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SUMMARY

Although the orbitofrontal cortex (OFC) has been
studied intensely for decades, its precise functions
have remained elusive. We recently hypothesized
that the OFC contains a ‘‘cognitive map’’ of task
space in which the current state of the task is repre-
sented, and this representation is especially critical
for behavior when states are unobservable from
sensory input. To test this idea, we apply pattern-
classification techniques to neuroimaging data from
humans performing a decision-making task with 16
states. We show that unobservable task states can
be decoded from activity in OFC, and decoding
accuracy is related to task performance and the
occurrence of individual behavioral errors. Moreover,
similarity between the neural representations of
consecutive states correlates with behavioral accu-
racy in corresponding state transitions. These results
support the idea that OFC represents a cognitive
map of task space and establish the feasibility of
decoding state representations in humans using
non-invasive neuroimaging.

INTRODUCTION

Imagine deciding between Apple and IBM. Investing in the stock

market, you might consider which of the two companies is more

financially promising. Shopping for a new laptop, on the other

hand, you might rather evaluate the price and quality of display

of the different machines and not the portfolios of their manu-

facturers. The neural mechanisms that evaluate choices, there-

fore, require the same options to be represented differently in

the brain when engaged in different tasks, making the correct

representation of the environment an important prerequisite

for sound decision-making (Dayan 1993; Sutton and Barto,

1998).

In the computational framework of reinforcement learning (RL;

Sutton and Barto, 1998), the collection of information that is rele-

vant to a given decision is called the ‘‘state,’’ and decision-mak-

ing proceeds by comparing the values of different actions at

each state. Much research has investigated the location and na-

ture of neural value representations (Bartra et al., 2013; Chase
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et al., 2015). But where in the brain are the corresponding

task-specific states represented?

The capability to flexibly represent currently relevant informa-

tion is widely believed to reside in prefrontal cortex (Duncan

2001). Of specific interest, the orbitofrontal cortex (OFC) has

been implicated in various decision-making functions (Stalnaker

et al., 2015) and is known to have particularly wide-ranging con-

nectivity to sensory areas of all modalities, as well as to cortical

and subcortical areas related to memory, learning, and attention

(Cavada et al., 2000; Kringelbach and Rolls, 2004). Different the-

ories regarding the nature of the information represented in the

OFC have suggested, for instance, that either economic values

(Padoa-Schioppa and Assad, 2006), emotions (Bechara et al.,

2000), or cue-outcome associations (Kringelbach, 2005) are rep-

resented and used to inform the decision-making process. But

neurophysiological studies have also shown that OFC neurons

can represent specific aspects of the current decision-making

problem, such as sensory properties of outcomes (McDannald

et al., 2014) or integrated schemas detailing the context, position,

and reward associatedwith objects (Farovik et al., 2015). Unifying

theseaccountsanddata,wehave recentlysuggested that inorder

to provide a decision-relevant summary of the environment, OFC

may flexibly represent different quantities depending on the task

at hand (Wilson et al., 2014). Specifically, we hypothesized that

these changing signals in OFC effectively represent the current

state within the task, in a way that is tailored for the operation of

RL-based decision-making mechanisms in the basal ganglia

(Niv 2009). Moreover, because OFC lesions lead to impairments

particularly in tasks that involve states that are difficult to distin-

guish based on sensory input alone (called ‘‘partially observable

states’’ or ‘‘hidden states’’) (Wilson et al., 2014; Bradfield et al.,

2015), we proposed that OFC’s critical contribution to decision-

making is to represent suchhidden states. Fully observable states

may also be represented in OFC, however, these representations

appear less critical for decision-making. This hypothesis makes

specific predictions regarding information encoding in the OFC

that go beyond a general increase in OFC activity in certain tasks

but not others. We therefore focused on analyzing multivoxel ac-

tivity patterns in the OFC, to test whether information about the

current hidden task state can be found in this area.
RESULTS

In order to test this theory in humans, we developed a task in

which participants’ decisions depended on hidden information
c.
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Figure 1. Experimental Task

(A) Example of trial sequence in the task. Partici-

pants began by judging the age (young versus old)

of the cued category (face or house). In the

following trials, they continued to judge the age of

the same category until an age change occurred.

On the trial following an age change, participants

had to switch to judging the other category, with

the first trial after the change determining the new

age of that category to which subsequent trials

needed to be compared. These rules created an

alternating mini-block structure of judging either

the age of faces or houses. The first trial after a

category switch was the trial in which the mini-

block was entered (Enter trial), trials in which the

category and age repeated are denoted Internal

trials, and the trial in which the age changed was

the end of the current mini-block (Exit trial).

(B) Trial structure. Each trial started with a fixation

cross and the display of the randomly determined

response mapping for the current trial. Following

the stimulus display, participants had up to

2,750 ms to make their response before the next

trial started, while the stimulus duration was in-

dependent of the response time and lasted on

average 3,300 ms. Responses were followed by a

box around the chosen option. Wrong responses

led to a repetition of the same (Enter trials) or

preceding trial (Internal and Exit trials), accompa-

nied by a written reminder of the current category.

(C) Mental operations involved in different trial

types. The diagram illustrates how currently hid-

den information about the previous age as well as

the current and previous category must be

factored into the decision-making process.

(D) Possible transitions between states during the

task. Each circle denotes a particular state (see

legend). Arrows indicate possible transitions and

node colors indicate the trial types.
involving memory of past events and knowledge about the cur-

rent phase of the task. Using past events to contextualize cur-

rent decisions and values is a common aspect of real-world

tasks, such as brokering on the stock market where the overall

trend of a stock is more important than its current absolute

value. Specifically, in our task participants were asked to judge

the age (old versus young) of either a face or a house. The pre-

sented images always contained both a face and a house

spatially superimposed (Figure 1A), but participants had to

selectively perform the age judgment on only one of the cate-

gories. On the first trial of each run, participants were explicitly

told what category to begin judging (e.g., ‘‘start with faces’’).

