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Abstract6

Neural computations are often anatomically localized and executed on sub-second time7

scales. Understanding the brain therefore requires methods that offer sufficient spatial and8

temporal resolution. This poses a particular challenge for the study of the human brain because9

non-invasive methods have either high temporal or spatial resolution, but not both. Here, we10

introduce a novel multivariate analysis method for conventional blood-oxygen-level depen-11

dent functional magnetic resonance imaging (BOLD fMRI) that allows to study sequentially12

activated neural patterns separated by less than 100 ms with anatomical precision. Human13

participants underwent fMRI and were presented with sequences of visual stimuli separated14

by 32 to 2048 ms. Probabilistic pattern classifiers were trained on fMRI data to detect the15

presence of image-specific activation patterns in early visual and ventral temporal cortex. The16

classifiers were then applied to data recorded during sequences of the same images presented17

at increasing speeds. Our results show that probabilistic classifier time courses allowed to de-18

tect neural representations and their order, even when images were separated by only 32 ms.19

Moreover, the frequency spectrum of the statistical sequentiality metric distinguished between20

sequence speeds on sub-second versus supra-second time scales. These results survived when21

data with high levels of noise and rare sequence events at unknown times were analyzed. Our22

method promises to lay the groundwork for novel investigations of fast neural computations23

in the human brain, such as hippocampal replay.24
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Introduction25

Many cognitive processes are underpinned by rapidly changing neural activation patterns. Most26

famously, memory and planning have been linked to fast replay of representation sequences in the27

hippocampus, happening approximately within 200 to 300 milliseconds (ms) while the animal is28

resting or sleeping [e.g., 1–9]. Similar events have been observed during behavior [10, 11], as well29

as outside of the hippocampus [12–17]. Likewise, internal deliberations during choice are reflected30

in alternations between orbitofrontal value representations that last less than 100 ms [18] and31

perceptual learning has been shown to result in sub-second anticipatory reactivation sequences in32

visual cortex [19–21]. Investigating fast-paced representational dynamics within specific brain areas33

therefore promises important insights into a variety of cognitive processes.34

Such investigations are particularly difficult in humans, where signal detection must occur non-35

invasively, unless rare medical circumstances allow otherwise. How fast and anatomically localized36

neural dynamics can be studied using available neuroimaging techniques, in particular functional37

magnetic resonance imaging (fMRI), is therefore a major challenge for human neuroscience [for recent38

reviews, see e.g., 22, 23]. Here, we developed and experimentally validated a novel multivariate39

analysis method that allows to reveal the content and order of fast sequential neural events with40

anatomical specificity in humans using fMRI.41

The main concern related to fMRI is that this technique measures neural activity indirectly42

through slow sampling of an extended and delayed blood-oxygen-level dependent (BOLD) response43

function [24–26] that can obscure temporal detail. Yet, the problems arising in BOLD fMRI might44

not be as insurmountable as they seem. First, BOLD signals from the same participant and brain45

region show reliable timing and last for several seconds. Miezin et al. [27], for instance, reported a46

between-session reliability of hemodynamic peak times in visual cortex of r 2 = .95 [see also 28, 29].47

Even for closely timed events, the sequential order can therefore result in systematic differences in48

activation strength [30] that remain in the signal long after the fast sequence event is over, effectively49

mitigating the problems that arise from slow sampling. Second, some fast sequence events have50

properties that allow to detect them more easily. Replay events, in particular, involve reactivation of51

spatially tuned cells in the order of a previously travelled path. But these reactivated paths do not52

typically span the entire spatial environment and only involve a local subset of all possible places the53

animal could occupy [7, 8]. This locality means that even when measurement noise leads to partially54

re-ordered detection, or causes some elements of a fast sequence to remain undetected altogether,55

the set of detected representations will still reflect positions nearby in space. In this case, successive56

detection of elements nearby in space or time would still identify the fast process under investigation57

even under noisy conditions.58

If fMRI analyses can fully capitalize on such effects, this could allow the investigation of fast59

sequential activations. One potential application of such methods would be hippocampal replay, a60

topic of intense recent interest [for reviews, see e.g., 23, 31–35]. To date, most replay research61

has studied the phenomenon in rodents because investigations in humans and other primates either62

required invasive recordings from the hippocampus [36–40], used techniques with reduced hippocam-63

pal sensitivity and spatial resolution [41–46], or investigated non-sequential fMRI activation patterns64
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over seconds or minutes [47–51]. Recently, we have hypothesized that the properties of BOLD sig-65

nals mentioned above should enable the investigation of rapid neural dynamics and identified fast66

sequential hippocampal pattern reactivation in resting humans using fMRI [52].67

We extended this work in the present study by developing a modelling approach of multivariate68

fMRI pattern classification time courses and validating our method on experimentally controlled fast69

activation sequences in visual and ventral temporal cortex. As discussed above, we investigated the70

possibility to use fMRI to achieve (1) order detection and (2) element detection of fast activation71

sequences. The first effect, order detection, pertains to the presence of order structure in the signal72

that is caused by the sequential order of fast neural events. We evaluated this effect in two ways,73

first its impact on the relative strength of activations within a single measurement and second its74

consequences for the order across successive measurements. The second effect, element detection,75

quantifies to what extent fMRI allows to detect which elements were part of a sequence and which76

were not. While event detection is a standard problem in fMRI, we focused on the special case77

relevant to our question: detecting neural patterns of brief events that are affected by patterns78

from other sequence elements occurring only tens of milliseconds before or afterwards, causing79

backward and forward interference, respectively. Using full sequences of all possible elements in our80

experimental setup that tested sequence ordering, our design ensured that the two effects can be81

demonstrated independently, i.e., that the order effect could not have been a side effect of element82

detection. Our results demonstrate that fMRI with a conventional repetition time (TR) of 1.2583

seconds (s) can be used to detect the elements and order of neural event sequences separated by84

only 32 ms. We also show that sequence detection can be achieved in the presence of high levels85

of signal noise and timing uncertainty, and is specific enough to differentiate fast sequences from86

activation patterns that could reflect slow conscious thinking.87

Results88

To achieve full experimental control over fast activation patterns, we presented sequences of visual89

stimuli in a precisely timed and ordered manner. We then asked which aspects of the experimentally90

elicited fast neural processes are detectable from fMRI signals, and if detection is still possible when91

sequences occur embedded in noisy background activity at unknown times. We used multivariate92

pattern classifiers to analyze data from visual and ventral temporal cortex. Reflecting a common93

analytic scenario, classifiers were trained on fMRI data from individual events that proceeded at a94

slow pace (henceforth: slow trials, Fig. 1a) [cf. 42, 45, 50, 52]. We then applied the classifiers to (a)95

time points that contained sequences of events at different speeds (henceforth: sequence trials, Fig.96

1b) and (b) trials involving varying numbers of event repetitions (henceforth: repetition trials, Fig.97

1c), which allowed us to investigate sequence order and element detection, respectively. The analyses98

included N = 36 human participants who underwent two fMRI sessions each (four participants were99

excluded due to insufficient performance, see Methods and supplementary information (SI), Fig.100

S1a). Sessions were separated by 9 days on average (SD = 6 days, range: 1 – 24 days) and101

contained the trial types described below.102

4

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.15.950667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950667
http://creativecommons.org/licenses/by-nc-nd/4.0/


Training fMRI pattern classifiers on slow events. In slow trials, participants repeatedly viewed103

the same five images individually for 500 ms [images showed a cat, chair, face, house, and shoe;104

taken from 53]. Temporal delays between images were set to 2.5 s on average, as typical for task-105

based fMRI experiments [54]. To ensure that image ordering did not yield biased classifiers through106

biased pattern similarities [cf. 55], each possible order permutation of the five images was presented107

exactly once (120 sets of 5 images each). Participants were kept attentive by a cover task that108

required them to press a button whenever a picture was shown upside-down (20% of trials; mean109

accuracy: 99.44%; t(35) = 263.27; p < .001, compared to chance; d = 43.88; Figs. 1d, S1a–c).110

Using data from correct upright slow trials, we trained five separate multinomial logistic regression111

classifiers, one for each image category [one-versus-rest; see Methods for details; cf. 53]. fMRI data112

were masked by a grey-matter-restricted region of interest (ROI) of occipito-temporal cortex, known113

to be related to visual object processing [11162 voxels in the masks on average; cf. 53, 56–58]. We114

accounted for hemodynamic lag by extracting fMRI data acquired 3.75 to 5 s after stimulus onset115

(corresponding to the fourth TR, see Methods). Cross-validated (leave-one-run-out) classification116

accuracy was on average 87.09% (SD = 3.50%; p < .001, compared to chance; d = 19.16; Fig.117

2a). In order to examine the sensitivity of the classifiers to pattern activation time courses, we118

applied them to seven TRs following stimulus onset on each trial. This analysis confirmed delayed119

and distinct increases in the estimated probability of the true stimulus class given the data, peaking120

at the fourth TR after stimulus onset, as expected (Fig. 2b). The peak in probability for the true121

stimulus shown on the corresponding trial was significantly higher than the mean probability of all122

other stimuli at that time point (ts ≥ 17.89, ps < .001, ds ≥ 2.98; Bonferroni-corrected).123

Single event and event sequence modelling. The data shown in Fig. 2b highlight that mul-124

tivariate decoding time courses are delayed and sustained, similar to single-voxel hemodynamics.125

We captured these dynamics elicited by single events by fitting a sine-based response function to126

the time courses on slow trials (a single sine wave flattened after one cycle, with parameters for127

amplitude A, response duration λ, onset delay d and baseline b, Figs. 2c, S2, see Methods). Based128

on this fit, we approximated expectations for signals during sequential events. The sequentiality129

analyses reported below essentially quantify how well successive activation patterns can be differen-130

tiated from one another depending on the speed of stimulus sequences. We therefore considered two131

time-shifted response functions and derived the magnitude and time course of differences between132

them. Based on the sinusoidal nature of the response function, the time course of this difference133

can be approximated by a single sine wave with duration λδ = λ + δ, where δ is the time between134

events and λ is the average fitted single event duration, here λ = 5.26 TRs (see Equations 4 and135

5, Methods). This average parameter was used for all further analyses (Figs. 2c, 2d, see Methods).136

In this model, the amplitude is proportional to the time shift between events (until time shifts be-137

come larger than the time-to-peak of the response function). Consequently, after an onset delay138

(d = 0.56 TRs) the difference in probability of two time-shifted events is expected to be positive139

for the duration of half a cycle, i.e., 0.5λδ = 0.5(5.26 + δ) TRs, and negative for the same period140

thereafter. Three predictions arise from this model: (1) the first event will dominate the signal141

in earlier TRs and activation strengths will be proportional to the ordering of events during the142
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Figure 1: Task design and behavioral performance. (a) On slow trials, individual images were presented and
inter-trial intervals (ITIs) were 2.5 s on average. Participants were instructed to detect upside-down visual stimuli
(20% of trials) but not respond to upright pictures. Classifier training was performed on fMRI data from correct
upright trials only. (b) Sequence trials contained five unique visual images, separated by five levels of inter-stimulus
intervals (ISIs) between 32 and 2048 ms. (c) Repetition trials were always fast (32 ms ISI) and contained two visual
images of which either the first or second was repeated eight times (causing backward and forward interference,
respectively). In both task conditions, participants were asked to detect the serial position of a cued target stimulus
in a sequence and select the correct answer after a delay period without visual input. One sequence or repetition
trial came after five slow trials. (d) Mean behavioral accuracy (in %; y-axis) in upside-down slow trials. (e) Mean
behavioral accuracy in sequence trials (in %; y-axis) as a function of sequence speed (ISI, in ms; x-axis). (f) Mean
behavioral accuracy in repetition trials (in %; y-axis) as a function of which sequence item was repeated (fwd =
forward, bwd = backward condition). All error bars represent ±1 standard error of the mean (SEM). The horizontal
dashed lines in (e) and (f) indicate the 50% chance level.

sequential process; (2) in later TRs, the last sequence element will dominate the signal, and the143

activation strengths will be ordered in reverse; (3) the duration and strength of these two effects144

will depend on the fitted response duration and the timing of the stimuli as specified above (Fig.145

2e, Equations 1–5, see Methods). For sequences with more than two items (like for sequence trials)146

δ is defined as the interval between the onsets of the first and last sequence item. We henceforth147

term the above mentioned early and late TRs the forward and backward periods, and consider all148

results below either separately for these phases, or for both relevant periods combined (calculating149

periods depending on the timings of image sequences and rounding TRs, see Methods).150
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Figure 2: Classification accuracy and multivariate response functions. (a) Cross-validated classification ac-
curacy in decoding the five unique visual objects in occipito-temporal data during task performance (in %; y-axis).
Chance level is 20% (dashed line). Each dot corresponds to averaged data from one participant. Errorbar represents
±1 SEM. (b) Time courses (in TRs from stimulus onset; x-axis) of probabilistic classification evidence (in %; y-axis)
for all five stimulus classes. Substantial delayed and extended probability increases for the stimulus presented (black
lines) on a given trial (gray panels) were found. Each line represents one participant. (c) Average probabilistic classi-
fier response for the five stimulus classes (gray lines) and fitted sine-wave response model using averaged parameters
(black line). (d) Illustration of sinusoidal response functions following two neural events (blue and red lines) time-
shifted by δ (dashed horizontal line). The resulting difference between event probabilities (black line) establishes
a forward (blue area) and backward (red area) time period. The sine-wave approximation without flattened tails
is shown in gray. (e) Probability differences between two time-shifted events predicted by the sinusoidal response
functions depending on the event delays (δ) as they occurred in the five different sequence speed conditions (colors).

