simulated the YCbCr color1282

space that is believed to represent the human perception in a relative accurate way [cf. 54]. A fixed luminance of1283

Y = 0.5 was used. For technical reasons we sliced the X-axis by 0.1 on each side and the Y-axis by 0.2 from the1284

bottom of the space to ensure the middle of the space remained gray given the chosen luminance. In each frame,1285

a different set of dots (always 30% of the dots) moved coherently towards the target color in a certain speed1286

whereas the rest were assigned with a random direction. All target colors were offset by 23.75% from the center1287

towards each corner. Right bar illustrates the used target colors. b. Full procedure. The experiment consisted of1288

two phases, the first one took place in the behavioral lab and included Staircasig, Outcome-learning and the first1289

1D mini-block. The second took place inside the MRI scanner and consisted of the second 1D mini-block and the1290

main task. c. Example trial procedures and timing of the different tasks. Timing of each trial is depicted below1291
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illustrations. Staircasing (left) Each trial started with a cue of the relevant feature. Each cloud had one or two1292

features (motion and/or color) and participants had to detect the cued feature. Participants’ task was to choose1293

the cued feature (here: blue). After a choice, participants received feedback if they were correct and faster than1294

1 second, correct and slower, or wrong. Outcome learning (middle) Participants were presented with either1295

one or two single-feature clouds and asked to chose the highest valued feature. Following their choice, they were1296

presented with the values of both clouds, with the chosen cloud’s associated value marked with a square around1297

it. The pair of shown stimuli included across contexts comparisons, e.g. between up/right and blue, as shown.1298

1D mini block (right) At the end of the first phase and beginning of the second phase participants completed a1299

mini-block of 60 1D trials during the anatomical scan (30 color-only, 30 motion-only, interleaved). Participants1300

were again asked to make a value-based two alternative forced choice choice decision. In each trial, they were1301

first presented with a contextual cue (color/motion), followed by the presentation of two single-feature clouds of1302

the cued context. After a choice, they were presented with the chosen-cloud’s value. No BOLD response was1303

measured during these blocks and timing of the trials was fixed and shorter than in the main task (see Main task1304

preparation in online methods) Main task (bottom) This part included 4 blocks, each consisting of 36 1D and1305

72 2D trials trials presented in an interleaved fashion (see online method and Fig. 1). d. Button specific reduction1306

in RT variance following the staircasing. We verified that the staircasing procedure also reduced differences1307

in detection speed between features when testing each button separately. Depicted is the variance of reaction1308

times (RTs) across different color and motion features (y axis). While participants’ RTs were markedly different1309

for different features before staircasing (pre), a significant reduction in RT differences was observed after the1310

procedure (post, p < .001.) e. Choice accuracy in outcome learning trials. Participants achieved near ceiling1311

accuracy in choosing the highest valued feature in the outcome learning task, also when testing for color, motion1312

and mixed trials separately (ps< .001). Mixed trials only appeared in this part of the experiment to encourage1313

mapping of the values on similar scales. f. Accuracy throughout the experiment, plotted for each block of each1314

part of the experiment. In the staircasing (left) High accuracy for the adjustment and measurement blocks (2-3)1315

ensured that there were no difficulties in perceptual detection of the features. In Outcome learning a clear increase1316

in accuracy throughout this task indicated learning of feature-outcome associations. Note that Block 5 of this1317

part was only included for those who did not achieve 85% accuracy beforehand. Starting the 1D mini blocks1318

(middle) and throughout themain task (right) until the end of the experiment high accuracy. µ and σ from left1319

to right: Staircasing: .84,.07;.91,.06;.94,.04; Outcome Learning: .81,.1;.86,.09;.83,.08;.82,.06; 1D mini blocks:1320

.91,.07;.88,.08; Main task: .89,.06;.91,.05;.9,.06;.92,.05.1321
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Figure S2: Nested RT models, related to Fig 2