The age (young or old) of the first trial defined the age of the cur-

rent ‘‘mini-block’’ and participants were instructed to continue
Neuron
judging the same category as long as

the age in that category stayed the

same. Upon encountering a trial in which

the age in the judged category was

different (e.g., a change from ‘‘young’’

to ‘‘old’’; see Figure 1A), the task rules

required participants to switch to judging
the age of the other category, starting a new mini-block on the

next trial.

Performance of this task therefore required decision-making

based on hidden states: in addition to (1) the observable current

age, participants needed to know (2) which category they had to

judge, (3) the age of the previous trial (except on the first trial of a

mini-block), and (4) which category they had judged in the previ-

ous trial. The last aspect was necessary because changes in

category signaled the beginning of a new mini-block, at which

point it was not necessary to compare the age of the current trial

to that of the previous trial (Figure 1C). The task was thus fully

characterized using 16 states defined on these four binary-

valued features (Figure 1D). Moreover, the mini-block structure

meant that trials could be categorized as either the beginning
91, 1402–1412, September 21, 2016 1403
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Figure 2. Encoding of Hidden State Information in OFC BOLD Signals
(A) Average 16-way classification of state identity from fMRI patterns within the anatomically defined OFC (blue bar) and following a permutation test (black bar).

(B) Contribution of information to 16-way classification separately for task-irrelevant information from two trials ago (leftmost bars, light blue), the three different

hidden state components (solid blue), as well as the observable state component (striped bar). Only hidden and task-relevant components of the state

contributed significantly to state identity decoding.

(C) Dendrogram indicating the similarity structure of different states according to a hierarchical cluster analysis. Colors and acronyms as in Figure 1D. Note that all

purple (Enter) states involve a category switch, whereas all other states do not.

(D) Decoding of hidden state information separately for switch and non-switch trials. Dashed horizontal lines, chance baseline; error bars, SEM. *p % 0.05.
of amini-block (Enter trials), within amini-block (Internal trials), or

the end of a mini-block (Exit trials, see Figure 1 and below).

Therefore, although the display was highly similar in all trials,

different mental states and mental operations were required in

different trials as a consequence of our task rules.

Participants performed the task with near optimal perfor-

mance (mean error rate: 2.3%; Figure S1), suggesting that they

succeeded in mentally representing the correct state informa-

tion. We therefore reasoned that if OFC encodes the current

state of the task, we should be able to decode this information

from OFC activity.

Using multivariate linear support vector machine classification

(Chang and Lin 2011) on activity in the anatomically defined

human OFC (Tzourio-Mazoyer et al., 2002; Kahnt et al., 2012),

we could decode significantly above chance in which of the 16

possible task-states participants were during the task (mean

classification accuracy 12.2%, i.e., almost twice the 6.25%

chance baseline, t26 = 9.04, p < 0.001, Figure 2A). Next, we tested

the prediction that information encoding in OFC is specific to

task-relevant state components by constructing an alternative

16-state space that included task-irrelevant information about

the category and age from two trials ago, instead of the category

and age from one trial back. Training and testing a classifier

on this state space resulted in lower 16-way classification

compared to the hypothesized state space (8.1% versus

12.2%, t26 = 2.8, p = 0.01). To further test what information was

represented in OFC, we then assessed the accuracy of the two

16-way classifiers in predicting each component separately

(see the Experimental Procedures; note that this did not involve

training new classifiers, but rather accounting for which compo-

nents were incorrectly versus correctly classified on each test

trial). Figure 2B shows the resulting accuracies. This analysis

confirmed that no information about irrelevant events from

two trials ago could be detected (two leftmost bars in Figure 2B,

p > 0.66). In contrast, the category and age from one trial ago, as
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well as the current category—all hidden and task-relevant com-

ponents—were classified above chance, as we had predicted

(middle solid blue bars in Figure 2B, t26 > 3, p values for previous

category, previous age and current category were 0.014, 0.003,

and 0.007, respectively; p values one-sided). Finally, the analysis

revealed no evidence that the current age, which was task-rele-

vant but observable given the current category, contributed to

state representations in the OFC (rightmost bar in Figure 2B,

p > 0.72, see also Figure S2B).

It is interesting to note that we did not find any evidence that

the observable component ‘‘current age’’ could be classified,

while its unobservable counterpart, ‘‘previous age,’’ was decod-

able in OFC. This finding raises the possibility that participants

encoded the task using eight states (each consisting only of pre-

vious category and age, plus current category) rather than 16.

Under this scheme, the current age determines the behavioral

response and the transition to the next state, but is not part of

the state space itself. Decoding eight different states in the

OFC in this manner, we indeed found significant decoding accu-

racy, albeit at a slightly lower level relative to chance baseline

(16.7%, corresponding to 4.2% above chance baseline, t26 =

3.3, p = 0.002); all components involved in this reduced state

space also showed above baseline decoding (53.5%, 52.9%,

and 55.5% for previous category, previous age, and current

category, respectively; Figure S2C). We note that although this

was not our a priori hypothesized state space, in RL it is common

to separate actions from states and to predicate state transitions

both on the current state and the current action. To further probe

whether the current action was encoded as part of the state

space, we also explored alternative state spaces that included

the response mapping (that was determined randomly on each

trial and displayed on the screen throughout the trial) or the cur-

rent motor action (that was orthogonal to the current age due to

the random response mapping) instead of the current age. Re-

sults of these analyses suggested the response mapping and



motor action were coded primarily in visual and motor cortex,

respectively (see the Supplemental Information and Figure S3).