Detecting sequentiality in fMRI patterns following fast and slow neural event sequences.151

Our first major aim was to test detection of sequential order of fast neural events with fMRI. We152

therefore investigated above-mentioned sequence trials in which participants viewed a series of five153

unique images at different speeds (Fig. 1b). Sequence speed was manipulated by leaving either154

32, 64, 128, 512 or 2048 ms between pictures, while images were always presented briefly (100 ms155

per image, total sequence duration 0.628–8.692 s). Sequences always contained each image exactly156

once. Every participant experienced 15 randomly selected image orders that ensured that each157

image appeared equally often at the first and last position of the sequence (all 120 possible orders158

counterbalanced across participants). The task required participants to indicate the serial position of159

a verbally cued image 16 s after the first image was presented. This delay between visual events and160

response allowed us to measure sequence-related fMRI signals without interference from following161

trials, while the upcoming question did not necessitate memorization of the sequence during the162

delay period. Performance was high even in the fastest sequence trials (32 ms: M = 88.33%,163
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SD = 7.70, p < .001 compared to chance, d = 4.98), and only slightly reduced compared to the164

slowest condition (2048 ms: M = 93.70%, SD = 7.96, p < .001 compared to chance, d = 5.49,165

Figs. 1e, S1d).166

We investigated whether sequence order detection was evident in the relative pattern activation167

strength within a single measurement. Examining the time courses of probabilistic classifier evidence168

during sequence trials (Fig. 3a) showed that the time delay between events was indeed reflected in169

sustained within-TR ordering of probabilities in all speed conditions. Specifically, immediately after170

sequence onset the first element (red line) had the highest probability and the last element (blue line)171

had the lowest probability. This pattern reversed afterwards, following the forward and backward172

dynamics that were predicted by the time-shifted response functions (Fig. 2d; forward and backward173

periods adjusted to sequence speed, see above and Methods). A TR-wise linear regression between174

the serial positions of the images and their probabilities confirmed this impression. In all speed175

conditions, the mean slope coefficients initially increased above zero (reflecting higher probabilities176

of earlier compared to later items) and decreased below zero afterwards (Figs. 3b, S4a). Considering177

mean regression coefficients during the predicted forward and backward periods, we found significant178

forward ordering in the forward period at ISIs of 128, 512 and 2048 ms (ts ≥ 2.83, ps ≤ .01, ds179

≥ 0.47) and significant backward ordering in the backward period in all speed conditions (ts ≥ 3.94,180

ps < .001, ds ≥ 0.66, Fig. 3c). Notably, the observed time course of regression slopes on sequence181

trials (Fig. 3b) closely matched the time course predicted by our modeling approach (Fig. 2d), as182

indicated by strong correlations for all speed conditions between model predictions and the averaged183

time courses (Fig. 3d; Pearson’s rs ≥ .78, ps ≤ .001) as well as significant within participant184

correlations (Fig. 3e; Pearson’s rs ≥ .23, ts ≥ 3.67, ps ≤ .001 compared to zero, ds ≥ 0.61).185

Choosing a different index of association like rank correlation coefficients (Figs. S3a–b, S4c)186

or the mean step size between probability-ordered events within TRs (Figs. S3c–d, S4d) produced187

qualitatively similar results (for details, see SI). Removing the sequence item with the highest prob-188

ability at every TR also resulted in similar effects, with backward sequentiality remaining significant189

at all speeds (p ≤ .02) except the 128 ms condition (p = .10) and forward sequentiality still being190

evident at speeds of 512 and 2048 ms (p ≤ .002, Fig. S5a–b). To identify the drivers of the191

apparent asymmetry in detecting forward and backward sequentiality, we ran two additional control192

analyses and either removed the probability of the first or last sequence item (forward and backward193

periods adjusted accordingly). Removal of the first sequence item had little impact on sequentiality194

detection (Figs. S5c–d and SI), but removing the last sequence item markedly affected the results195

such that significant forward and backward sequentiality was only evident at speeds of 512 and 2048196

ms (Figs. S5e–f and SI).197

Next, we investigated evidence of pattern sequentiality across successive measurements, similar198

to Schuck and Niv [52]. Specifically, for each TR we only considered the decoded image with199

the highest probability and asked whether earlier images were decoded primarily in earlier TRs,200

and if later images were primarily decoded in later TRs. In line with this prediction, the average201

serial position fluctuated in a similar manner as the regression coefficients, with a tendency of early202

positions to be decoded in early TRs, and later positions in later TRs (Fig. 3f). The average serial203
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position of the decoded images was therefore significantly different between the predicted forward204

and backward period at all sequence speeds (all ps < .001, Figs. 3g, S4d). Compared to baseline205

(mean serial position of 3), the average serial position during the forward period was significantly206

lower for speeds of 128, 512 and 2048 ms (all ps ≤ .03). The average decoded serial position at207

later time points was significantly higher compared to baseline in all speed conditions, including the208

32 ms condition (all ps < .001). Thus, earlier images were decoded earlier after sequence onset209

and later images later, as expected. This sequential progression through the involved sequence210

elements had implications for transitions between consecutively decoded events. Initially, when early211

elements begin to dominate the signal in the first half of the forward period (henceforth early),212

the position of decoded sequence items decreased relative to baseline. During the first half of the213

backward period, however, the decoded serial positions increased, reflecting the ongoing progression214

through all sequence elements from first to last. The reverse was true during the second half of215

both periods (henceforth late): positions began to increase in the forward period, but during the216

second half of the backward period, the decoded positions were about to return back to baseline217

from the last decoded item, thus decreasing again. To verify this effect, we computed the step sizes218

between consecutively decoded serial events as in Schuck and Niv [52]. For example, observing a219

2→4 transition of decoded events in consecutive TRs would correspond to a step size of +2, while220

a 3→2 transition would reflect a step size of –1. In line with the above-mentioned predictions, the221

step sizes of early transitions were significantly more forward directed in the forward as compared222

to the backward period for speed conditions of 512 and 2048 ms (ps ≤ .005, Fig. 3h). Average223

step sizes of late transitions, in contrast, were negative directed in the forward period and vice224

versa in the backward period, differing in all speed conditions (ps ≤ .05, Fig. 3h), except the 64225

ms condition (p = .19). This analysis suggests that transitions between decoded items reflect the226

gradual progression through all sequence events, even when events were separated only by tens of227

milliseconds.228
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Figure 3: Sequence order is reflected in probability time courses. (a) Time courses (TRs from sequence onset)
of classifier probabilities (%) per event (colors) and sequence speed (panels). Forward (blue) and backward (red)
periods shaded as in Fig. 2d. (b) Time courses of mean regression slopes between event position and probability for
each speed (colors). Positive / negative values indicate forward / backward sequentiality. (c) Mean slope coefficients
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10

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.15.950667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950667
http://creativecommons.org/licenses/by-nc-nd/4.0/


Detecting sequence elements: asymmetries and interference effects. We next turned to229

our second main question, asking whether we can detect which patterns were part of a fast sequence230

and which were not. To this end, we investigated classification time courses in repetition trials, in231

which only two out of the five possible images were shown. Crucially, one image was repeated, while232

the other one was shown only once. Embedding one briefly displayed image into the context of a233

repeated image allowed us to study to what extent another activation can interfere with the detection234

of a brief activation pattern of interest. Repeating the interfering image eight times allowed us to235

study this phenomenon in a worst case scenario by exaggerating the interference effect. Finally,236

varying whether the second or first item is short allowed us to investigate if the ability to detect237

sequence elements is asymmetrical, and possibly favors the detection of late over early events.238

Specifically, if the first image was shown briefly once and followed immediately by eight repetitions239

of a second image, the dominant second image will interfere with the detection of the first image240

(henceforth forward interference condition, since the forward phase suffers from interference). If, on241

the other hand, the first image was repeated eight times and the second image was shown once, the242

first image will be dominant and possibly interfere with the backwards phase (henceforth backward243

interference condition). Comparing the forward and backward conditions therefore allowed closer244

assessment of asymmetries, which had become apparent in the results presented above (Fig. 3).245

In all cases, images were separated by only 32 ms. As before, we applied the classifiers trained on246

slow trials to the data acquired in repetition trials, to obtain the estimated probability of every class247

given the data for each TR (Figs. 4a, S7). The expected relevant time period was determined to be248

from TRs 2 to 7 and used in all analyses (see rectangular areas in Fig. 4a). Participants were kept249

attentive by the same cover task used in sequence trials (Fig. 1c). Average behavioral accuracy250

was high on repetition trials (M = 73.46%, SD = 9.71%; Figs. 1f, S1a) and clearly differed251

from a 50% chance-level (t(35) = 14.50, p < .001, d = 2.42). Splitting up performance into252

forward and backward interference trials showed performance above chance level in both conditions253

(M = 82.22% and M = 63.33%, respectively, ps ≤ .003, ds ≥ 0.49, Fig. 1f). Additional conditions254

with intermediate levels of repetitions are reported in the SI (Fig. S1e).255

We first asked whether our classifiers indicated that the two events that were part of the sequence256

were more likely than items that were not part of the sequence. Indeed, the event types (first, second,257

non-sequence) had significantly different mean decoding probabilities, with sequence items having258

a higher probability (first: M = 20.09%; second: M = 24.52%) compared to non-sequence items259

(M = 7.68%; both ps < .001, corrected; main effect: F2,53.51 = 106.94, p < .001, Fig. 4b).260

Moreover, the probability of decoding within-sequence items depended on their position as well as261

the their duration (number of repetitions). Considering both interference conditions revealed a main262

effect of event type, F2,40.18 = 135.88, p < .001, as well as an interaction between event type263

and duration, F2,105.0 = 123.35, p < .001, but no main effect of duration, p = .70 (Fig. 4c).264

This indicated that the forward phase suffered from much stronger interference than the backwards265

phase. In the forward interference condition the longer second event had an approximately 18%266

higher probability than the first event (31.44% vs 13.52%, p < .001), whereas in the backward267

interference condition the first event had an only 9% higher probability than the second (26.67% vs.268
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17.60%, p < .001, corrected). Thus, item detection is impacted more by succeeding than preceding269

activation patterns, leading to the increased dominance of the last item in sequence trials particularly270

in the fast conditions (Fig. 3a). Importantly, however, both sequence elements still differed from271

non-sequence items even under conditions of interference (forward: 7.76% and backward: 7.59%,272

respectively, all ps < .001, corrected), indicating that sequence element detection remains possible273

under such circumstances. Using data from all TRs revealed qualitatively similar significant effects274

(p < .05 for all but one test after correction, see SI). Repeating all analyses using proportions of275

decoded classes (the class with the maximum probability was considered decoded at every TR),276

or considering all repetition trial conditions, also revealed qualitatively similar results). Thus, brief277

events can be detected despite significant interference.278

We next asked which implications these findings have for the observed pattern transitions [cf.279

52]. To this end, we analyzed the trial-wise proportions of transitions between consecutively de-280

coded events, and asked whether forward transitions between sequence items were more likely than281

transitions between a sequence and a non-sequence item (outward transitions) or between two282

non-sequence items (outside transition; details see Methods). This analysis revealed that forward283

transitions (6.22%) were more frequent than both outward transitions (2.57%), and outside transi-284

tions (1.04%, both ps < .001, corrected; Fig. 4d) in the forward interference condition. The same285

was true in the backward interference condition (forward transitions: 7.00%; outward transitions:286

2.50%; outside transitions: 1.20%, all ps < .001). The full transition matrix is shown in Fig. 4e.287

Together, the results from repetition trials indicated that (1) within-sequence items could be288

clearly detected despite interference from other sequence items, (2) event detection was asymmetric,289

such that items occurring at the end of sequences can be detected more easily than those occurring290

at the beginning and (3) sequence item detection leads to within sequence pattern transitions.291
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Detecting sparse sequence events with lower signal-to-noise ratio (SNR). The results292

above indicate that detection of fast sequences is possible if they are under experimental control.293