Figure S2: Nested RT models, related to Fig 21322

a-c. Nested models within Factors. Each row represents one congruency analysis, done separately for each1323

level of expected value (top row), context (middle) or block (bottom). The RT effect of Congruencyt × EVbackt is1324

shown on the left, corresponding AICs for mixed effect models with nested factors are shown on the right. RT data1325

is demeaned for each panel for visual comparison; error bars represent corrected within subject SEMs [39, 40]. Null1326

models shown on the right are identical to Eq. 2, albeit included ζ0kv , which is the factor-specific (v) intercept1327

nested within each within each subject level (see online methods). Likelihood ratio tests were performed to asses1328

improved model fit when adding (1) Congruency or (2) EVback terms to the Null model and when adding (3)1329

Congruency × EVback) in addition to Congruency. Stars represent p values less than .05. For nested within EV, the1330

Null model did not include a main effect for EV and the LR test was: (1) χ2
(1) = 31.22, p < .001; (2) χ2

(1) = 1.47,1331

p = .226; (3) χ2
(1) = 19.37, p < .001; For models nested within Context the LR test was: (1) χ2

(1) = 30.01,1332

p < .001; (2) χ2
(1) = 1.5, p = .22; (3) χ2

(1) = 18.9, p < .001; and for Block: (1) χ2
(1) = 26.06, p < .001; (2)1333

χ2
(1) = 1.27, p = .26; (3) χ2

(1) = 18.25, p < .001; In the first row (nested across EV) the interaction with EV is1334

visible, i.e. the higher the EV, the stronger our effects of interests were.1335
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Figure S3: Alternative RT models, extended RT model comparisons and correlation matrix of all1336

regressors, related to Fig 2.1337

a. Alternative mixed effect models, each represented as a row which lists main factors of interest. We clustered1338

different alternative models into three classes: Green models included factors that reflected the difference between1339

the expected values of both contexts (EV - EVback, including unsigned EV factors); blue models include instead1340

factor that reflect the value-difference between context within each cloud where ‘tgt’ (target) is the chosen1341

cloud with the highest value according to the relevant context and orange models included two alternative1342

parameterization of values in the non-relevant context: irrelevant features’ Value Difference (VD) and Overall1343

Value (OV), which are also orthogonal to Congruency (Cong), and to each other. In black is the main model1344

comparison as presented in the main text. b. Extended correlation matrix. Averaged correlation across subjects1345

of all scaled regressors for accurate 2D trials (models’ input). Marked in red rectangle are main factors of the1346

experiment which are orthogonal by design and used for the model comparison reported in the Main Text. c. AIC1347

scores. We tested different alternatives shown in (a) in a stepwise hierarchical model comparison, as in the main1348

text. Each bar represents the AIC (y-axis) of a different model (x-axis) where the labels on the x-axis depict the1349

added terms to the Null model for that specific model. The Null model included nuisance regressors and the main1350
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effect of EV (see ν and β1 in Eq. 2). The models described in the main text are shown in black. The gray model1351

includes the additional term for Congruency × EV. Dashed lines correspond to the AIC values of the models used1352

in the main text. Importantly, no main effect representing only the contextually irrelevant values (VD, OV, EVback)1353

nor the difference between the EVs (EVdiff ,|EVdiff |, also when excluding EV from the null model, not presented)1354

improved model fit over the Null model. This supports our finding that neither large irrelevant values, nor their1355

similarity to the objective EV, influenced participants’ behavior. Similar to EVback, factors from the green and1356

orange clusters are also orthogonal to Congruency, which allowed us to test their interaction. Factors from the1357

blue cluster highly correlate with both Congruency (and EVback) and therefore were tested separately. Non of the1358

alternatives provided a better AIC score (y axis, lower is better).1359
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Context 1 -6304.79 201.27 <.001