In order to rule out contributions of biases in the analysis, task

design, or behavior to our decoding results, we scrutinized our

results with several control analyses. First, a permutation anal-

ysis showed at chance decoding levels and was significantly

lower than decoding on the real data, both in the 16-way analysis

as well as regarding the binary classification (see black bar in

Figures 2A and S2A, all p < 0.025). In addition, we repeated

our decoding analyses on synthetic fMRI data that reflected

the subject-specific time course of events and included univari-

ate stimulus-driven activation within OFC (synthetic data were

matched as closely as possible to real data in all other respects,

see the Experimental Procedures). This analysis also showed no

above-chance decoding (mean accuracy across simulated ‘‘par-

ticipants’’ 6.8%, p = 0.43when compared to the chance baseline

of 6.25%). Based on these control analyses, we can confidently

interpret our classification results as reflecting encoding of task

states in the OFC.

Overall, the results above indicate that within OFC, different

neural activation patterns were related to the identity of different

hidden states. Such a detailed representation of the state space

does not preclude the possibility that higher-level distinctions

areadditionallyencoded in theneural signal. For instance, itwould

be possible that the neural codes for all Enter states (that involve a

mental category switch) are more similar to each other than to

non-Enter states (that do not involve such a switch). At the same

time, individual Enter states could still be distinguishable from

each other, reflecting a hierarchically nested state space repre-

sentation. In order to explorewhether such a hierarchical informa-

tion structure exists, we investigated the correlations between

multivoxel activity patterns associated with each pair of states

(correlationswerewithin subjects andbetween runs to avoid con-

founds of temporal proximity of states). The resulting similarity

matrix (1 minus correlation, see Kriegeskorte et al. 2008) was

then submitted to a hierarchical cluster analysis (see Farovik

et al. 2015 and McKenzie et al. 2014 for a similar approach). The

dendrogram summarizing the results (Figure 2C) indicates that

pairs of activity patterns were indeed more similar if two states

were both Enter or both non-Enter states (p < 0.01; paired t test

comparing each subjects’ average within-class versus be-

tween-class correlations). This structure is fully compatible with

and complementary to the encoding of a detailed state space in

which full hidden-state identity is represented, as confirmed by

adecoding analysis doneseparately for Enter andnon-Enter trials

that showed that even within these subsets of trials the 16-way

classifier could successfully detect all three hidden state compo-

nents (Figure 2D, all t26 > 2, p < 0.05, note that only test sets, not

training sets, were changed for this classification analyses, see

the Experimental Procedures).

Next, we assessed the anatomical specificity of hidden state

encoding by performing 16-way searchlight classification ana-

lyses across the whole brain (Kriegeskorte et al., 2006) and

then evaluating their accuracy on each of the four state compo-

nents (all analyses followed the same procedures used for the

anatomical OFC analysis, see above). As can be seen from the

resulting statistical brainmaps (Figures 3A–3D; Table S1), a clus-

ter in medial OFC was the only brain area in which decoding for
all three hidden state components could be found. This con-

trasts, for example, with the anatomical diversity of encoding

age and decoding category in more posterior sensory areas

(see clusters in lingual gyrus for past as well as previous age

and category encoding in parahippocampal ‘‘place area’’ and

fusiform ‘‘face area’’). Crucially, however, a voxel-wise conjunc-

tion analysis on the information maps of hidden state compo-

nents confirmed that, across participants, only medial OFC ac-

tivity carried complete information about all three hidden state

components (Figure 3E; pconj < 0.01, uncorrected, minimum

cluster size 5 voxels, peak in left medial frontal orbital gyrus,

Brodmann area 11, Montreal Neurological Institute [MNI] coordi-

nates [3/44/�14], Zpeak = 3.14; see Table S1 for full results and

Figure S3 for further analyses of the spatial distribution of infor-

mation encoding in individual participants and signal-to-noise

ratio maps within OFC). The uniqueness of the pattern of infor-

mation encoded in OFC was also evident when compared

to putatively task-relevant areas such as hippocampus (episodic

memory), dorsolateral PFC (DLPFC; working memory), or fusi-

form face area and parahippocampal place area (FFA/PPA; rep-

resentation of faces and houses, respectively), which all coded

for current and previous category information but not previous

age. None of these areas showed either complete encoding

of all hidden state components nor specific encoding of only

task-relevant variables (see Figures S2D–S2F).

Representing the correct state is an important prerequisite

for successful decision-making. We therefore assessed the rela-

tionship between decoding accuracy and task performance

across participants. Although behavioral errors were relatively

rare due to pre-training andperformancebonuses (see the Exper-

imental Procedures), participants’ average error rateswere signif-

icantly correlatedwith themeanclassificationaccuracyof all three

hidden state components, suggesting a link between OFC

state representations and task performance (Pearson correlation

r=�0.58, t25=�3.6,p=0.002, Figure4A;bootstrapped95%con-

fidence intervals [CIs]: [�0.8432, �0.0169], see Figure S4, same

correlation with decoding in hippocampus or DLPFC not signifi-

cant, p > 0.14, but a significant relation was found for PPA/FFA,

r = �0.40, t25 = �2.2, p = 0.03).