In most applications of our method, however, this will not be the case. When detecting replay, for294

instance, sequential events will occur spontaneously during a period of noise. We therefore next295

assessed the usefulness of our method under such circumstances.296

We first characterized the behavior of sequence detection metrics during periods of noise. To this297

end, we applied the logistic regression classifiers to fMRI data acquired from the same participants298

(N = 32 out of 36) during a 5-minute (233 TRs) resting period before any task exposure in the299

scanner. Classifier probabilities during rest fluctuated wildly, often with a single category having300

a high probability, while all other categories had probabilities close to zero. During fast sequence301

periods, in contrast, the near-simultaneous activation of stimulus-driven activity led to reduced302

probabilities, such that category probabilities tended to be closer together and less extreme. In303

consequence, the average standard deviation of the probabilities per TR during rest and slow (2048304

ms) sequence periods was higher (M = 0.23 and M = 0.22, respectively) compared to the average305

standard deviation in the fast sequence condition (32 ms; M = 0.20; ts ≥ 4.02; ps ≤ .001; ds306

≥ 0.71; Fig. 5a).307

As before, we next fitted regression coefficients through the classifier probabilities of the rest308

data and, for comparison, to concatenated data from the 32 ms and 2048 ms sequence trials (Fig.309

5b–c). As predicted by our modelling approach (Fig. 2e), and shown in the previous section (Fig.310

3b), the time courses of regression coefficients in the sequence conditions were characterized by311

rhythmic fluctuations whose frequency and amplitude differed between speed conditions (Fig. 5c).312

To quantify the magnitude of this effect, we calculated frequency spectra of the time courses of313

the regression coefficients in rest and concatenated sequence data (Fig. 5d; using the Lomb-Scargle314

method [e.g., 60] to account for potential artefacts due to data concatenation, see Methods). This315

analysis revealed that frequency spectra of the sequence data differed from rest frequency spectra316

in a manner that depended on the speed condition (Fig. 5d–e). As foreshadowed by our model,317

power differences appeared most pronounced in the predicted frequency ranges (Fig. 5e; ps ≤ .02;318

see Eqn. 5 and Methods).319

Finally, we asked whether these differences would persist if (a) only few sequence events occurred320

during a 5-minute rest period, while (b) their onset was unknown and (c) their SNR was lower. To321

this end, we synthetically generated data containing a variable number of sequence events that were322

inserted at random times into the resting state data acquired before any task exposure. Specifically,323

we inserted between 1 and 6 sequence events into the rest period by blending rest data with TRs324

recorded in fast (32 ms) or slow (2048 ms) sequence trials (12 TRs per trial, random selection of325

sequence trials and insertion of time points, without replacement). To account for possible SNR326

reductions, the inserted probability time courses were multiplied by a factor κ of 4
5 , 1

2 , 1
4 , 1

8 or 0 and327

added to the probability time courses of the inversely scaled (1 – κ) resting state data. Effectively,328

this led to a step-wise reduction of the inserted sequence signal from 80% to 0%, relative to the329

SNR obtained in the experimental conditions reported above.330

As expected, differences in above-mentioned standard deviation of the probability gradually331
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increased with both the SNR level and the number of inserted sequence events when either fast or332

slow sequences were inserted (Fig. 5f). In our case this led significant differences to emerge with333

one insert and an SNR reduced to 12.5% in both the fast and slow condition (Fig. 5g; comparing334

against 0, the expectation of no difference with a conventional false positive rate α of 5%; all ps335

false discovery rate (FDR)-adjusted).336

Importantly, the presence of sequence events was also reflected in the frequency spectrum of337

the regression coefficients. Inserting fast event sequences into rest led to power increases in the338

frequency range indicative of 32 ms events (∼ 0.17 Hz, Fig. 5f, left panel), in line with our339

findings above. This effect again got stronger with higher SNR levels and more sequence events.340

Inserting slow (2048 ms) sequence events into the rest period showed a markedly different frequency341

spectrum, with an increase around the frequency predicted for this speed (∼ 0.07 Hz, Fig 5f, right342

panel). Comparing the power around the predicted frequency (±0.01 Hz) of both speed conditions343

indicated significant increases in power compared to sequence-free rest when six sequence events were344

inserted and the SNR was reduced to 80% (ts ≥ 2.11, ps ≤ .04, ds ≥ 0.37). Hence, the presence of345

spontaneously occurring sub-second sequences during rest can be detected in the frequency spectrum346

of our sequentiality measure, and distinguished from slower second-scale sequences that might reflect347

conscious thinking.348

15

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.15.950667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950667
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.1

0.2

0.3

0.4

32
 m

s

20
48

 m
s

re
st

S
D

 o
f 

p
ro

b
a

b
ili

ty
a

0.000

0.025

0.050

0.075

0.100

32
 m

s

20
48

 m
s

re
st

R
e

g
re

s
s
io

n
 s

lo
p

e
 (

a
b

s
)b

rest

32 ms

2048 ms

0 50 100 150 200

-0.1
0

0.1

-0.1
0

0.1

-0.1
0

0.1

Time (TRs)

R
e

g
re

s
s
io

n
 s

lo
p

e

c

0.170.070.010

1

2

3

0 0.05 0.1 0.15 0.2 0.25 0.3

Frequency

P
o

w
e

r

32 ms 2048 ms restd

0

1

2

3

4

5

Slow (0.07) Rest (0.01) Fast (0.17)

Predicted frequency

P
o

w
e

r

32 ms 2048 ms reste

32 ms 2048 ms

1 2 3 4 5 6 1 2 3 4 5 6
-0.03

-0.02

-0.01

0

0.01

Number of inserted sequence trials

S
D

 o
f 

p
ro

b
a

b
ili

ty
(r

e
la

tiv
e

 t
o

 p
re

-t
a

s
k
 r

e
s
t)

SNR level 0 1/8 1/4 1/2 4/5f

32 ms 2048 ms

1 2 3 4 5 6 1 2 3 4 5 6
-10

-8

-6

-4

-2

0

Number of inserted sequence trials

p
-v

a
lu

e
(b

a
s
e

-2
0

 lo
g

-t
ra

n
s
fo

rm
e

d
)

SNR level 0 1/8 1/4 1/2 4/5g

32 ms 2048 ms

2
 in

s
e

rts
6

 in
s
e

rts

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

-0.2
-0.1
0.0
0.1
0.2
0.3

-0.2
-0.1
0.0
0.1
0.2
0.3

Frequency

P
o

w
e

r
(r

e
la

tiv
e

 t
o

 p
re

-t
a

s
k
 r

e
s
t)

h 32 ms 2048 ms

2
 in

s
e

rts
6

 in
s
e

rts

0.17 0.07 0.17 0.07

-0.1

0.0

0.1

0.2

0.3

-0.1

0.0

0.1

0.2

0.3

Predicted frequency

P
o

w
e

r
(r

e
la

tiv
e

 t
o

 p
re

-t
a

s
k
 r

e
s
t)

i

Figure 5: Detecting sparse sequence events with lower SNR. (a) Mean standard deviation of classifier probabil-
ities in rest and sequence data. (b) Mean absolute regression slopes, as in (a). (c) Time courses of regression slopes
in rest and sequence data. Vertical lines indicate trial boundaries. (d) Normalized frequency spectra of regression
slopes in rest and sequence data. Annotations indicate predicted frequencies based on Eqn. 5. (e) Mean power of
predicted frequencies in rest and sequence data, as in (a). Each dot represents data from one participant. (f) Mean
standard deviation of rest data including a varying number of SNR-adjusted sequence events (fast or slow). Dashed
line indicates indifference from sequence-free rest. (g) Base-20 log-transformed p-values of t-tests comparing the
standard deviation of probabilities in (f) with sequence-free rest. Dashed line indicates p = .05. (h) Frequency spec-
tra of regression slopes in SNR-adjusted sequence-containing rest relative to sequence-free rest. Rectangles indicate
predicted frequencies, as in (d). (i) Mean relative power of predicted frequencies in SNR-adjusted sequence-containing
rest. All ps FDR-corrected. Shaded areas / error bars represent ± 1 SEM. 1 TR = 1.25 s.

16

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.15.950667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950667
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion349

We demonstrated that BOLD fMRI can be used to localize sub-second neural events sequences350

non-invasively in humans. We combined probabilistic multivariate pattern analysis with time course351

modelling and investigated human brain activity recorded following the presentation of sequences of352

visual objects at varying speeds. In the fastest case a sequence of five images was displayed within353

628 ms (32 ms between pictures). Even when using a TR of only 1.25 s (achievable with conventional354

multi-band echo-planar imaging), the image order could be detected from activity patterns in visual355

and ventral temporal cortex. Detection of briefly presented sequence items was also possible when356

their activation was affected by interfering signals from a preceding or subsequent sequence item357

and could be differentiated from images that were not part of the sequence. Our results withstood358

several robustness tests, but also indicated that detection is biased to most strongly reflect the359

last event of a sequence. Analyses of augmented resting data, in which neural event sequences360

occurred rarely, at unknown times, and with reduced signal strength, showed that our method361

could detect sub-second sequences even under such adverse conditions. Moreover, we showed that362

frequency spectrum analyses allow to distinguish sub-second from supra-second sequences under363

such circumstances. Our approach therefore promises to expand the scope of BOLD fMRI to fast,364

sequential neural representations by extending multivariate decoding approaches into the temporal365

domain, in line with our previous findings [52].366

One important potential application of our method is the study of replay, the temporally com-367

pressed sequential reactivation of neural representations in hippocampal and neocortical areas that368

subserves memory consolidation, planning, and decision-making [for reviews, see e.g., 31, 33, 61, 62].369

Previous fMRI studies in humans [for reviews see e.g., 23, 63] measured non-sequential reactivation370

as increased similarity of multivoxel patterns during experience and extended post-encoding rest371

compared to pre-encoding baseline [47–49, 51, 64–68] or functional connectivity of hippocampal,372

cortical and dopaminergic brain structures that support post-encoding systems-level memory consol-373

idation [65–67, 69–71]. In the current study we open the path to extend this fMRI research towards374

an understanding of the speed and sequential nature of the observed phenomena.375

Our fMRI-based approach has advantages as well as disadvantages compared to existing elec-376

troencephalography (EEG) and magnetoencephalography (MEG) approaches [42, 44, 45]. In par-377

ticular, it seems likely that our method has limited resolution of sequence speed. While we could378

distinguish between supra- and sub-second sequences, a finer distinction was not feasible. Yet, EEG379

and MEG investigations suggest that the extent of temporal compression of previous experience is380

an important aspect of replay and other reactivation phenomena [43, 72–75]. In addition, the differ-381

ential sensitivity to activity depending on sequence position complicates interpretations of findings,382

and can lead to statistical aliasing of sequences with the same start and end elements but different383

elements in the middle. Finally, because a single sequence causes forward and backward ordering384

of signals, it can be difficult to determine the direction of a hypothesized sequence. The major385

advantage of fMRI is that it does not suffer from the low sensitivity to hippocampal activity and386

limited ability to anatomically localize effects that characterizes EEG and MEG. This is particularly387

important in the case of replay, which is hippocampus-centered but co-occurs with fast sequences in388
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other parts of the brain including primary visual cortex [12], auditory cortex [15], prefrontal cortex389

(PFC) [13, 14, 16, 17, 76], entorhinal cortex [77–79], and ventral striatum [80]. Importantly, replay390

events occurring in different brain areas might not be mere copies of each other, but can differ391

regarding their timing, content and relevance for cognition [e.g., 16, 17]. Precise characterization392

of replay events occurring in different anatomical regions is therefore paramount. Because EEG and393

MEG cannot untangle the co-occurring events and animal research is often restricted to a single394

recording site, much remains to be understood about the distributed and coordinated nature of395

replay.396

Finally, our study provides insights for future research. First, the bias towards later sequence397

events has to be taken into account when analyzing data for which the ground truth is not known.398

Second, we have shown that the mere fact that detecting which elements where part of a sequence399

is beneficial if sequences mostly contain a local subset of all possible events. Thus, experimental400

setups with a larger number of possible events will be useful. At the same time, a larger number of to401

be decoded events will likely impair baseline classification accuracy, which in turn impairs sequence402

detection. Researchers should thus take the trade-off between these two aspects into account.403