EV 1 -6159.75 346.31 <.001

Congruency 1 -6496.76 9.29 .002

Congruency x EV 1 -6501.69 4.37 .037

Congruency xEV𝑏𝑎𝑐𝑘 1 -6488.35 17.70 <.001

Switch x Side 1 -6502.42 3.64 .0565

Switch x Context 1 -6503.25 2.80 .094

Switch x EV 1 -6500.23 5.83 .0158

Switch x Congruency 1 -6502.54 3.52 .068

Context x EV 1 -6499.16 31.07 <.001

Context x Trial 1 -6499.16 6.89 .009

Side x EV𝑏𝑎𝑐𝑘 1 -6501.28 4.77 .029
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c.
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Figure S4: Exploratory analysis of RT model presented in Main Text, related to Fig 2.

Figure S4: Exploratory analysis of RT model presented in Main Text, related to Fig 2.1360

a. The table presents the individual contribution of terms taken from Eq. 2 and all possible two-way interactions1361

to the model fit using the drop1 function in R [57]. In short, this exploratory analysis started with a model that1362

included all main effects from Eq. 2 and all possible 2-way interaction between them and tested which terms1363

contribute to the fit. If a term did not improve fit, it was dropped from the model. Presented are all effects1364

with a p value less than p < .01 . b-g. Model fits of all effects with p < .1. X-axes are normalized (as in the1365

model) and y-axes reflect RTs on a log scale (model input). Clockwise from the top: RTs became progressively1366

faster with increasing trials since the context switch. This effect was possibly stronger for higher EV (b) and for1367

incongruent trials (c). We note that our experiment was not designed to test the effect of the switch. (d) An1368

interaction of Side and EVback was found, for which we offer no explanation. Panels (e) to (g) reflect interaction1369

of context with EV (e), trial (f), and switch (g). We note that due to the used perceptual color space there1370

might be a context-specific ceiling effect in RTs due to training throughout the task which could have induced1371

effects of context. Specifically, since dots start gray and slowly ’gain’ the color, it might take a few frames until1372

there is any evidence for color. However, the motion could be theoretically detected already on the second frame1373

(since coherence was very high). This could explain why some effects that represent decrease in RT might hit a1374

boundary for color (and not motion). Crucially, we refer the reader to supplementary Fig S2 where the main model1375

comparison hold also when we ran the model nested within the levels of Context1376
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Figure S5: Behavioral accuracy results: related to Fig 2.

Figure S5: Behavioral accuracy results: related to Fig 2.1377

a. Comparison of accuracy (y-axis) for each level of EV (x-axis) showed that participants were more accurate for1378

higher EV, p = .001. b. Comparison of congruent versus incongruent trials also revealed a performance benefit of1379

the former, p = .001. c. The effect of Congruency was modulated by EVback, i.e. the more participants could1380

expect to receive from the ignored context, the less accurate they were when the contexts disagreed (x axis, shades1381

of colours). Further investigations revealed that the modulation of EVback is likely limited to Incongruent trials1382

(χ2
(1) = 6.91, p = .009, when modeling only Incongruent trials), yet does not increase accuracy for Congruent1383

trials (χ2
(1) = 0.07, p = .794, when modeling only congruent trials), likely due to a ceiling effect. Error bars in1384

panels a-c represent corrected within subject SEMs [39, 40]. d. Hierarchical model comparison of choice accuracy,1385

similar to the RT model reported in the main text. These analyses showed that including Congruency improved1386

model fit (p < .001). Including the additional interaction of Congruency × EVback improved the fit even more1387

(p = .03). e. We replicated the choice accuracy main effect in an independent sample of 21 participants outside of1388

the MRI scanner, i.e. including Congruency improved model fit (χ2
(1) = 55.95, p < .001). We did not find a main1389

effect of EV on accuracy in this sample (χ2
(1) = 0.93, p = .333). The interaction term Congruency × EVback did1390

not significantly improve fit in this sample. Modeling only Incongruent trials, as above, reveled that EVback had a1391

marginal effect on accuracy (χ2
(1) = 2.90, p = .088). Near-ceiling accuracies in Congruent trials in combination1392

with a smaller sample might have masked the effects. f. The table presents the individual contribution of terms1393

taken from Eq. 3 and all possible two-way interactions to the model fit using the drop1 function in R [57]. In1394

short, this exploratory analysis started with a model that included all main effects from Eq. 3 and all possible1395