Additionally, we investigated classification of task states on tri-

als in which behavioral errors occurred. Testing the trained clas-

sifier on single-trial fMRI data, we found that incorrect responses

were accompanied byworse classification—the average 16-way

classification in the five trials preceding an error was 11%

whereas accuracy was only 4.2% on error trials (t23 = 2.2, p =

0.04, for a comparison of the two; three participants excluded

due to the lack of behavioral errors or for technical reasons,

see the Experimental Procedures). The trial-by-trial classification

time course revealed that decoding accuracy decreased in the

trials preceding behavioral errors, that is, there was a negative

linear effect of trial on decoding in the trials leading up to and

including an error, as assessed by a mixed-effects model in

which the classifier accuracy was the dependent variable and

a linear effect of trial number relative to the error was tested

(c2
1 = 4:7, p = 0.03). No such decrease was detected in matched

decoding time-courses that did not include errors (interaction of

condition by trial, c2
1 = 4:3, p = 0.04; effect of trial in non-error de-

coding, p = 0.33, see Figure 4B, filled circles). This effect of
Neuron 91, 1402–1412, September 21, 2016 1405
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Figure 3. Anatomical Specificity of Hidden State Representations

(A–D) Searchlight maps for decoding accuracy (t test against chance baseline) for each of the four state components (A) previous category, (B) previous age, (C)

current category, and (D) current age, thresholded at p = 0.025 (uncorrected) for illustration purposes. Colors represent t values. Sagittal, coronal, and axial slices

are at x = 4, y = 44, and z = �14 (MNI), respectively.

(E) Conjunction analysis of three hidden components, showing that all three hidden components could be decoded simultaneously only within medial OFC

(conjunction threshold p < 0.01, i.e., every state component is significant with p % 0.01, uncorrected, at shown location). Red voxels indicate significant

searchlight centers; blue line indicates the outline of the corresponding searchlights. A complete table of results can be found in Table S1.
behavioral errors was also reflected in the fact that decoding in

the error trial was significantly lower than decoding in the

matched correct trials (trial ‘‘0’’ in the figure; t24 = 2.3, p = 0.01)

and marginally lower in the trial prior to the error (trial ‘‘�1’’ in

the figure; t23 = 1.5, p = 0.07). These findings of a transient

drop in classification around the time of behavioral errors sug-

gest that a gradual loss of state information in OFC foreshad-

owed performance errors in the task.

If task-state encoding in OFC is important for task perfor-

mance, one might expect transitions between states whose

representations are very different to be more error-prone than

transitions between neurally similar states. We therefore investi-

gated whether similarity relations among OFC activity patterns

are correlated with task performance. We computed Pearson

correlations between multi-voxel activity patterns associated

with each pair of states (Figure 5A; correlations are within sub-

jects and between runs to avoid confounds of temporal proximity

of states; only positive correlations were considered because

negative correlations were rare and difficult to interpret as amea-

sure of distance). We then correlated these ‘‘distances’’ (1 minus

the correlation) with performance accuracy, such that the neural

similarity of a pair of consecutive trials A/Bwas correlatedwith

the error rate on trial B. This was done for a homogenous subset

of transitions—trials spanning a category switch following a

change in age (i.e., the last trial of onemini-block and the first trial

of the next mini-block)—to allow a fair comparison of error rates.
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Results showed that transitions to ‘‘nearer’’ states (i.e., transi-

tions between pairs of states whose neural representations

were more highly correlated) were associated with lower error

rates (linear effect of correlation on error rates in the eight

possible transition types: t6 = �3.23, p = 0.02, within-subject

mixed effects analysis: c2
1 = 3:0, p = 0.08, Figures 5B and 5C).

No such relationships were seen in data from hippocampus,

DLPFC or FFA/PPA (p > 0.17 for all). Finally, as with our decoding

analyses, we tested the validity of our results by performing the

same analyses on synthetic fMRI data that included univariate

stimulus-driven activation within OFC and were matched closely

to real data in all other respects. These control analyses found no

significant correlations with performance (p > 0.18 for all), allow-

ing us to conclude that our results cannot be explained by tempo-

ral contingencies or univariate stimulus-driven activation. In addi-

tion, we repeated this same analysis using Euclidean distances

instead of correlations and obtained the same results (see Fig-

ure S5), showing the robustness of our finding with respect to

different distance measures. Hence, our results support the

idea that the OFC contains a multivariate encoding of state iden-

tity that is used for task performance.

DISCUSSION

Taken together, our results demonstrate that patterns of fMRI

activity in human OFC contain information about participants’



A B Figure 4. OFC State Classification Corre-

lates with Task Performance

(A) A significant relationship between average

classification accuracy within OFC (mean across

all three hidden state components) and partici-

pants’ error rate suggests that the encoded state

information was relevant for task performance.

Each dot represents one participant. Gray,

regression line.

(B) Trialwise decoding before, during, and after

behavioral errors. Empty circles, 16-way decoding

accuracy in the five trials leading up to, during and

after an error. Filled circles, decoding accuracy

during seven consecutive trials with no behavioral

error. Chance = 6.25%, error bars, SEM.
current location in a mental map of a task comprised of hidden

states. Multivariate classification of human brain activity during

a 16-state decision-making task showed that unobservable in-

formation about the task environment could be reliably decoded

from OFC activity patterns. Moreover, only task-relevant state

components were represented in OFC and the fidelity of state

encoding, as well as the similarity between representations of

different task states, were related to participants’ task perfor-

mance. These results support the proposal that OFC encodes

hidden states in the service of RL.

Interestingly, state information encoded in OFC activation pat-

terns did not include ‘‘current age,’’ despite it being a salient

aspect of the task that was needed to make the correct

response. One distinguishing feature of current age was that it

was perceptually visible, whereas the other state components

of previous and current category and previous age were not.

Another difference is that current age may be considered more

of an action rather than a state component—it determines the

current response and the transition to the next state, but does

not necessarily have to be encoded as part of the state itself.

Indeed, this same non-decodable current age was decodable

in the OFC one trial later, when it was the previous age. Based

on the results of studies in which the OFC was compromised,

we had previously suggested that the OFC is especially critical

for representing hidden states (that is, disambiguating observ-

able states based on unobservable information) (Wilson et al.,

2014; Bradfield et al., 2015). However, it is not immediately clear

how this hypothesis at the level of states should be translated to

hidden or observable state components as there are several

possible implementations for an OFC-based signal that disam-

biguates otherwise similar states. Moreover, observable states

may also be represented in the OFC, but since OFC lesions did

not impair tasks that relied only on such states, these are prob-

ably also represented elsewhere in the brain. The question of the

precise implementation of the state representation in OFC, and

how it is combinedwith state information in the striatum, is there-

fore an interesting avenue for future work.