Third, several other factors emerged that could influence the success of future investigation: the404

sampling rate (the TR), the choice of brain region and the properties of the resulting hemodynamic405

response functions (HRFs) [22]. It should be noted, however, that an increased sampling rate will406

only partially increase power, since the extended HRF duration ensures measurement opportunities407

up to 10 s after the sequence. Moreover, the choice of brain region will impact results only if the408

stability of the HRF within that brain region is low, whereas between-region differences between HRF409

parameters might have less impact. But HRF stability is generally high [29, 81–83], and previous410

research noting this fact has therefore already indicated possibilities of disentangling temporally close411

events [27–30, 84, 85]. Our approach has shown how using multivariate and modelling approaches412

can help exploit these HRF properties in order to enhance our understanding of the human brain.413
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Methods414

Participants415

40 young and healthy adults were recruited from an internal participant database or through local416

advertisement and fully completed the experiment. No statistical methods were used to predetermine417

the sample size but it was chosen to be larger than similar previous neuroimaging studies [e.g.,418

49, 50, 52]. Four participants were excluded from further analysis because their mean behavioral419

performance was below the 50% chance level in either or both the sequence and repetition trials420

suggesting that they did not adequately process the visual stimuli used in the task. Thus, the final421

sample consisted of 36 participants (mean age = 24.61 years, SD = 3.77 years, age range: 20 - 35422

years, 20 female, 16 male). All participants were screened for magnetic resonance imaging (MRI)423

eligibility during a telephone screening prior to participation and again at the beginning of each study424

session according to standard MRI safety guidelines (e.g., asking for metal implants, claustrophobia,425

etc.). None of the participants reported to have any major physical or mental health problems.426

All participants were required to be right-handed, to have corrected-to-normal vision, and to speak427

German fluently. Furthermore, only participants with a head circumference of 58 cm or less could be428

included in the study. This requirement was necessary as participants’ heads had to fit the MRI head429

coil together with MRI-compatible headphones that were used during the experimental tasks. The430

ethics commission of the German Psychological Society (DGPs) approved the study. All volunteers431

gave written informed consent prior to the beginning of the experiments. Every participant received432

40.00 Euro and a performance-based bonus of up to 7.20 Euro upon completion of the study. None433

of the participants reported to have any prior experience with the stimuli or the behavioral task.434

Task435

Stimuli All stimuli were gray-scale images of a cat, chair, face, house, and shoe [cf. 53] with a size436

of 400 x 400 pixels each, which are freely available from http://data.pymvpa.org/datasets/437

haxby2001/ and have been shown to reliably elicit object-specific neural response patterns in several438

previous studies [e.g., 53, 56–58]. Participants received auditory feedback to signal the accuracy of439

their responses. A high-pitch coin sound confirmed correct responses, whereas a low-pitch buzzer440

sound signaled incorrect responses. The sounds were the same for all task conditions and were441

presented immediately after participants entered a response or after the response time had elapsed.442

Auditory feedback was used to anatomically separate the expected neural activation patterns of443

visual stimuli and auditory feedback. We recorded the presentation time stamps of all visual stimuli444

and confirmed that all experimental components were presented as expected. The task was pro-445

grammed in MATLAB (version R2012b; Natick, Massachusetts, USA; The MathWorks Inc.) using446

the Psychophysics Toolbox extensions [version 3.0.11; 86–88] and run on a Windows XP computer447

with a monitor refresh-rate of 16.7 ms.448

Slow trials The slow trials of the task were designed to elicit object-specific neural response449

patterns of the presented visual stimuli. The resulting patterns of neural activation were later used450
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to train the classifiers. In order to ensure that participants maintained their attention and processed451

the stimuli adequately, they were asked to perform an oddball detection task [for a similar approach,452

see 42, 45]. Specifically, participants were instructed to press a button each time an object was453

presented upside-down. Participants could answer using either the left or the right response button454

of an MRI-compatible button box. In contrast to similar approaches [e.g., 42, 45], we intentionally455

did not ask participants for a response on trials with upright stimuli to avoid neural activation456

patterns of motor regions in our training set which could influence later classification accuracy on457

the test set.458

Participants were rewarded with 3 cents for each oddball (i.e., stimulus presented upside-down)459

that was correctly identified (i.e., hit) and punished with a deduction of 3 cents for (incorrect)460

responses (i.e., false alarms) on non-oddball trials (i.e., when stimuli were presented upright). In461

case participants missed an oddball (i.e., miss), they also missed out on the reward. Auditory462

feedback (coin and buzzer sound for correct and incorrect responses, respectively) was presented463

immediately after the response (in case of hits and false alarms) or at the end of the response time464

limit (in case of misses) using MRI-compatible headphones (VisuaStimDigital, Resonance Technology465

Company, Inc., Northridge, CA, USA). Correct rejections (i.e., no responses to upright stimuli) were466

not rewarded and were consequently not accompanied by auditory feedback. Together, participants467

could earn a maximum reward of 3.60 Euro in this task condition.468

Across the entire experiment, all five unique images were presented in all possible sequential469

combinations which resulted in 5! = 120 sequences with each of the five unique visual objects in a470

different order. Thus, across the entire experiment participants were shown 120 ∗ 5 = 600 visual471

objects in total for this task condition. 20% of all visual objects were presented upside-down (i.e.,472

120 oddball stimuli). All unique visual objects were shown upside-down equally often, which resulted473

in 120/5 = 24 oddballs for each individual visual object category. The order of sequences as well474

as the appearances of oddballs were randomly shuffled for each participant and across both study475

sessions.476

Each trial (for the trial procedure, see Fig. 1a) started with a waiting period of 3.85 s during477

which a blank screen was presented. This ITI ensured a sufficient time delay between each slow478

trial and the preceding trial (either a sequence or a repetition trial). The five visual object stimuli479

of the current trial were then presented as follows: After the presentation of a short fixation dot for480

a constant duration of 300 ms, a stimulus was shown for a fixed duration of 500 ms followed by a481

variable ISI during which a blank screen was presented again. The duration of the ISI for each trial482

was randomly drawn from a truncated exponential distribution with a mean of 2.5 s and a lower483

limit of 1 s. We expected that neural activation patterns elicited by the stimuli can be well recorded484

during this average time period of 3 s [for a similar approach, see 53]. Behavioral responses were485

collected during a fixed time period of 1.5 s after each stimulus onset. In case participants missed an486

oddball target, the buzzer sound (signaling an incorrect response) was presented after the response487

time limit had elapsed. Only neural activation patterns related to correct trials with upright stimuli488

were used to train the classifiers. Slow trials were interleaved with sequence and repetition trials489

such that each of the 120 slow trials was followed by either one of the 75 sequence trials or 45490
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repetition trials (details on these trial types follow below).491

Sequence trials On the sequence trials of the task, participants were shown sequences of the492

same five unique visual objects at varying presentation speeds. In total, 15 different sequences were493

selected for each participant. Sequences were chosen such that each visual object appeared equally494

often at the first and last position of the sequence. Given five stimuli and 15 sequences, for each495

object category this was the case for 3 out of the 15 sequences. Furthermore, we ensured that all496

possible sequences were chosen equally often across all participants. Given 120 possible sequential497

combinations in total, the sequences were distributed across eight groups of participants. Sequences498

were randomly assigned to each participant following this pseudo-randomized procedure.499

To investigate the influence of sequence presentation speed on the corresponding neural ac-500

tivation patterns, we systematically varied the ISI between consecutive stimuli in the sequence.501

Specifically, we chose five different speed levels of 32, 64, 128, 512, and 2048 ms, respectively (i.e.,502

all exponents of 2 for good coverage of faster speeds). Each of the 15 sequences per participant503

was shown at each of the 5 different speed levels. The occurrence of the sequences was randomly504

shuffled for each participant and across sessions within each participant. This resulted in a total505

of 75 sequence trials presented to each participant across the entire experiment. To ensure that506

participants maintained attention to the stimuli during the sequence trials, they were instructed to507

identify the serial position of a previously cued target object within the shown stimulus sequence508

and indicate their response after a delay period without visual input.509

During a sequence trial (for the trial procedure, see Fig. 1b) the target cue (the name of the visual510

object, e.g., shoe) was shown for a fixed duration of 1000 ms, followed by a blank screen for a fixed511

duration of 3850 ms. A blank screen was used to reduce possible interference of neural activation512

patterns elicited by the target cue with neural response patterns following the sequence of visual513

objects. A short presentation of a gray fixation dot for a constant duration of 300 ms signaled the514

onset of the upcoming sequence of visual objects. All objects in the sequence were presented briefly515

for a fixed duration of 100 ms. The ISI for each trial was determined based on the current sequence516

speed (see details above) and was the same for all stimuli within a sequence. The sequence of stimuli517

was followed by a delay period with a gray fixation dot that was terminated once a fixed duration of 16518

s since the onset of the first sequence object had elapsed. This was to ensure sufficient time to acquire519

the aftereffects of neural responses following the sequence of objects even at a sequence speed of 2048520

ms. During the waiting period participants were listening to bird sounds (which can be downloaded521

from https://audiojungle.net/item/british-bird-song-dawn-chorus/98074) in order to522

keep them moderately entertained without additional visual input. Subsequently, the name of the523

target object as well as the response mapping was presented for a fixed duration of 1.5 s (same fixed524

response time limit as for the slow trials, see above). In this response interval, participants had to525

choose the correct serial position of the target object from two response options that were presented526

on the left and right side of the screen. The mapping of the response options was balanced for left527

and right responses (i.e., the correct option appeared equally often on the left and right side: 37528

times each with the mapping of the last trial being determined randomly) and shuffled randomly529

for every participant. The serial position of the target for each trial was randomly drawn from a530
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Poisson distribution with λ = 1.9 and truncated to an interval from 1 to 5. Thus, across all trials,531

the targets appeared more often at the later compared to earlier positions of the sequence. This was532

done to reduce the likelihood that participants stopped to process stimuli or diverted their attention533

after they identified the position of the target object. The serial position of the alternative response534

option was drawn from the same distribution as the serial position of the target. As for the oddball535

trials, auditory feedback was presented immediately following a response. The coin sound indicated536

a reward of 3 cents for correct responses, whereas the buzzer sound signaled incorrect or missed537

responses (however, there was no deduction of 3 cents for incorrect responses or misses). Together,538

participants could earn a maximum reward of 2.25 Euro in this task condition.539

Repetition trials We included so-called repetition trials to investigate how decoding time course540

would be affected by (1) the number of fast repetitions of the same neural event and (2) their541

interaction with the position of the switch to a subsequent stimulus category. Therefore, in this542

task condition, the same two stimuli were repeated a varying number of times each in one sequence.543

All sequences had a fixed length of nine stimuli in total. Each of the five stimulus categories was544

selected as the preceding stimulus for eight sequences in total. For each of these eight sequences545

we systematically varied the time point of the switch to the second stimulus category from serial546

position 2 to 9. Overall, the transition to the second stimulus happened five times at each serial547

position with varying stimulus material on each trial. Across the eight trials for each stimulus548

category, we ensured that each preceding stimulus category was followed by each of the remaining549

four stimulus categories equally often. Specifically, a given preceding stimulus category was followed550

by each of the remaining four stimulus categories two times. Also, the average serial position of the551

first occurrence of each of the subsequent stimuli was the same for all subsequent stimuli. That is552

to say, the same subsequent stimulus appeared either on position 9 and 2, 8 and 3, 7 and 4 or 6 and553

5, resulting in an average first occurrence of the subsequent stimulus at position 5.5. All stimulus554

sequences of the repetition trials were presented with a fixed ISI of 32 ms. Note, that this is the555

same presentation speed as the fastest ISI of the sequence trials. Similar to the sequence trials,556

participants were instructed to remember the serial position at which the second stimulus within the557

sequence appeared for the first time. For example, if the switch to the second stimulus happened558

at the fifth serial position, participants had to remember this number.559

Similar to the trial procedure of the sequence trials, each repetition trial (Fig. 1c) began with560

the presentation of the target cue (name of the visual object, e.g., cat), which was shown for a fixed561

duration of 500 ms. The target cue was followed by a blank screen that was presented for a fixed562

duration of 3.85 s. A briefly presented fixation dot announced the onset of the sequential visual563

stimuli. Subsequently, the fast sequence of visual stimuli was presented with a fixed duration for564

visual stimuli (100 ms each) and the ISI (32 ms on all trials). As for sequence trials, the sequence565

of stimuli on repetition trials was followed by a variable delay period until 16 s from sequence onset566

had elapsed. On repetition trials, participants had to choose the correct serial position of the first567

occurrence of the target stimulus from two response options. The incorrect response option was a568

random serial position that was at least two positions away from the correct target position. For569

example, if the correct option was 5, the alternative target position could either be earlier (1, 2,570
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or 3) or later (7, 8, or 9). This was done to ensure that the task was reasonably easy to perform.571