2-way interaction between them and tested which terms contribute to the fit. If a term did not improve fit, it was1396

dropped from the model. Subsequent panels present all the effects corresponding to p < .01. Note that this is a1397
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non-hypothesis driven exploration of the data and that accuracy was very high in general throughout the main1398

task. g. Accuracy as a function of time since switch. Akin to RTs, accuracy increased with number of trials since1399

the last context switch, mainly for incongruent trials. h. Context effect on accuracy. According to the exploratory1400

model, participants were slightly more accurate in color than in motion trials. However, a direct paired t test1401

between average accuracy of color compared to motion was not significant (t(34) = 0.96, p = .345) i-l. Depicted1402

are some minor interactions of no interest with Context, according to the exploratory model.1403
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Figure S6: Supplementary information for value similarity analysis: related to Fig. 4

Fig. S6: Supplementary information for Value similarity analysis: related to Fig. 4.1404

a. Main value similarity model comparison replicated when fitting the models to unaveraged data. Adding a term1405

for |EV-class| improved model fit (LR test with added term: χ2
(1) = 11.56, p < .001). Adding an additional term1406

for |EV-class| × EVback further improved the fit (χ2
(1) = 3.86, p = .049), as in the model reported in the main1407

text (Fig. 4b). b. Effect of Nuisance regressors on unaveraged data (t, Side, Switch and Context). Same as1408

Congruency and EVback, all of the nuisance regressors don’t discriminate between the classes, but rather assign1409

the same value to all three probabilities from that trial (which sum to 1). We therefore tested if any of them1410

modulated the value similarity effect. As can be seen in the table, none of the nuisance regressors modulated the1411

value similarity effect. c. Replication of the value similarity model comparison reported in the main text, averaged1412

across nuisance regressors and nested within the levels of EV, i.e. including EV-specific intercepts nested within1413

each within each subject level (ζ0kv
, see Online Methods). As in the analysis reported in the Main Text, adding a1414

main effect for |EV-Class| improves model fit (χ2
(1) = 16.15, p < .001, first row) as well as adding an additional1415

interaction term |EV-class| × EVback (χ2
(1) = 6.16, p = .013, middle row shows data, bottom row shows model fit.1416

Error bars represent corrected within subject SEMs [39, 40])1417
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b.

Figure S7: Supplementary information for perceptual similarity analysis: related to Fig. 4

Fig. S7: Supplementary information for perceptual similarity analysis: related to Fig. 4.1418

a. Left: training set consisting of 1D trials provided for the classifier for each class (in the experiment the sides1419

were pseudorandomised). Note that each class had the same amount of color and motion 1D trials and that the1420

value difference between the values was always 20. Right: two examples of 2D trials that constituted the classifier1421

test set. b. The table illustrates the calculation of feature similarity between classifier test and training in two1422

example trials in one 1D and one 2D trial. Specifically, shown are the corresponding values and features for each1423

trial with the predicted values at each class for the parameters value similarity (|EV-class|), feature similarity1424

and similarityback. Feature similarity encodes the perceptual overlap between the shown test example and the1425

training examples underlying with each value class. The first row shows a case in which the classifier was tested1426

on a 1D green vs. orange color trial ( 30 vs 50, EV = 50). Considering in this case for instance the predicted1427

probability that EV=30, the table illustrates the training example underlying the EV = 30 cases (10 vs 30, dark1428

gray shading), the |EV-class| (here: 20, because 50-30), and the feature similarity i.e. how many features from the1429

training class appeared in the test example (here: 1). The second row shows a 2D color trial, reflecting the same1430

value based choice between 30 and 50. The value similarity between training and test stays the same as for the1431