Our proposal that the OFC represents a cognitive map of task-

state space offers an integrating framework for existing OFC the-

ories, as different tasks can require that states include informa-

tion about emotional valence (Bechara et al., 2000), reward

and punishments (Kringelbach, 2005) and state expectancies

(Schoenbaum et al., 2011). For example, the plethora of evi-
dence showing value signals in OFC (Padoa-Schioppa and As-

sad, 2006, 2008) could be due to the fact that expected reward

often represents an important and hidden aspect of the task and

therefore is part of the task state. Similarly, OFC’s role in delayed

match-to-sample working-memory tasks (Meunier et al., 1997)

and n-back tasks (Barbey et al., 2011) may be attributable to

the fact that decision-making in these tasks relies on hidden

state (working memory) information. This may also explain previ-

ous fMRI findings that showed a general increase in OFC activity

in working memory or recognition memory tasks (Lamar et al.,

2004; Schon et al., 2008; Frey and Petrides 2000). In addition,

studies showing that value-related signals in OFC are modulated

by context (Winston et al., 2014) are in linewith our idea that state

representations integrate value signals with other task-relevant

information. Despite the potential breadth of this framework, it

is important to note that our view emphasizes OFC’s role in rep-

resenting task states in decision-making and reinforcement-

learning tasks in particular. This implies that wewould not neces-

sarily expect OFC to represent working memory in all tasks, but

rather only in tasks that require decision-making and learning

based on working memory. Future studies are needed to eval-

uate the full scope of OFC’s role. In this regard, lack of involve-

ment of the OFC in previous studies may not provide conclusive

evidence against a role for OFC in the explored tasks, as an

involvement of OFC in representing the states of a task would

not necessarily be reflected in overall higher activity. Moreover,

due to susceptibility and dropout artifacts, previous studies us-

ing protocols that were not specifically geared at acquiring

OFC signals may lack data that can reliably adjudicate regarding

multivariate encoding of states in OFC.

While task states may seem a permissively flexible construct,

our hypothesis suggests that for any given task these represen-

tations will not be promiscuous—because RL mechanisms must

learn values for each action at each state of the environment, the

efficiency of learning and decision-making scales badly with an

increasing number of states. As a result, a task should be repre-

sented with a small but sufficient set of states, implying that only

task-relevant state information should be encoded in the OFC, at

least to the extent that the animal has enough familiarity with the

task to know the correct state representation (Gershman and

Niv, 2010; Niv et al., 2015). Indeed, in our fully instructed task,

OFC selectively represented task-relevant information (Fig-

ure 2A), possibly curated from input from its wide network of
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A

C

B Figure 5. OFC State Representations Affect

Task Performance

(A) Average correlations between neural state

representations within OFC. Darker gray denotes

higher correlation (i.e., more similar state repre-

sentations).

(B) Relationship between error rate on the eight

different transitions exiting one miniblock and

entering another and correlation between the pairs

of states corresponding to these transitions,

across participants. For each participant, the eight

transitions were ordered according to strength of

correlation (from low to high). Dots denote the

average correlation between states in that ordinal

position across participants (x axis) and average

behavioral error rate on the corresponding transi-

tions (y axis), with horizontal and vertical error bars

denoting SEM of each. Higher correlations be-

tween neural states were associated with fewer

behavioral errors, on average (p = 0.04).

(C) Histogram of within-subject correlations be-

tween error rates and neural state similarity

showing that correlations were, on average,

significantly lower than 0 (p < 0.01).
connected brain areas that represent candidate state compo-

nents more broadly. Recent studies demonstrating that OFC en-

codes reward identity (Howard et al., 2015), but generalizes over

task-irrelevant stimuli (Klein-Flügge et al., 2013), are in line with

this notion that orbitofrontal task states are influenced by task

relevance (Stalnaker et al., 2015). Importantly, all these accounts

emphasize OFC’s role in decision-making, and our proposal

that OFC may, in principle, represent any of these types of infor-

mation (in a task-dependent manner) therefore subsumes

several seemingly conflicting hypotheses and integrates existing

findings.

Another interesting question for future research regards the

role of value representations in OFC, which might be reflected

in hierarchical representations that integrate value and other

state information (Farovik et al., 2015). Indeed, the precise link

between state information in OFC and value computations in

the basal ganglia has yet to be delineated. In addition, our find-

ings sidestep questions about the anatomical organizationwithin

OFC and do not preclude the idea that this large and physiolog-

ically heterogeneous area (Ongür and Price, 2000) contains mul-

tiple, functionally different networks (Kringelbach and Rolls,

2004). In particular, the fact that across participants, state repre-

sentations localized in medial OFC should be interpreted with

caution as medial OFC enjoys relatively less signal dropout as

compared to lateral OFC and a larger concentration of gray mat-

ter within a spherical searchlight. The large between-subject

variability that we observed (Figure S3) and the known inter-sub-

ject variability in sulcal patterns (Kringelbach and Rolls, 2004)

also call for caution in this regard.

Moreover, we do not propose that state information be exclu-

sive to the OFC. Because task states are necessary for correct

performance, presumably state representations in the OFC

would be conveyed to downstream areas for both model-based

and model-free decision-making (Daw et al., 2005). In addition,

whereas we suggest (and present data supporting) a role for

the OFC in providing a carefully curated summary of state-
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related information, this representation no doubt reflects infor-

mation available elsewhere in the brain. Indeed, the OFC’s

wide-ranging connectivity to sensory, associative, and high-

order areas can readily support such a function. Therefore,

decoding task-relevant information in other brain areas is not

antithetical to our proposed role for the OFC. Indeed, other brain

areas have been shown to dynamically and selectively represent

task-relevant aspects during decision-making (Schuck et al.,

2015)—the interaction between OFC and these frontal areas is

at present still unclear.