Finally, we added five longer repetition trials with 16 elements per sequence. Here, the switch to572

the second sequential stimulus always occurred at the last serial position. Each of the five stimulus573

categories was the preceding stimulus once. The second stimulus of each sequence was any of the574

other four stimulus categories. In doing so, in the long repetition trials each stimulus category was575

the preceding and subsequent stimulus once. Repetition trials were randomly distributed across the576

entire experiment and (together with the sequence trials) interleaved with the slow trial.577

Study procedure578

The study consisted of two experimental sessions. During the first session, participants were informed579

in detail about the study, screened for MRI eligibility, and provided written informed consent if they580

agreed to participate in the study. Then they completed a short demographic questionnaire (assessing581

age, education, etc.) and a computerized version of the Digit-Span Test, assessing working memory582

capacity [89]. Next, they performed a 10-minutes (min) practice of the main task. Subsequently,583

participants entered the MRI scanner. After a short localizer, we first acquired a 5-min resting state584

scan for which participants were asked to stay awake and focus on a white fixation cross presented585

centrally on a black screen. Then, we acquired four functional task runs of about 11 min during586

which participants performed the main task in the MRI scanner. After the functional runs, we587

acquired another 5-min resting state, 5-min fieldmaps as well as a 4-min anatomical scan. The588

second study session was identical to the first session, except that participants entered the scanner589

immediately after another short assessment of MRI eligibility. In total, the study took about four590

hours to complete (2.5 and 1.5 hours for Session 1 and 2, respectively).591

MRI data acquisition592

All MRI data were acquired using a 32-channel head coil on a research-dedicated 3-Tesla Siemens593

Magnetom TrioTim MRI scanner (Siemens, Erlangen, Germany) located at the Max Planck Institute594

for Human Development in Berlin, Germany. The scanning procedure was exactly the same for both595

study sessions. For the functional scans, whole-brain images were acquired using a segmented596

k-space and steady state T2*-weighted multi-band (MB) echo-planar imaging (EPI) single-echo597

gradient sequence that is sensitive to the BOLD contrast. This measures local magnetic changes598

caused by changes in blood oxygenation that accompany neural activity (sequence specification: 64599

slices in interleaved ascending order; anterior-to-posterior (A-P) phase encoding direction; TR =600

1250 ms; echo time (TE) = 26 ms; voxel size = 2 x 2 x 2 mm; matrix = 96 x 96; field of view601

(FOV) = 192 x 192 mm; flip angle (FA) = 71 degrees; distance factor = 0%; MB acceleration factor602

4). Slices were tilted for each participant by 15 degrees forwards relative to the rostro-caudal axis to603

improve the quality of fMRI signal from the hippocampus [cf. 90] while preserving good coverage of604

occipito-temporal brain regions. Each MRI session included four functional task runs. Each run was605

about 11 minutes in length, during which 530 functional volumes were acquired. For each functional606

run, the task began after the acquisition of the first four volumes (i.e., after 5.00 s) to avoid partial607
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saturation effects and allow for scanner equilibrium. We also recorded two functional runs of resting-608

state fMRI data, one before and one after the task runs. Each resting-state run was about 5 minutes609

in length, during which 233 functional volumes were acquired. After the functional task runs, two610

short acquisitions with six volumes each were collected using the same sequence parameters as611

for the functional scans but with varying phase encoding polarities, resulting in pairs of images612

with distortions going in opposite directions between the two acquisitions (also known as the blip-613

up / blip-down technique). From these pairs the displacements map were estimated and used to614

correct for geometric distortions due to susceptibility-induced field inhomogeneities as implemented615

in the the fMRIPrep preprocessing pipeline [91]. In addition, a whole-brain spoiled gradient recalled616

(GR) field map with dual echo-time images (sequence specification: 36 slices; A-P phase encoding617

direction; TR = 400 ms; TE1 = 4.92 ms; TE2 = 7.38 ms; FA = 60 degrees; matrix size = 64 x 64;618

FOV = 192 x 192 mm; voxel size = 3 x 3 x 3.75 mm) was obtained as a potential alternative to619

the method described above. However, as this field map data was not successfully recorded for four620

participants, we used the blip-up blip-down technique for distortion correction (see details on MRI621

data pre-processing below). Finally, high-resolution T1-weighted (T1w) anatomical Magnetization622

Prepared Rapid Gradient Echo (MPRAGE) sequences were obtained from each participant to allow623

registration and brain surface reconstruction (sequence specification: 256 slices; TR = 1900 ms; TE624

= 2.52 ms; FA = 9 degrees; inversion time (TI) = 900 ms; matrix size = 192 x 256; FOV = 192 x625

256 mm; voxel size = 1 x 1 x 1 mm). We also measured respiration and pulse during each scanning626

session using pulse oximetry and a pneumatic respiration belt.627

MRI data preparation and preprocessing628

Results included in this manuscript come from preprocessing performed using fMRIPrep 1.2.1 (Es-629

teban et al. [91, 92]; RRID:SCR 016216), which is based on Nipype 1.1.4 (Gorgolewski et al. [93, 94];630

RRID:SCR 002502). Many internal operations of fMRIPrep use Nilearn 0.4.2 [95, RRID:SCR 001362],631

mostly within the functional processing workflow. For more details of the pipeline, see the section632

corresponding to workflows in fMRIPrep’s documentation.633

Conversion of data to the brain imaging data structure (BIDS) standard. The majority of634

the steps involved in preparing and preprocessing the MRI data employed recently developed tools635

and workflows aimed at enhancing standardization and reproducibility of task-based fMRI studies636

[for a similar preprocessing pipeline, see 96]. Following successful acquisition, all study data were ar-637

ranged according to the BIDS specification [97] using the HeuDiConv tool (version 0.6.0.dev1; freely638

available from https://github.com/nipy/heudiconv) running inside a Singularity container639

[98, 99] to facilitate further analysis and sharing of the data. Dicoms were converted to the NIfTI-1640

format using dcm2niix [version 1.0.20190410 GCC6.3.0; 100]. In order to make identification of641

study participants unlikely, we eliminated facial features from all high-resolution structural images us-642

ing pydeface (version 2.0; available from https://github.com/poldracklab/pydeface). The643

data quality of all functional and structural acquisitions were evaluated using the automated quality644

assessment tool MRIQC [for details, see 101, and the MRIQC documentation]. The visual group-level645
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reports of the estimated image quality metrics confirmed that the overall MRI signal quality of646

both anatomical and functional scans was highly consistent across participants and runs within each647

participant.648

Preprocessing of anatomical MRI data. A total of two T1w images were found within the input649

BIDS data set, one from each study session. All of them were corrected for intensity non-uniformity650

(INU) using N4BiasFieldCorrection [Advanced Normalization Tools (ANTs) 2.2.0; 102]. A651

T1w-reference map was computed after registration of two T1w images (after INU-correction) using652

mri robust template [FreeSurfer 6.0.1, 103]. The T1w-reference was then skull-stripped using653

antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as target template. Brain surfaces were654

reconstructed using recon-all [FreeSurfer 6.0.1, RRID:SCR 001847, 104], and the brain mask655

estimated previously was refined with a custom variation of the method to reconcile ANTs-derived656

and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle [RRID:SCR 002438,657

105]. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c [106,658

RRID:SCR 008796] was performed through nonlinear registration with antsRegistration [ANTs659

2.2.0, RRID:SCR 004757, 107], using brain-extracted versions of both T1w volume and template.660

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM)661

was performed on the brain-extracted T1w using fast [FSL 5.0.9, RRID:SCR 002823, 108].662

Preprocessing of functional MRI data. For each of the BOLD runs found per participant663

(across all tasks and sessions), the following preprocessing was performed. First, a reference vol-664

ume and its skull-stripped version were generated using a custom methodology of fMRIPrep. The665

BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which666

implements boundary-based registration [109]. Co-registration was configured with nine degrees667

of freedom to account for distortions remaining in the BOLD reference. Head-motion parame-668

ters with respect to the BOLD reference (transformation matrices, and six corresponding rotation669

and translation parameters) are estimated before any spatiotemporal filtering using mcflirt [FSL670

5.0.9, 110]. BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 [111,671

RRID:SCR 005927]. The BOLD time-series (including slice-timing correction when applied) were672

resampled onto their original, native space by applying a single, composite transform to correct673

for head-motion and susceptibility distortions. These resampled BOLD time-series will be referred674

to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series675

were resampled to MNI152NLin2009cAsym standard space, generating a preprocessed BOLD run676

in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were gen-677

erated using a custom methodology of fMRIPrep. Several confounding time-series were calculated678

based on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise679

global signals. FD and DVARS are calculated for each functional run, both using their implemen-680

tations in Nipype [following the definitions by 112]. The three global signals are extracted within681

the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors were682

extracted to allow for component-based noise correction [CompCor, 113]. Principal components are683

estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter684
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with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aComp-685

Cor). Six tCompCor components are then calculated from the top 5% variable voxels within a mask686

covering the subcortical regions. This subcortical mask is obtained by heavily eroding the brain687

mask, which ensures it does not include cortical GM regions. For aCompCor, six components are688

calculated within the intersection of the aforementioned mask and the union of CSF and WM masks689

calculated in T1w space, after their projection to the native space of each functional run (using the690

inverse BOLD-to-T1w transformation). The head-motion estimates calculated in the correction step691

were also placed within the corresponding confounds file. The BOLD time-series, were resampled692

to surfaces on the following spaces: fsnative, fsaverage. All resamplings can be performed with a693

single interpolation step by composing all the pertinent transformations (i.e., head-motion transform694

matrices, susceptibility distortion correction when available, and co-registrations to anatomical and695

template spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms696

(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels697

[114]. Non-gridded (surface) resamplings were performed using mri vol2surf (FreeSurfer). Fol-698

lowing preprocessing using fMRIPrep, the fMRI data were spatially smoothed using a Gaussian mask699

with a standard deviation (Full Width at Half Maximum (FWHM) parameter) set to 4 mm using700

an example Nipype smoothing workflow (see the Nipype documentation for details) based on the701

SUSAN algorithm as implemented in the FMRIB Software Library (FSL) [115].702

Multi-variate fMRI pattern analysis703

Leave-one-run-out cross-validation procedure. All fMRI pattern classification analyses were704

conducted using open-source packages from the Python (Python Software Foundation, Python705

Language Reference, version 3.7) modules Nilearn [version 0.5.0; 95] and scikit-learn [version706

0.20.3; 116]. fMRI pattern classification was performed using a leave-one-run-out cross-validation707

procedure for which data from seven task runs were used for training and data from the left-out run708

(i.e., the eighth run) was used for testing. This procedure was repeated eight times so that each709

task run served as the training set once. We trained an ensemble of five independent classifiers,710

one for each of the five stimulus classes (cat, chair, face, house, and shoe). For each class-specific711

classifier, labels of all other classes in the data were relabelled to a common other category. In order712

to ensure that the classifier estimates were not biased by relative differences in class frequency in the713

training set, the weights associated with each class were adjusted inversely proportional to the class714

frequencies in each training fold. Training was performed on data from all trials of the seven runs in715

the respective cross-validation fold only using trials of the slow task where the visual object stimuli716

were presented upright and participants correctly did not respond (i.e., correct rejection trials). In717

each iteration of the classification procedure, the classifiers trained on seven out of eight runs were718

then applied separately to the data from the left-out run. Specifically, the classifiers were applied to719

(1) data from the slow trials of the left-out run, selecting volumes capturing the expected activation720

peaks to determine classification accuracy, (2) data from the slow trials of the left-out run, selecting721

all volumes from stimulus onset to the end of the trial (seven volumes in total per trial) to identify722

temporal dynamics of classifier predictions on a single trial basis, (3) data from the sequence trials723
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of the left-out run, selecting all volumes from sequence onset to the end of the delay period (13724

volumes in total per trial), (4) data from the repetition trials of the left-out run, also selecting all725

volumes from sequence onset to the end of the delay period (13 volumes in total per trial).726

We used separate multinomial logistic regression classifiers with identical parameter settings. All727

classifiers were regularized using L2 regularization. The C parameter of the cost function was fixed728

at the default value of 1.0 for all participants. The classifiers employed the lbfgs algorithm to729

solve the multi-class optimization problem and were allowed to take a maximum of 4, 000 iterations730

to converge. Pattern classification was performed within each participant separately, never across731

participants. For each stimulus in the training set, we added 4 s to the stimulus onset and chose732

the volume closest to that time point (i.e., rounded to the nearest volume) to center the classifier733

training on the expected peaks of the BOLD response [for a similar approach, see e.g., 47]. At a TR734

of 1.25 s this corresponded to the fourth MRI volume which thus compromised a time window of735

3.75 s to 5 s after each stimulus onset. We detrended the fMRI data separately for each run across736

all task conditions to remove low frequency signal intensity drifts in the data due to noise from the737