1D trial shown above. However, the feature similarity between test and training changes because of the motion1432

features. If we take class 30 for example (which is 10 vs 30, dark gray shading), the feature 30 appeared twice1433

(color and motion) and the feature 10 appeared once (motion), i.e. feature similarity now takes on the value 3.1434

Similarityback was used to test a perceptual-based alternative to the EVback parameter. Similarityback takes on 1 if1435

the perceptual feature corresponding to the EVback appeared in the training class and 0 otherwise (red text in1436

table). As described in the main text, none of the perceptual-similarity encoding alternatives provided a better fit1437

than the reported models that focused on the values the features represent.1438
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Figure S8: Modelling probability assigned to the EV class.

Fig. S8: Modelling probability assigned to the EV class: related to Fig. 5.1439

a. We replicated the main results using the unaveraged data. The Null model was: P kt,EV = β0+γ0k+ν1side(t)+1440

ν2switch(t) + ν3context(t), where Pkt,EV is the probability assigned to the class corresponding to the EV of trial1441

t for subject k, β0 and γ0k represent global and subject-specific intercepts. Side, Switch and Context are the same1442

as in the RT model (Eq. 2); None of these variables had a main effect, p > 0.4 (see table, right). The factor trial1443

could not be included due to model convergence issues. Adding a term representing EVback improved model fit (LR1444

test including term: χ2
(1) = 5.42, p = .019). Adding an additional term for context decodability further improved1445

the fit (χ2
(1) = 3.9, p = .048). The table (right) displays the Type 2 Wald χ2 test for all main effects from the1446

model. b. Depicted is the effect of EVback (x-axis) on the probability assignd to the EV class (PEV , y axis). Solid1447

lines represent the data and dashed lines the model fit of a model that included random effects of subject and EV1448

nested within subject (data averaged across nuisance regressors, adding a main effect for EVback improved model1449

fit (χ2
(1) = 5.99, p = .014). Error bars represent corrected within subject SEMs [39, 40]. c. Similar to our analysis1450

of alternative models of RT, we clustered models reflecting alternative explanations into three conceptual groups1451

(see color legend; cf. Fig. S3a). All models were fitted to the probability assigned to the objective EV in accurate1452

2D trials, similar to Eq. 5. Each column represents the AIC (y-axis) of a different model (x-axis) where the labels1453

on the x-axis depict all the main effects included in that specific model (i.e. added to the Null, i.e. Eq. 5 without1454

any main effects). We found no evidence that any other parameters explain the data better than the ones we1455

used in the main text. Specifically, only including main effect of EVback, Overall Value of the irrelevant values1456

(OV) and the difference of both EVs (EVdiff ) provided a better AIC score than the Null model. Note that adding1457
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OV (-1229.6) only slightly surpassed EVback (-1229.26). Crucially, the correlation of EVback and OV is very high1458

(ρ = .87, see main text). We then looked at possible interactions with the EVback effect. Congruency did not seem1459

to modulate the main effect of EVback and adding an interaction term EV × EVback provided a slightly better AIC1460

(-1230.33), yet this effect was not significant (LR test: χ2
(1) = 3.08, p = .079). Section (b) also visualizes this1461

effect. Lastly, adding a term for the Context decodability provided the lowest (i.e. best) AIC score.1462

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.17.435844doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435844
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