Finally, the demonstration that state representations that are

divorced from immediate sensory input and are important for de-

cision-making can be decoded from noninvasive brain-imaging

data opens the door to future work that will provide a read-out

of such representation, and use it to give corrective feedback

to wrong representations and not only to wrong actions. This

can allow for better training and teaching and will more directly

establish the causal relationship between OFC representations

and decision-making behavior. Our previous work has already

shown that using decoding techniques to assess what informa-

tion about the environment is selectively represented allows

insight and prediction of qualitative differences in how humans

approach decisions and which aspects of the environment

they will learn about (Schuck et al., 2015). Because the specific

way in which a task has been mentally encoded is often difficult

to assess from behavior, but is critical for the success of a deci-

sion maker, a direct measurement of these representations

as shown here holds immense promise both for basic science

and for practical applications.
EXPERIMENTAL PROCEDURES

Participants

Thirty adults from thePrincetonUniversity community participated in exchange

for monetary compensation ($20 per hour plus up to $10 performance-related

bonus). Two participants were excluded from further analysis due to changed



fMRI settings and one participant was excluded due to a large number of errors

(>3 SDs of group mean). The remaining 27 participants (13 female) had amean

age of 22.18 years (range 18–31), were right-handed, had normal or corrected-

to-normal vision, no psychiatric illnesses, and fulfilled all standard eligibility

criteria for participation in an fMRI study. The study was approved by the

Princeton Institutional Review Board and all subjects gave informed written

consent prior to participation. Because behavioral data indicated that learning

of the task rule had reached asymptote by the time of scanning (i.e., partici-

pants did not show signs of changes in error rates or reaction times across

time, see Supplemental Information), we included participants even if they

had not completed all five runs (three participants had fewer runs due to timing

restrictions or technical errors; mean number of runs completed: 4.9). For the

analysis of trialwise decoding around errors, we had to exclude three additional

participants: two because time stamps for behavioral errors were lost due to an

error in the code that caused these trials to be overwritten and one whose

errors only occurred at the beginning of scans, such that the decoding time

course of five trials preceding the behavioral error could not be reconstructed.

Stimuli

Each stimulus consisted of spatially superimposed images of a face and a

house (images courtesy of Dr. Dorothea Haemmerer and http://faces.mpdl.

mpg.de/faces (Ebner et al. 2010) (Figure 1A). Faces and houses could be clas-

sified as either young or old, i.e., face images showed either a younger or older

adult, and house images showed either a contemporary (i.e., young) or old-

fashioned (i.e., old) building. This resulted in four possible classes of stimuli,

two combining age-congruent pictures (both face and house are either young

or old) and two combining age-incongruent pictures (an old face combined

with a young house or vice versa).

Task

The task was structured into mini-blocks, which required participants to judge

the age of either faces or houses. Within each mini-block, participants’ task

was to judge the age of a given category, while switching the judged category

between mini-blocks. To start the task, a cue indicated the category to be

judged on the first mini-block (e.g., faces). Then, the mini-block continued

with judging the same category as long as the age of the object in this category

did not change. Once the age changed (from young to old or vice versa), par-

ticipants were required to start judging the other category (e.g., houses instead

of faces) from the following trial, effectively starting a new mini-block. Thus,

face and house mini-blocks alternated (see Figure 1A). Importantly, category

switches were not cued. Each mini-block lasted at least two trials (average

block length: three trials, 32 mini-blocks/switches per scanner run). No age

comparison was required between the first trial of the new mini-block and

the last trial of the previous mini-block. These rules created three basic types

of trials: Enter trials, which started a new mini-block, Internal (within-mini-

block) trials, in which the age repeated and subjects had to continue judging

the same category, and Exit trials, which had a different age than the previous

trial and thus signaled the need for a category switch (and a new miniblock) on

the next trial (Figure 1C).

At the start of each scanner run, a cuewas displayed indicating the first cate-

gory to judge (4 s). Then each trial began with the display of the young/old

response mapping below a fixation cross (mean duration: 1.2 s, range: 0.5–

3.5 s), after which the overlaid face-house stimulus was displayed (mean dura-

tion: 3.3 s, range: 2.75–5 s; Figure 1B). This resulted in an average trial duration

of 4.5 s (range: 3.25–8.5 s; all intervals drawn from a truncated exponential dis-

tribution). Participants responded ‘‘old’’ or ‘‘young’’ by pressing the left or right

button with the index ormiddle finger of their right hand. Themapping between

the response keys and old or young age changed trialwise, ensuring an equal

number of left/right presses for both ages. Participants had up to 2.75 s to indi-

cate their response. The chosen age was indicated by a small rectangle, how-

ever, the stimulus stayed on the screen until the end of the stimulus presenta-

tion duration, such that stimulus and trial durations were independent of

reaction times. Erroneous or time-out responses led to feedback (0.7 s) and,

for Internal and Enter trials, a repetition of the trial with the correct object cate-

gory displayed on the screen. Because error-triggered repetition of Exit trials

would require a category switch immediately after the repeated trial, the trial

preceding the error was repeated in these cases (alsowith the correct category
displayed on the screen), avoiding the need for a category switch immediately

following the repetition. No feedbackwasgiven otherwise, but at the start of the

scanning session participants were told that they would receive 1¢ per correct

answer plus a $5 bonus if their overall error rate stayed below 2.5%.