MRI scanner. For each classifier and run, the features were standardized (z-scored) by removing the738

mean and scaling to unit variance separately for each test set.739

For fMRI pattern classification analysis performed on resting-state data we created a new mask740

for each participant through additive combination of the eight masks used for cross-validation (see741

above). This mask was then applied to all task and resting-state fMRI runs which were then742

separately detrended and standardized (z-scored). The classifiers were trained on the peak activation743

patterns from all slow trials combined.744

Feature selection. Feature selection is commonly used in multi-voxel pattern analysis (MVPA) to745

determine the voxels constituting the activation patterns used for classification in order to improve the746

predictive performance of the classifier [117, 118]. Here, we combined a functional ROI approach747

based on thresholded t-maps with anatomical masks to select image-responsive voxels within a748

predefined anatomical brain region.749

We ran eight standard first-level general linear models (GLMs) for each participant, one for each750

of the eight cross-validation folds using SPM12 (version 12.7219; https://www.fil.ion.ucl.751

ac.uk/spm/software/spm12/) running inside a Singularity container built using neurodocker752

(https://github.com/ReproNim/neurodocker) implemented in a custom analysis workflow us-753

ing Nipype [version 1.4.0; 93]. In each cross-validation fold, we fitted a first-level GLM to the754

data in the training set (e.g., data from run 1 to 7) and modeled the stimulus onset of all trials of755

the slow task when a stimulus was presented upright and was correctly rejected (i.e., participants756

correctly did not respond). These trial events were modeled as boxcar functions with the length757

of the modeling event corresponding to the duration of the stimulus on the screen (500 ms for all758

events). If present in the training data, we also included trials with hits (correct response to upside-759

down stimuli), misses (missed response to upside-down stimuli) and false alarms (incorrect response760

to upright stimuli) as regressors of no interest, thereby explicitly modeling variance attributed to761

these trial types [cf. 119]. Finally, we included the following nuisance regressors estimated during762

preprocessing with fMRIPrep: the frame-wise displacement for each volume as a quantification of763
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the estimated bulk-head motion, the six rigid-body motion-correction parameters estimated during764

realignment (three translation and rotation parameters, respectively), and six noise components cal-765

culated according to the anatomical variant of CompCorr [for details, see 91, and the fMRIPrep766

documentation]. All regressors were convolved with a canonical HRF and did not include model767

derivatives for time and dispersion. Serial correlations in the fMRI time series were accounted for768

using an autoregressive AR(1) model. This procedure resulted in fold-specific maps of t-values that769

were used to select voxels from the left-out run of the cross-validation procedure. Note, that this770

approach avoids circularity (or so-called double-dipping) as the selective analysis (here, fitting of771

the GLMs to the training set) is based on data that is fully independent from the data that voxels772

are later selected from [here, testing set from the left-out run; cf. 120].773

The resulting brain maps of voxel-specific t-values resulting from the estimation of the de-774

scribed t-contrast were then combined with an anatomical mask of occipito-temporal brain regions.775

All participant-specific anatomical masks were created based on automated anatomical labeling of776

brain surface reconstructions from the individual T1w reference image created with Freesurfer’s777

recon-all [104] as part of the fMRIPrep workflow [91], in order to account for individual vari-778

ability in macroscopic anatomy and to allow reliable labeling [121, 122]. For the anatomical masks779

of occipito-temporal regions we selected the corresponding labels of the cuneus, lateral occipital780

sulcus, pericalcarine gyrus, superior parietal lobule, lingual gyrus, inferior parietal lobule, fusiform781

gyrus, inferior temporal gyrus, parahippocampal gyrus, and the middle temporal gyrus [cf. 53]. Only782

gray-matter voxels were included in the generation of the masks as BOLD signal from non-gray-783

matter voxels cannot be generally interpreted as neural activity [118]. Note, however, that due784

to the whole-brain smoothing performed during preprocessing, voxel activation from brain regions785

outside the anatomical mask but within the sphere of the smoothing kernel might have entered the786

anatomical mask (thus, in principle, also including signal from surrounding non-gray-matter voxels).787

Finally, we combined the t-maps derived in each cross-validation fold with the anatomical masks.788

All voxels with t-values above or below a threshold of t = 3 (i.e., voxels with the most negative789

and most positive t-values) inside the anatomical mask were then selected for the left-out run of790

the classification analysis and set to 1 to create the final binarized masks (M = 11162 voxels on791

average, SD = 2083).792

Classification accuracy and multivariate decoding time courses. In order to assess the clas-793

sifiers’ ability to differentiate between the neural activation patterns of individual visual objects, we794

compared the predicted visual object of each example in the test set to the visual object that was795

actually shown to the participant on the corresponding trial. We obtained an average classification796

accuracy score for each participant by calculating the mean proportion of correct classifier predictions797

across all correctly answered, upright slow trials (Fig. 2a). The mean accuracy scores of all partici-798

pants were then compared to the chance baseline of 100%/5 = 20% using a one-sided one-sample799

t-test, testing the a-priori hypothesis that classification accuracy would be higher than the chance800

baseline. The effect size (Cohen’s d) was calculated as the difference between the mean of accuracy801

scores and the chance baseline, divided by the standard deviation of the data [123]. Furthermore,802

we assessed the classifiers’ ability to accurately detect the presence of visual objects on a single trial803

28

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.15.950667doi: bioRxiv preprint 

https://fmriprep.readthedocs.io/en/stable/
https://fmriprep.readthedocs.io/en/stable/
https://fmriprep.readthedocs.io/en/stable/
https://doi.org/10.1101/2020.02.15.950667
http://creativecommons.org/licenses/by-nc-nd/4.0/


basis. For this analysis we applied the trained classifiers to seven volumes from the volume closest to804

the stimulus onset, which allowed us to examine the time courses of the probabilistic classification805

evidence in response to the visual stimuli on a single trial basis (Fig. 2b). In order to test if the time806

series of classifier probabilities reflected the expected increase of classifier probability for the stimulus807

shown on a given trial, we compared the time series of classifier probabilities related to the classified808

class with the mean time courses of all other classes using a two-sided paired t-test at every time809

point (i.e., at every TR). Here, we used the Bonferroni-correction method [124] across time points810

and stimulus classes to adjust for multiple comparisons of 35 observations (7 TRs and 5 stimulus811

classes). In the main text, we only report the results for the peak in classification probability of the812

true class, corresponding to the fourth TR after stimulus onset. The effect size (Cohen’s d) was813

calculated as the difference between the means of the probabilities of the current versus all other814

stimuli, divided by the standard deviation of the difference [123].815

Response and difference function modelling As reported above, analyzing probabilistic clas-816

sifier evidence on single slow trials revealed multivariate decoding time courses that can be char-817

acterized by a slow response function that resembles single-voxel hemodynamics. For simplicity,818

we modelled this response function as a sine wave that was flattened after one cycle, scaled by an819

amplitude and adjusted to baseline. The model was specified as follows:820

h(t) =
A

2
sin(2πft – 2πfd – 0.5π) + b +

A

2
(1)

whereby A is the response amplitude (the peak deviation of the function from baseline), f is the821

angular frequency (unit: 1/TR, i.e., 0.8 Hz), d is the onset delay (in TRs), and b is the baseline (in822

%). The restriction to one cycle was achieved by converting the sine wave in accordance with the823

following piecewise function824

H(t) =

h(t) ifd ≤ t ≤ (d + 1
f )

b otherwise
(2)

We fitted the four model parameters (A, f , d and b) to the mean probabilistic classifier evidence825

of each stimulus class at every TR separately for each participant. For convenience, we count time826

t in TRs. To approximate the time course of the difference between two response functions we827

utilized the trigonometric identity for the subtraction of two sine functions [e.g., 125]:828

cos(z1) – cos(z2) = –2 sin(
z1 + z2

2
) sin(

z1 – z2

2
) (3)

Considering the case of two sine waves with identical frequency but differing by a temporal shift829

δ one obtains830

A cos(2πft) – A cos(2πft – 2πf δ) = –2A sin(
4πft – 2πf δ

2
) sin(

2πf δ

2
)

= –2A sin(2πf
δ

2
) sin(2πft – 2πf

δ

2
)

(4)
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which corresponds to a flipped sine function with an amplitude scaled by 2 sin(2πf δ2), a shift of831

δ
2 and an identical frequency f .832

To apply this equation to our scenario two adjustments have to be made since the the single-833

cycle nature of our response function is not accounted for in Equation 3. First, one should note834

that properties of the amplitude term in Equation 4 only hold as long as shifts of no greater than835

half a wavelength are considered (the wavelength λ is the inverse of the frequency f ). The term836

sin(2πf δ2) can be written as sin(2π δ
2λ), which illustrates that the term monotonically increases until837

δ > λ
2 . Second, the frequency term has to be adapted as follows: The flattening of the sine waves838

to the left implies that the difference becomes positive at 0 rather than δ
2 , thus undoing the phase839

shift and stretching the wave by 1
2δ TRs. The flattening on the right also leads to a lengthening of840

the wave by an additional 1
2δ TRs, since the difference becomes 0 at 2πf + 2πf δ, instead of only841

2πf + 2πf δ2 . Thus, the total wavelength has to be adjusted by a factor of δ TRs, and no phase842

shift relative to the first response is expected. The difference function therefore has frequency843

fδ =
(

f –1 + δ
)–1

=
f

1 + f δ
(5)

instead of f , and Equation 4 becomes –2A sin(2πf δ2) sin(2π f
1+f δ t). We can now apply Equation844

3 to the fitted response function as follows845

hδ(t) =

(
1

2
Â cos(2πf̂ t – 2πf̂ d̂ – 0.5π) + b̂ +

1

2
Â

)
–

(
1

2
Â cos(2πf̂ t – 2πf̂ d̂ – 2πf̂ δ – 0.5π) + b̂ +

1

2
Â

)
= –Â sin(2πf̂

δ

2
) sin(2π

f̂

1 + f̂ δ
t – 2π

f̂

1 + f̂ δ
d – π)

= Â sin(2πf̂
δ

2
) sin(2πf̂δt – 2πf̂δd)

(6)

whereby f̂ , d̂ , b̂ and Â indicate fitted parameters.846

We determined the relevant TRs in the forward and backward periods for sequence trials by847

calculating δ depending on the sequence speed (the ISI). The resulting values for δ and corresponding848

forward and backward periods are shown in Table 1. Model fitting was performed using NLoptr, an849

R interface to the NLopt library for nonlinear optimization [126] employing the COBYLA (Constrained850

Optimization BY Linear Approximation) algorithm [127, 128]. The resulting parameters were then851

averaged across participants, yielding the mean parameters reported in the main text. To assess if852

the model fitted the data reasonably, we inspected the fits of the sine wave response function for853

each stimulus class and participant using individual parameters (Fig. S2).854

Detecting sequentiality in fMRI patterns on sequence trials. In order to analyze the neural855

activation patterns following the presentation of sequential visual stimuli for evidence of sequentiality,856

we first determined the true serial position of each decoded event for each trial. Specifically, applying857

the trained classifiers to each volume of the sequence trials yielded a series of predicted event labels858
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Speed δ (in TRs) Forward period Backward period

32 ms 0.42 TRs TRs 2–4 TRs 5–7
64 ms 0.52 TRs TRs 2–4 TRs 5–7

128 ms 0.73 TRs TRs 2–4 TRs 5–8
512 ms 1.96 TRs TRs 2–5 TRs 6–9

2048 ms 6.87 TRs TRs 2–7 TRs 8–13

Table 1: Relevant time periods depending on sequence speed. Forward periods were calculated as [0.56;
0.5 ∗ λδ + d = 0.5 ∗ (5.26 + δ) + 0.56]. Backward period were calculated as [0.5 ∗ λδ + d = 0.5 ∗ (5.26 + δ) + 0.56;
λδ + d = 5.26 + δ + 0.56]. δ reflects the interval between the onsets of the first and last of five sequence items that
is dependent on the sequence speed (the ISI) and the stimulus duration (here, 100 ms). For example, for an ISI of
32 ms, δ (in TRs) is calculated as (0.032 ∗ 4 + 0.1 ∗ 4)/1.25 = 0.42 TRs. d reflects the fitted onset delay (here, 0.56
TRs). All values were then rounded to the closest TRs resulting in the speed-adjusted time periods (two rightmost
columns).