4

6

Cue
Colo

r

Cue
M

ot
ion

One
D

Tw
oD

NoA
ns

wer

W
ro

ng
Stim

co
rre

ct

_

Out
co

m
e no

an
sw

er

_

Out
co

m
e

wro
ng

_

Out
co

m
e

regressors

μ
V

IF

2

4

6

Con
gr

ue
nt

Cue
Colo

r

Cue
M

ot
ion

In
co

ng
ru

en
t

NoA
ns

wer

One
D

co
rre

ct

_

Out
co

m
e no

an
sw

er

_

Out
co

m
e

wro
ng

_

Out
co

m
e

W
ro

ng
Stim

regressors

μ
V

IF

2

4

6

Cue
Colo

r

Cue
M

ot
ion

NoA
ns

wer 30

One
D

50

One
D

70

One
D

co
rre

ct

_

Out
co

m
e no

an
sw

er

_

Out
co

m
e

wro
ng

_

Out
co

m
e

30

Tw
oD

Con
g 50

Tw
oD

Con
g 70

Tw
oD

Con
g 30

Tw
oD

In
co

ng
50

Tw
oD

In
co

ng
70

Tw
oD

In
co

ng

W
ro

ng
Stim

regressors

μ
V

IF

Cue (split)
Accurate
Stimuli

Non-accurate
stimuli Outcome + 13fmriprep

+ 18
Physiological

Color +
Motion

+ 1D + 2D + Wrong
+ no-answer

+ Correct
+ wrong

+ no-answer

See online methods

Parametric modulators (demeaned):

𝐸𝑉 {30, 50, 70}

Congruency {+1, -1}

𝐸𝑉𝑏𝑎𝑐𝑘 {30, 50, 70}

𝐸𝑉𝑏𝑎𝑐𝑘 x Congruency {-70,-50,-30,30, 50, 70}

𝐸𝑉 x Congruency {-70,-50,-30,30, 50, 70}

GLM
Parametric modulators

1D 2D

GLM1 𝐸𝑉 𝐸𝑉

GLM2 𝐸𝑉 𝐸𝑉 +𝐸𝑉𝑏𝑎𝑐𝑘 +Congruency

GLM3 𝐸𝑉 𝐸𝑉 +(𝐸𝑉𝑏𝑎𝑐𝑘 x Congruency)

GLM4 𝐸𝑉 (𝐸𝑉 x Congruency)

GLM 1D 2D

GLM5 1D 𝐸𝑉 Congruent 𝐸𝑉 +𝐸𝑉𝑏𝑎𝑐𝑘 Incongruent 𝐸𝑉 +𝐸𝑉𝑏𝑎𝑐𝑘

GLM6 𝟏𝑫𝟑𝟎 𝟏𝑫𝟓𝟎 𝟏𝑫𝟕𝟎 𝑪𝒐𝒏𝒈𝟑𝟎 𝑪𝒐𝒏𝒈𝟓𝟎 𝑪𝒐𝒏𝒈𝟕𝟎 𝑰𝒏𝒄𝒐𝒏𝟑𝟎 𝑰𝒏𝒄𝒐𝒏𝟓𝟎 𝑰𝒏𝒄𝒐𝒏𝟕𝟎

GLM Contrasts: below threshold, *p<0.005, **p<0.001

GLM5 Congruent > Incongruent,Congruent > Incongruent
1D > Incongruent ,1D > Congruent*
CongruentEV > IncongruentEV ,CongruentEV < IncongruentEV *
CongruentEVback > IncongruentEVback ,Congruent EVback < IncongruentEVback

GLM6 Cong30+Cong50+Cong70>Incon30+Incon50+Incon70
Cong30+Cong50+Cong70<Incon30+Incon50+Incon70
Cong70>Incon70 ,Cong 70<Incon70*

a.

b.

d.

e.

GLM Contrasts: below threshold, *p<0.005, **p<0.001

GLM1 2D > 1D** , 1D > 2D*

GLM2 Congruency > 0, Congruency < 0, EVback > 0, EVback < 0**

GLM3 (EVback x Congruency) > 0, (EVback x Congruency) < 0 *

GLM4 (EV x Congruency) > 0, (EV x Congruency) < 0

f.
5

3.34

5

3.34

5

2.72

c.