Design

Participants were first trained on the task outside the scanner (three blocks, 97

trials each, same week as main task). On the day of scanning, participants first

practiced a simplified version of the task with non-overlapping face/house

images while lying in the scanner. The main task was then started, which con-

sisted of five blocks of trials (485 total), performed during fMRI acquisition. Se-

quences of stimuli were selected such that the four image types (old or young

faces/houses), appeared equally often on the attended and unattended

dimension in each block. The age of the face and house was congruent in

one-third of all trials. Within each scanner run, only two specific images for

each age and category were used to construct all stimuli. Each block consis-

tent of 32 same-category-same-age, 32 same-category-different-age trials,

16 different-category-same-age, and 16 different-category-different-age tri-

als. Enter, Internal, and Exit trials each had an equal number of young/old faces

or houses, and in any trial therewas a 50%chance that the age changed on the

next trial. The less crucial transitions on the non-attended dimension were

matched approximately, with a maximum deviation from equal probabilities

by 5% (e.g., 55/45 instead of 50/50).

State Space and Markov Property

As we report in the main manuscript, successful performance of the task

required participants to maintain four pieces of information—the current and

previous ages and categories. Each combination of these four aspects of

the task environment constitutes a state, which we denote by its acronym: a

state labeled (Ho)Fy indicates a trial in which the previously judged category

was house (H), the previous age was old (o), the current category is face (F),

and the age of this face is young (y). Because each of the four components

of a state could take one of two values (ages could be o or y and categories

H or F), this resulted in a total of 24 = 16 states. The rules we imposed on

our task implied that each state could transition to exactly two other states

with equal transition probability (32 possible transitions). Importantly, only

one state component was observable from the current visual input (the current

age), whereas all others were hidden and depended on memory of the previ-

ous trial and knowledge of the task rules. The so-defined states form aMarkov

decision process as states are only dependent on their immediate predeces-

sor. Formally, the Markov property is fulfilled if the joint probability of the next

state (st+1) and next outcome (rt+1) depends only on the current state (st) and

action (at) and is independent of all preceding events:

pðst + 1 = s; rt + 1 = r j st ; at ; st�1; at�1;.; s0; a0Þ=pðst + 1 = s; rt + 1 = r j st ; atÞ:
(Equation 1)

Scanning Protocol

MRIs were acquired at the Princeton Neuroscience Institute using a 3-T

Siemens Magnetom Skyra MRI scanner (Siemens) and optimized for imaging

the orbitofrontal cortex (Weiskopf et al., 2007). A T2*-weighted echo-planar

imaging (EPI) pulse sequence was used for functional imaging (3 3 3 mm in

plane resolution, slice thickness = 2 mm, gap = 50%, TR = 2,400 ms, TE =

27 ms, FOV = 196 mm, flip angle = 71�, 46 axial slices, interleaved acquisition,

643 64 matrix). Slice orientation was tilted 30� backward relative to the ante-

rior-posterior commissure axis. After the experiment, field maps for distortion

correction were acquired using the same parameters (TE1 = 3.99 ms) and

structural images were acquired with a high-resolution MPRAGE pulse

sequence (voxel size = 0.93 0.93 0.9mm). Participants’ respiration and pulse

was acquired during scanning using pulse oximetry and a pneumatic respira-

tory belt. The experiment began 11 s after acquisition of the first volume of

each run. The temporal signal-to-noise ratio (voxelwise mean O voxelwise

SD) is shown in Figure S3D.

Data Preprocessing

Standard fMRI datapreprocessingandanalysesweredoneusingSPM8 (http://

www.fil.ion.ucl.ac.uk/spm) and the PhysIO Toolbox for SPM (http://www.
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translationalneuromodeling.org/tapas/). Multivariate pattern analyses were

done using the LIBSVM implementation of support vector machines (Chang

and Lin, 2011). Software is available at http://www.csie.ntu.edu.tw/�cjlin/

libsvm and the Princeton MVPA toolbox (http://code.google.com/p/

princeton-mvpa-toolbox). Behavioral analyses and computations within the

assumed graphical model of state space (see below) were done using R

(R Core Development Team, 2014).

The first trial within each scanner run, error trials, and trials following errors

were excluded from all analyses other than error-rate analyses. fMRI data pre-

processing followed standard procedures and involved spatial realignment,

coregistration of anatomical and functional scans, segmentation of structural

scans into white and gray matter maps, normalization into MNI space, and

smoothing. First-level (subject-wise) general linear modeling involved regres-

sors of interest that captured stimulus onset events (see below) and nuisance

regressors that reflected participant movement (six regressors) as well as car-

diac phase (following Glover et al., 2000, as implemented in the PhysIO

Toolbox; 26 regressors). Trial events weremodeled as boxcar functions whose

length reflected the reaction time in that particular trial to account for reaction

time-induced variability (Grinband et al., 2008). All regressors were convolved

with a canonical hemodynamic response function. Anatomical regions of inter-

est (ROIs) were created using SPM’s wfupick toolbox. The OFC ROI was

defined as in Kahnt et al. (2012) and included bilateral inferior, middle, and su-

perior orbital gyri and bilateral rectal gyri according to the automated anatom-

ical label (AAL) atlas. The hippocampus (HC) was defined as the left and right

hippocampus AAL labels. Dorsolateral prefrontal cortex (DLPFC) was defined

as the middle frontal gyrus AAL labels. The PPA/FFA mask included bilateral

fusiform and parahippocampal gyri.