.

and corresponding classification probabilities that were assigned their sequential position within the859

true sequence that was shown to participants on the corresponding trial.860

The main question we asked for this analysis was to what extend we can infer the serial order861

of image sequences from relative activation differences in fMRI pattern strength within single mea-862

surements (a single TR). To this end, we applied the trained classifiers to a series of 13 volumes863

following sequence onset (spanning a total time window of about 16 s) on sequence trials and ana-864

lyzed the time courses of the corresponding classifier probabilities related to the five image categories865

(Fig. 3a). Classification probabilities were normalized by dividing the probabilities by their trial-wise866

sum for each image class. As detailed in the task description, the time window was selected such867

that the neural responses to the image sequences could be fully captured without interference from868

upcoming trials. We examined relative differences in decoding probabilities between serial events at869

every time-point (i.e., at every TR) and quantified the degree of sequential ordering in two different870

analyses:871

First, we conducted a linear regression between the serial position of the five images and their872

classification probabilities at every TR in the relevant forward and backward period (adjusted by873

sequence speed) and extracted the slope of the linear regression as an index of linear association.874

The slopes were then averaged at every TR separately for each participant and sequence speed875

across data from all fifteen sequence trials (Fig. 3b). Here, if later events have a higher classification876

probability compared to earlier events, the slope coefficient will be negative. In contrast, if earlier877

events have a higher classification probability compared to later events, the slope coefficient will be878

positive. Note, that for convenience, we flipped the sign of the mean regression slopes so that positive879

values indicate forward ordering and negative values indicate backward ordering. To determine if we880

can find evidence for significant sequential ordering of classification probabilities in the forward and881

backward periods, we conducted a series of ten separate two-tailed one-sample t-tests comparing882

the mean regression slope coefficients of each speed condition against zero (the expectation of no883

order information). All p values were adjusted for ten comparisons by controlling the FDR (Fig. 3c;884

[129]). As an estimate of the effect size, we calculated Cohen’s d as the difference between the885

sample mean and the null value in units of the sample standard deviation [123]. As reported in the886
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main text, we conducted the same analysis using ranked correlation coefficients (Kendall’s τ) and887

the mean step size between probability-ordered events within TRs as alternative indices of linear888

association (for details, see SI). In order to directly compare the predicted time courses of regression889

slopes based on our modeling approach with the observed time courses, we computed the Pearson’s890

correlation coefficient between the two time series both on data averaged across participants and891

within each participant (Figs. 2d–e). The mean within-participant correlation coefficients were892

tested against zero (the expectation of no correlation) using a separate two-sided one-sample t-test893

for each speed condition. All p values were adjusted for five comparisons by controlling the FDR894

[129]).895

We hypothesized that sequential order information of fast neural events will translate into order896

structure in the fMRI signal and successively decoded events in turn. Therefore, we analyzed897

the fMRI data from sequence trials for evidence of sequentiality across consecutive measurements.898

The analyses were restricted to the expected forward and backward periods which were adjusted899

depending on the sequence speed. For each TR we obtained the image with the most likely fMRI900

signal pattern based on the classification probabilities. First, we asked if we are more likely to decode901

earlier serial events earlier and later serial events later in the decoding time window of thirteen TRs.902

To this end, we averaged the serial position of the most likely event at every TR, separately for each903

trial and participant, resulting in a time course of average serial event position across the decoding904

time window (Fig. 3d). We then compared the average serial event position against the mean905

serial position (position 3) as a baseline across participants at every time point in the forward and906

backward period using a series of two-sided one-sample t-tests, adjusted for 38 multiple comparisons907

(across all five speed conditions and TRs in the forward and backward period) by controlling the908

FDR [129]. These results are reported in the SI. Next, in order to assess if the average serial909

position differed between the forward and backward period for the five different speed conditions,910

we conducted a linear mixed effects (LME) and entered the speed condition (with five levels) and911

trial period (forward versus backward) as fixed effects including by-participant random intercepts912

and slopes. Finally, we conducted a series of two-sided one-sample t-tests to assess whether the913

mean serial position in the forward and backward periods differed from the expected mean serial914

position (baseline of 3) for every speed condition (all p values adjusted for 10 comparisons using915

FDR correction [129]).916

Second, we analyzed how this progression through the involved sequence elements affected917

transitions between consecutively decoded serial events. As before, we extracted the most likely918

pattern for each TR (i.e., the pattern with the highest classification probability), and calculated the919

step sizes between consecutively decoded serial events, as in [52]. For example, decoding Event 2920

→ Event 4 in consecutive TRs would correspond to a step size of +2, while a Event 3 → Event921

2 transition would reflect a step size of –1, etc. We then calculated the mean step-size of the922

first (early) and second (late) halves of the forward and backward periods, respectively, which were923

adjusted for sequence speed. Specifically, the transitions were defined as follows: at speeds of 32,924

64 and 128 ms these transitions included the 2 → 3 (early forward), 3 → 4 (late forward), 5 → 6925

(early backward) and 6 → 7 (late backward); at speeds of 512 ms these transitions included 2 → 3926
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(early forward), 4→ 5 (late forward), 6→ 7 (early backward), and 8→ 9 (late backward); at 2048927

ms these transitions included 2 → 3 → 4 (early forward), 5 → 6 → 7 (late backward) 8 → 9 →928

10 (early backward), and 11 → 12 → 13 (late backward). Finally, we compared the mean step size929

in the early and late half of the forward versus backward period for every speed condition using ten930

separate two-sided one-sample t-tests. All ps were adjusted for multiple comparisons by controlling931

the FDR [cf. 129].932

Analysis of repetition trials for sensitivity of within-sequence items. Applying the classifiers933

trained on slow trials to data from repetition trials yielded a classification probability estimate for934

each stimulus class given the data at every time point (i.e., at every TR, Fig. 4a, S7). As described935

in the main text, we then analyzed the classification probabilities to answer which fMRI pattern936

were activated during a fast sequence under conditions of extreme forward or backward interference.937

Specifically, sequences with forward interference entailed a brief presentation of a single image that938

was followed by eight repetitions of a second image; whereas backward interference was characterized939

by a condition where eight image repetitions were followed by a single briefly presented item. As940

predicted by the sine-based response functions, the relevant time period included TRs 2–7. All941

analyses reported in the Results section were conducted using data from these selected TRs as942

described. Results based on data from all TRs are reported in the SI.943

First, we calculated the mean probability of each event type (first, second, and non-sequence944

events) across all selected TRs and trials in the relevant time period separately for each repeti-945

tion condition across participants. In order to examine whether the event type (first, second, and946

non-sequence events) had an influence on the mean probability estimates on repetition trials, we947

conducted a LME model [130] and entered the event type (with three factor levels: first, second,948

and non-sequence events) as a fixed effect and included by-participant random intercepts and slopes949

(Fig. 4b). Post-hoc comparisons between the means of the three factor levels were conducted using950

Tukey’s honest significant difference (HSD) test [131].951

Second, in order to jointly examine the influence of event duration (number of repetitions)952

and event type (first, second, and non-sequence events), we conducted a LME model [130] with953

fixed effects of event type (with three factor levels: first, second, and non-sequence events) and954

repetition condition (number of individual event repetitions with two factor levels: (1) forward955

interference trials, where one briefly presented event is followed by eight repetitions of a second956

event, and (2) backward interference trials, where eight repetitions of a first event are followed by957

one briefly presented second event), also adding an interaction term for the two effects. Again,958

the model included both by-participant random intercepts and slopes (Fig. 4c). Post-hoc multiple959

comparisons among interacting factor levels were performed separately for each repetition condition960

by conditioning on each level of this factor (i.e., forward interference versus backward interference961

trials), using Tukey’s HSD test.962

Third, we asked if we are more likely to find transitions between decoded events that were part of963

the sequence (the two within-sequence items) compared to items that were not part of the sequence964

(non-sequence items). To this end, we classified each transition as follows: forward (from Event 1965

to Event 2), backward (from Event 2 to Event 1), repetitions of each sequence item, outwards (from966
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sequence items to any non-sequence item), inwards (from non-sequence items to sequence items),967

outside (among non-sequence items) and repetitions among non-sequence events (the full transition968

matrix is shown in Fig. 4e). We then compared the average proportion of forward transitions within969

the sequence (i.e., decoding a Event 1 → Event 2) with the average proportions of (1) transitions970

from sequence items to items that were not part of the sequence (outwards transitions), and (2)971

transitions between events not part of the sequence (outside transitions) using paired two-sample972

t-tests with ps adjusted for four comparisons using Bonferroni correction (Fig. 4d).973

Analysis of sparse sequence events with lower SNR. We only used resting state data from974

the first study session before participants had any experience with the task (except a short training975

session outside the scanner). These resting state data could not be successfully recorded in four976

participants. Therefore, the analyses were restricted to N = 32 of 36 participants. Participants977

were instructed to rest as calmly as possible with eyes opened while focusing on a white fixation978

cross that was presented centrally on the screen. For decoding on resting state data, we used the979

union of all eight masks created for the functional task runs during the cross-validation procedure.980

Logistic regression classifiers were trained on masked data from slow trials of all eight functional981

runs and applied to all TRs of the resting state data, similar to our sequence trial analysis. We982

assigned pseudo serial positions to each class randomly for every participant, assuming one fixed983

event ordering. We first characterized and compared the behavior of sequence detection metrics984

on resting state and concatenated sequence trial data. For sequence trials, we only considered985

data from TRs within the expected forward and backward periods (TRs 2 to 13) and focused on986

the fastest (32 ms) and slowest (2048 ms) speed condition. Accordingly, we restricted the resting987

state data to the first 180 TRs to match it to the length of concatenated sequence trial data (15988

concatenated trials of 12 TRs each). For both fast and slow sequence trials and rest data, we989

then calculated the standard deviation of the probabilities (Fig. 5a) as well as the slope of a linear990

regression between serial position and their classification probabilities (Fig. 5b, 5c) at every TR. We991

then compared both the standard deviation of probabilities and the mean regression slopes over the992

entire rest period with the mean regression slopes in fast (32 ms) sequence trials using two-sided993

paired t-tests (Fig. 5a, 5b). ps adjusted for four comparisons using Bonferroni correction (Fig. 4d).994

The effect sizes (Cohen’s d) were calculated as the difference between the means of the resting995

and sequence data, divided by the standard deviation of the differences [123]. Given the rhythmic996

fluctuations of the regression slope dynamics (Fig. 2e) we calculated the frequency spectra across997

the resting state and concatenated sequence trial data using the Lomb-Scargle method [using the998

lsp function from the R package lomb, e.g., 60] that is suitable for unevenly-sampled data and999

therefore accounts for potential artifacts due to data concatenation 5d). The resulting frequency1000

spectra were smoothed with a running average filter with width 0.005. Next, we extracted the mean1001

power of the frequencies for fast and slow event sequences as predicted by Eqn. 5 in both resting1002

and sequence data. For example, for a 32 ms sequence with δ = 0.032 ∗ 4 + 0.1 ∗ 5 = 0.628 one1003

obtains the predicted frequency as fδ = f
1+f ∗0.628 = 0.17, whereby f equals the fitted single trial1004

frequency f = 1/5.26. The mean power at the predicted frequencies were then compared between1005

resting as well as fast and slow sequence data using two-sided paired t-tests with p values adjusted1006
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for multiple comparisons using FDR-correction [129].1007

We then inserted 1 to 6 sequence events into the pre-task resting state period by blending TRs1008

during resting state with TRs recorded during fast (32 ms) or slow (2048 ms) sequence trials. Specif-1009

ically, we randomly selected six sequence trials for each speed condition, without replacement. Only1010

TRs from the relevant time period (see above; 12 TRs for both speed conditions, respectively) were1011

blended into the resting state data. To investigate the effects of a reduced SNR we systematically1012

multiplied the probabilities of the inserted sequence TRs by a factor κ of 4
5 , 1

2 , 1
4 , 1

8 or 0, step-wise1013

reducing the signal from 80% to 0% and added these scaled probabilities to the probability time1014

courses of the resting state data. The resting state data used for blending were independently sam-1015

pled from non-overlapping random locations within the resting state data of the same participant.1016

This ensured that even in the 0 SNR condition, potential artefacts due to data concatenation were1017

present and would therefore not impact our comparisons between SNR levels. For each combina-1018

tion of the number of inserts and SNR levels, we then compared the mean standard deviation of1019

the probabilities during sequence-inserted rest with sequence-free rest using a series of two-sided1020

paired t-tests. p values were adjusted accordingly for 30 comparisons using FDR-correction [129]1021

and log-transformed (base 20) to make them easier to visualize (here, a log-transformed p values of1022