5

2.72
X = -6

X = -6

Z =- 6

Z =- 6

X = -36Y = -62

Figure S9: Additional univariate results.

Fig. S9: Additional univariate results, related to Fig. 8.1463

a. Visualization of GLMs described in the main text. The tables depict the structure of GLMs1-4 which were1464

mainly motivated by the behavioral analysis; onset regressors are shown in the top table, parametric modulators1465

assigned to 1D and 2D onsets (middle-left), the values they were modeled with (demeaned, middle-right) are shown1466

below. The contrasts of interest are shown in the bottom table. The GLMs differed only in their modulations1467

of the 2D trials: GLM1 included only modulators of the objective outcome, GLM2 included one modulator for1468

Congruency and one for EVback, GLM3 included a modulator for the Congruency × EVback interaction and GLM41469

included instead of the EV modulator a modulator of the EV × Congruency interaction. In the contrast table1470

(bottom) contrasts that only revealed effects at a liberal threshold of p < .005 are marked with one star, and1471

contrasts significant at p < .001 are marked with **. b. We constructed additional GLMs to verify the results of1472

GLMs 1-4. In GLM5 we split the onset of 2D trials into congruent and incongruent trials and assigned a parametric1473

modulator of EV and EVback to each. As in GLM2, we found no effect of congruency; no voxel survived when1474

contrasting the congruency onsets nor their EVback modulators. Only the contrast CongruentEV<IncongruentEV1475

revealed a weak cluster in the right visual cortex (peak 38,-80,16, p<0.005 not presented). In GLM6 we split the1476

onsets of the 1D and 2D trials by levels of EV and the 2D trials further by Congruency. No Congruency main effect1477

survived correction. Only when the onsets of Congruent and Incongruent 2D trials with EV=70 were contrasted, a1478
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cluster in the primary motor cortex was found (also at p < .005). Unsurprisingly, this cluster largely overlapped1479

with the Congruency × EVback effect reported in the Main Text. Except the contrast of 1D > Congruent (see1480

Main Text) none of the other contrasts shown in the table revealed any cluster, even at p < .005. c. Variance1481

Inflation Factor (VIF) of the different regressors. None of the regressors (x axis) had a mean VIF value (y axis)1482

across blocks and participants above the threshold of 4. Regressors involved in GLMs 1-4 shown on the left;1483

GLM5 and GLM6 are shown in the middle and on the right, respectively. See Online Methods for details. d.1484

Overlap of effects of EVback and trial type (2D > 1D). Main effects of EVback<0 (GLM2, p < 0.001 FDR cluster1485

corrected, left, blue shades) and EVback X Congruency < 0 (GLM3, p < 0.005, FDR cluster corrected, right, blue1486

shades, t values) did not overlap with the 2D network (red shades in both panels, t values). e. Main effect of 1D1487

> 2D. A stronger signal in vmPFC for 1D over 2D trials revealed weak activation in a PFC network (p < .005,1488

red shades,t values). This included the vmPFC (our functional ROI is depicted in green). f. Stronger signal in1489

vmPFC for 1D over congruent but not incongruent trials. When we split the onset of the 2D into Congruent and1490

Incongruent trials (GLM5), we found no significant cluster for the 1D > Incongruent contrast, but an overlapping1491

and stronger cluster for the 1D > Congruent contrast (p < .001, FDR cluster corrected, red shades, t values). We1492

found very similar results when contrasting the onsets of 1D and Congruent in GLM6 (not presented), confirming1493

the same results also when controlling for the number of trials for each level of EV (i.e. 1D30+1D50+1D70>1494

Congruent30+Congruent50+Congruent70). Our functional ROI is depicted in green.1495
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Table S1: Detailed univariate results: Clusters for whole brain univariate analysis, related to Fig. 8. Presented are the
closest labels to the local maxima of each cluster and each contrast using AAL3v1 [84–86]. All contrasts are FDR cluster
corrected. p and k values presented for each cluster.