fMRI Data Analysis

Standard general linear models (GLMs) were used to estimate voxelwise ac-

tivations associated with stimulus display. First-level models were run on real-

igned but non-normalized, non-smoothed data and included separate regres-

sors for each of the 16 different states plus the above described 32 nuisance

regressors for movement and physiological noise and the runwise mean acti-

vation. This resulted in five wholebrain maps of parameter estimates (‘‘betas’’)

for each of the 16 states (one map for each state and run). For classification

analyses, we Z scored and spatially smoothed the resulting beta maps within

each run and used them as labeled examples. We applied a leave-one-run-

out cross-validation scheme to train and test a support vector machine

(SVM, linear kernel, cost parameter = 1) on examples of the 16 different

states. For the main analysis reported in Figure 2A, the test set comprised

the run-wise beta estimates for each state. To obtain the results in Figure 2D,

the test set was split into Enter and non-Enter trials, and the classification test

was done separately for each subset. These separate classification results

each characterize how well decoding can be done in the absence of Enter/

non-Enter differences. Because each test was noisy due to the small number

of test points, results were then averaged within participant to maintain statis-

tical power. For the trial-wise decoding shown in Figure 4B, the test set

consistent of raw data from the relevant trials, spatially smoothed (FWHM =

3 mm) and Z scored run-wise. For each trial, data recorded 2 TRs after

stimulus onset (4.8–7.2 s) were used as input to the 16-way classifier, and de-

coding accuracy was measured. That is, the training set and the classifier

were identical for the run- and trial-wise analyses, which differed only in their

test set.

All classification analyses resulted in a predicted state of each test example

that could then be compared against the true state. Apart from the basic test of

whether the predicted state aligned with the true state (i.e., assessing 16-way

classification accuracy), we decomposed these predictions into decoding ac-

curacies of the four components of the state space by considering the agree-

ment between predicted and true state on each component separately. For

example, a classifier might wrongly predict class (Fy)Fy for an (Ho)Fy test

item. Although this prediction is overall wrong, the current category and the

current age (Fy) are predicted correctly, and only the components that relate

to the previous trial are wrong (Fs H and y s o). In this manner, we obtained

the correctness of each test example on each of the four components and

determined classification accuracy separately for each component. This

approach has the advantage that it allowed us to base our analysis on separate
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patterns associated with each of the 16 states while at the same time it yielded

classification for the four components. In the main manuscript, we refer to this

decomposition of the classifier performance as ‘‘predicting each component

separately.’’ We did not attempt to classify each of the four dimensions using

a binary classifier because that would be inconsistent with our hypothesis of

separate representations for each of the 16 states. For example, for a direct

classification of the current category eight states would be given the same la-

bel, however, we have no a priori reason to assume that such a joint represen-

tation exists in OFC.

State Space Similarities

The similarities between neural state patterns were computed as the Pearson

correlations between the estimated (beta) maps of activities associated with

each state. Correlating patterns estimated from the same run can introduce

biases in the correlation matrix through the effect of temporal contingencies

on the estimated correlation (Cai et al., 2016; Diedrichsen et al., 2011). To

prevent this, we calculated pattern similarity by cross-correlating patterns

estimated from separate runs, ensuring that the events modeled by each

pair of regressors are fully temporally separated and therefore the regressors

are orthogonal. Because the noise from two different runs is unlikely to be

correlated, this method does not introduce biases into the estimated corre-

lations of patterns (Alink et al., 2015). Specifically, for each run, each state

map (masked by the anatomical OFC) was correlated with all state maps

from all other runs. This resulted in four 16 3 16 correlation matrices, which

were then averaged. This procedure was repeated for all five runs, and even-

tually the average correlation matrices for all five runs were averaged again.

Negative correlations were set to NaNs as they are difficult to interpret and

likely reflect noise in such a setting. Control analyses using synthetic data

as well as Euclidean distances followed the same procedures described

above.

Synthetic fMRI Data and Noise Simulations

To validate our results and analysis pipelines, we created and analyzed syn-

thetic fMRI data. Specifically, we tested if univariate stimulus-related activa-

tion in OFC could explain our decoding or RSA results. Synthetic fMRI data

were created in R using the package neuRosim, using the following specifica-

tions: for each subject and run, wholebrain activation was created. A single

spherical activation peak in OFC was simulated (size drawn from normal dis-

tribution with mean of five voxels, SD 1, and fading parameter = 0.01). This

peak was assumed to be activated by the presentation of each stimulus (using

the actual onsets and durations for each subject). The location of each peak

was set to be the location of the maximum decoding for each participant indi-

vidually (see Figure S5) plus some spatial noise (mean = 3, SD = 2 voxels). Acti-

vation sizes for the 16 different states were drawn from a normal distribution

(mean = 25, SD = 5) and thus were different for different states. Activation

was convolved with a canonical HRF (double-gamma) function. In addition

to the stimulus-related activation, whole-brain noise was simulated as a

mixture of Rician system noise, temporal noise of order 1, low-frequency drift,

physiological noise, and task-related noise using default mixture parameters

and had a baseline value of 10. Spatial noise was modeled using a Gaussian

random field. Signal-to-noise ratio was set to the default value of 2.87.

Following the simulation, the spatial smoothness of the corresponding real

data were estimated using AFNI’s 3dFWHMx function, and the synthetic 4D

activation data were then smoothed to have the same spatial smoothness

(using AFNI’s 3dBlurToFWHM function). Finally, these data were prepro-

cessed and analyzed in exactly the same manner as the real data.

Behavioral Analyses

Reaction times (RTs) reflect the median within each factor cell. Behavioral an-

alyseswere done using t tests ormixed-effectsmodels using the package lmer

in R. In the latter, participantswere considered a random effect on the intercept

and linear effects of trial or errors. The reported p values correspond to Wald

chi-square (c2) tests. The analyses of the relationship between neural state sim-

ilarity and error rates were also done using mixed-effects models. The signifi-

cance of the correlation between average decoding and error rates shown in

Figure 4 was tested using a bootstrapping approach (10,000 iterations, done

in R using the package ‘‘boot’’ with default settings, see also Figure S4).
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