Anatomical region Peak (MNI) peak

Label Distance X Y Z Cluster size t$_34$ p$_unc$

EV1D > 0 ∩ EV2D >0 , p<001, k = 280

R Inferior Temporal Gyrus 4.90 60 -18 -14 1770 6.53 < .0001
R Middle Temporal Gyrus 0 50 -6 -20 5.49 < .0001
R Middle Temporal Gyrus 0 56 -30 -8 5.27 < .0001
R Superior Frontal Gyrus, medial Orbital 0 8 68 -12 1045 6.09 < .0001
L Inferior Frontal Gyrus pars orbitalis 0 -50 30 -10 4.67 < .0001
L Superior Frontal Gyrus 0 -24 58 -6 4.35 < .0001
L Middle Temporal Gyrus 0 -60 -30 -6 1318 5.85 < .0001
L Middle Temporal Gyrus 0 -66 -24 -8 5.78 < .0001
L Hippocampus 2 -40 -26 -12 4.96 < .0001
L Angular Gyrus 0 -50 -60 38 875 5.58 < .0001
L Angular Gyrus 0 -46 -52 30 4.86 < .0001
L Angular Gyrus 0 -46 -70 34 3.66 .0002
L Middle Cingulate & Paracingulate

Gyri
0 -4 -40 44 1065 5.51 < .0001

L Posterior Cingulate Gyrus 0 0 -44 32 4.52 < .0001
R Middle Cingulate & Paracingulate

Gyri
0 12 -48 32 4.52 < .0001

L Hippocampus 0 -18 -6 -20 280 4.59 < .0001
L Olfactory Cortex 2 -10 6 -18 4.34 < .0001
R Angular Gyrus 0 50 -56 30 474 4.27 < .0001
R Superior Temporal Gyrus 0 62 -54 22 4.26 < .0001

2D > 1D, p<.001, k=158

L Superior Occipital Gyrus 2.83 -28 -76 38 5367 8.71 < .0001
L Inferior Occipital Gyrus 0 -48 -76 -4 7.69 < .0001
L Superior Parietal Gyrus 0 -28 -66 52 7.62 < .0001
L Precentral Gyrus 0 -46 4 30 1766 7.69 < .0001
L Inferior Frontal Gyrus, triangular part 0 -44 34 22 5.88 < .0001
L Inferior Frontal Gyrus, triangular part 0 -40 26 22 5.59 < .0001
R Inferior Parietal Gyrus 0 32 -56 54 3876 7.23 < .0001
R Fusiform Gyrus 0 30 -76 -10 7.16 < .0001
R Inferior Temporal Gyrus 0 48 -70 -8 7.13 < .0001
R Inferior Frontal Gyrus, triangular part 0 48 26 26 616 5.17 < .0001
R Precentral Gyrus 0 48 8 32 4.50 < .0001
R Precentral Gyrus 0 38 2 30 4.23 .0001
L Supplementary Motor Area 0 -8 14 50 159 4.69 < .0001

EVmathrmback<0, p<.001, k = 240

L SupraMarginal Gyrus 2 -62 -38 22 240 4.50 < .0001
L Superior Temporal Gyrus 0 -60 -32 10 4.26 .0001
L Superior Temporal Gyrus 0 -60 -22 8 3.71 .0004

Congruency × EVback<0, p<.005, k=632

L Postcentral Gyrus 6.93 -36 -18 60 632 4.03 .0002
L Postcentral Gyrus 0 -48 -22 52 3.11 .0019
L Postcentral Gyrus 0 -24 -20 74 3.08 .0020

EV1D + EV2D >0, within functional ROI, p<.001, k=979

R Anterior Orbital Gyrus 4.47 8 68 -12 979 7.89 < .0001
L Superior Frontal Gyrus, Medial Orbital 2 -6 68 -12 6.86 < .0001
L Superior Frontal Gyrus, Medial 0 -10 64 2 5.86 < .0001
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