1 corresponds to p < .05).1023

Finally, we calculated the frequency spectra of sequence-inserted rest data as before, separately1024

for data with fast and slow sequence inserts. To achieve comparable resolution obtained in the above1025

analyses, we over-sampled the frequency space by a factor of 2. Smoothing was then applied again1026

as before. We then calculated the relative power of each frequency compared to sequence-free rest1027

and averaged the relative frequency spectra across participants (Fig. 5h). As before, we extracted1028

the mean power within the predicted fast and slow frequency range (±0.01 Hz, given the smoothing)1029

and compared them between fast and slow sequence-inserted rest and for different numbers of inserts1030

and SNR levels. We them compared the relative power for each sequence-inserted rest data set,1031

number of inserts and SNR level against zero (no difference from sequence-free rest) using a series1032

of two-sided one-sample t-tests (p values uncorrected).1033

Statistical analysis Main statistical analyses were conducted using LME models employing the1034

lmer function of the lme4 package [version 1.1.21, 130] in R [version 3.6.1, 132]. If not stated1035

otherwise, all models were fit with participants considered as a random effect on both the intercept1036

and slopes of the fixed effects, in accordance with results from Barr et al. [133] who recommend to1037

fit the most complex model consistent with the experimental design [133]. If applicable, explanatory1038

variables were standardized to a mean of zero and a standard deviation of one before they entered the1039

models. If necessary, we removed by-participant slopes from the random effects structure to allow a1040

non-singular fit of the model [133]. Models were fitted using the BOBYQA (Bound Optimization BY1041

Quadratic Approximation) optimizer [134, 135] with a maximum of 500, 000 function evaluations1042

and no calculation of gradient and Hessian of nonlinear optimization solution. The likelihoods of1043

the fitted models were assessed using Type III analysis of variance (ANOVA) with Satterthwaite’s1044

method. A single-step multiple comparison procedure between the means of the relevant factor levels1045

was conducted using Tukey’s HSD test [131], as implemented in the emmeans package in R [version1046
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1.3.4, 132, 136]. In all other analyses we used one-sample t-tests if group data was compared to e.g.,1047

a baseline or paired t-tests if two sample from the same population were compared. If applicable,1048

correction for multiple hypothesis testing was performed using the FDR-correction method [129]. If1049

not stated otherwise, t-tests were two-sided and the α level set to 0.05.1050

Analysis of behavioral data. The main goal of the current study was to investigate the statistical1051

properties of BOLD activation patterns following the presentation of fast visual object sequences.1052

Therefore, attentive processing of all visual stimuli was a prerequisite to ensure that we would be1053

able to decode neural representations of the stimuli from occipito-temporal fMRI data. If behavioral1054

performance was low, we could expect that participants did not attend well to the stimuli. We1055

thus calculated the mean behavioral accuracy on sequence and repetition trials and excluded all1056

participants that had a mean behavioral accuracy below the 50% chance level (Fig. S1a). Mean1057

behavioral accuracy scores of the remaining participants in the final sample are reported in the1058

main text (Fig. 1d–f). In order to assess how well participants detected upside-down stimuli on1059

slow trials, we conducted a one-sided one-sample t-test against the 50% chance level, testing the1060

a-priori hypothesis that mean behavioral accuracy would be higher than chance (Fig. 1a). Cohens’d1061

quantified the effect size and was calculated as the difference between the mean of the data and the1062

chance level, divided by the standard deviation of the data [123]. As low performance in this task1063

condition could be indicated by both false alarms (incorrect response to upright stimuli) and misses1064

(missed response to upside-down stimuli) we also checked whether the frequency of false alarms1065

and misses differed (Fig. S1b). Furthermore, we assessed if behavioral accuracy on slow trials used1066

for classifier training was stable across task runs (Fig. S1c). In order to examine the effect of1067

sequence speed on behavioral accuracy in sequence trials, we conducted a LME model including the1068

sequence speed condition as the main fixed effect of interest and by-participant random intercepts1069

and slopes. We then examined whether performance was above chance for all five speed conditions1070

and conducted five separate one-sided one-sample t-tests testing the a-priori hypothesis that mean1071

behavioral accuracy would be higher than a 50% chance-level. All p values were adjusted for multiple1072

comparisons using the FDR-correction [129]. The effect of serial position on behavioral accuracy1073

is reported in the SI (Fig. S1e). For repetition trials with forward and backward interference we1074

conducted separate one-sided one-sample t-test for each repetition condition to test the a-priori1075

hypothesis that behavioral accuracy would be higher than the 50% chance level. Results for all1076

repetition conditions are reported in the SI (Fig. S1d). The effect sizes (Cohen’s d) were calculated1077

as for slow trials.1078

Data availability statement. The MRI data that support the findings of this study will be made1079

available on https://openneuro.org/ upon publication.1080

Code availability statement. Custom code for all analyses conducted in this study will be made1081

available on https.//github.com/ upon publication.1082
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[57] Stephen José Hanson, Toshihiko Matsuka, and James V. Haxby. Combinatorial codes in ventral1285

temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? Neu-1286

roImage, 23(1):156–166, Sep 2004. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2004.05.020.1287

URL http://dx.doi.org/10.1016/j.neuroimage.2004.05.020.1288
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Supplementary Information1

Additional behavioral results2

Attentive processing of the visual stimuli was a prerequisite to study the evoked activation patterns3

in visual and ventral temporal cortex. We therefore excluded all participants that performed below4

chance on either or both the repetition and sequence trials of the task. To this end, we removed all5

participants with a mean behavioral accuracy below the 50% chance level from all further analyses6

(Fig. S1a). We compared the relative proportion of misses and false alarms for each of the eight7

functional task runs in the experiment. To this end, we conducted a LME model with trial type8

(miss, false alarm), session (first, second) and session run (run 1–4) as fixed effects and included9

by-participant random intercepts and slopes. As shown in Fig. S1b, misses (M = 0.55%) consis-10

tently occurred more frequently than false alarms (M = 0.30%), F1,501.00 = 4.1, p = .04, which11

was consistent across task runs (no effects of session or run, ps ≤ .70). Our classification was per-12

formed using a leave-one-run-out approach. In order to examine whether the accuracy of behavioral13

performance on slow trials was stable across all task runs of the study, we conducted a LME model14

that included the eight task runs as the fixed effect of interest as well as random intercepts and15

slopes for each participant. The results showed no effect of task run indicating that the accuracy of16

behavioral performance was relatively stable across task runs, F1,92.72 = 0.13, p = .72 (Fig. S1c).17

We examined whether behavioral accuracy on sequence trials was influenced by either the sequence18

speed or the serial position of the cued target image. A LME model including the sequence speed19

as a fixed effect and by-participant random intercepts and slopes indicated slightly lower but clear20

above-chance performance if the sequences were displayed at faster speeds, F1,35 = 4.27, p = .0521

(Fig. 1f). A separate LME model including the target position as a fixed effect and by-participant22

random intercepts and slopes indicated lower but above-chance performance if the target image23

appeared at earlier serial positions, F1,42.022 = 9.92, p = .003 (Fig. S1d). We focused the analysis24

of repetition trials on the forward and backward interference condition in the main text, but also25

examined performance for all intermediate repetition conditions and conducted a LME model with26

repetition condition as a fixed effect and by-participant random intercepts and slopes. Mean behav-27

ioral performance decreased with the number of second item repetitions, F1,39 = 57.43, p < .00128

(Fig. S1e). A series of eight one-sided one-sample t-tests indicated that for all repetition conditions29

mean behavioral accuracy was above the 50% chance level (ps ≤ .01, FDR-corrected; ds ≥ 0.39).30

Additional information on single event and event sequence modelling31

As reported in the main text, we described multivariate decoding time courses on slow trials by32

a sine wave response function that was fitted to the decoding time courses of all participants33

separately. Evaluating a single sine wave response function for three randomly selected example34

participants based on the individually fitted parameters indicated that the response functions capture35

the individual participant data well (Fig. S2a). Based on the mean parameters across all participants36

we derived the mean response functions for each stimulus class which looked qualitatively similar37

(Fig. S2b).38
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Figure S1: Additional behavioral results. (a) Mean behavioral performance (in %; y-axis) for the three trial
conditions (x-axis). Dots / symbols represent mean data of one participant with below-chance performance colored
in red. Note, that the SEM indicated by the errorbars was calculated after participants with below-chance performance
were excluded. (b) Mean frequency of incorrect slow trials (in %; y-axis) across the four task runs (x-axis) of each
study session (panels), separately for false alarms (violet bars) and misses (yellow bars). (c) Mean accuracy on slow
trials (in %; y-axis) across the four task runs (x-axis) of each study session (panels). (d) Mean behavioral accuracy
on sequence trials (in %; y-axis) as a function of serial target position (x-axis). (e) Mean behavioral accuracy on
repetition trials (in %; y-axis) for all repetition conditions (x-axis) compared to chance. Asterisks indicate p < .05,
FDR-corrected. Effect sizes are indicated by Cohen’s d . Horizontal dashed lines (in a, d, e) indicate 50% chance
level. Errorbars (in a, b, d, e) and shaded areas (in c) represent ±1 SEM.

Additional results for sequence trials39

As reported in the main text, we investigated whether sequence order was evident in the relative40

pattern activation strength within a single measurement (i.e., within a single TR) and quantified41

sequential ordering by the slope of a linear regression between serial events and their classification42

probabilities. In addition, we repeated the same analysis using two different indices of linear as-43

sociation which produced qualitatively similar results. First, using ranked correlation coefficients44

(Kendall’s τ) between the serial event position and their classification probabilities as the index of45

linear association, we also found significant forward ordering in the forward period at sequence speeds46

of 128, 512 and 2048 ms (ts ≥ 2.22; ps ≤ .04, FDR-corrected; ds ≥ 0.37) and significant backward47

ordering in the backward period for all speed conditions (ts ≥ 4.55; ps ≤ .001, FDR-corrected;48

ds ≥ 0.76; Fig. S3a–b). Second, we ordered the probabilities at every TR and calculated the49

mean step size (i.e., difference) between the probability-ordered event positions. Again, this analysis50

revealed qualitatively similar results, as we found significant forward ordering in the forward period51

at sequence speeds of 128, 512 and 2048 ms (ts ≥ 2.32; ps ≤ .03, FDR-corrected; ds ≥ 0.39) and52

significant backward ordering in the backward period for all speed conditions (ts ≥ 5.17; ps ≤ .001,53
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Figure S2: Individual fits of sine wave response function to probabilistic classifier evidence. (a) Time courses
(in TRs from stimulus onset; x-axis) of probabilistic classifier evidence (in %; y-axis) generated by the sine wave
response function with fitted parameters (black dotted line) or the true data (gray line and dots) separately for
the five stimulus classes (vertical panels) and three randomly chosen example participants (horizontal panels). (b)
Time courses (in TRs from stimulus onset; x-axis) of mean probabilistic classifier evidence (in %; y-axis) averaged
separately for each participant (gray semi-transparent lines) and stimulus class (vertical panels) or predicted by the
sine wave response model based on fitted parameters averaged across all participants (black line). 1 TR = 1.25 s.

FDR-corrected; ds ≥ 0.86; Fig. S3c–d).54

Next, we analyzed the time courses of linear associations in more detail. Specifically, for each55

index of linear association, we tested for sequentiality at every time point (i.e., at every TR) and56

conducted a series of two-sided one-sample t-tests comparing the sample mean at every time point57

against zero (the expectation of no order information). All p values were adjusted for multiple58

comparisons by controlling the FDR across all time-points within the forward and backward period59

and speed conditions (38 comparisons in total). This analysis produced consistent results for each60
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Figure S3: (a) Time courses (in TRs from sequence onset; x-axis) of mean ranked correlation coefficients between
serial event position and classification probabilities (Kendall’s τ ; y-axis) for each speed condition (in ms; colors) on
sequence trials. (b) Mean ranked correlation coefficients (Kendall’s τ ; y-axis) as a function of time period (forward
versus backward; x-axis) and sequence speed (in ms; colors). (c) Time courses (in TRs from sequence onset; x-axis)
of the mean step size between probability-ordered within-TR events (y-axis) for each speed condition (in ms; colors)
on sequence trials. (d) Mean within-TR step-size (y-axis) as a function of time period (forward versus backward;
x-axis) and sequence presentation speed (in ms; colors). Each dot in (b) and (d) represents averaged data of one
participant. Shaded areas in (a), (c) and errorbars in (b), (d) represent ±1 SEM. 1 TR = 1.25 s. Stars indicate
significant differences from baseline.

index of linear association that was tested. For the mean regression slopes, this analysis revealed61

significant forward sequentiality at specific earlier time points for all speed conditions (TR 3 at 3262

ms, p = .048, d = 0.37; TRs 2 – 3 at 128 ms, ps ≤ .03, ds ≥ 0.38; TRs 3 – 4 at 512 ms,63

ps < .001, ds ≥ 0.98; TRs 3 – 7 at 2048 ms, ps ≤ .002, ds ≥ 0.60; all ps FDR-corrected for64

38 comparisons) except the 64 ms speed condition (ps ≥ .08). Furthermore, we found significant65

backward sequentiality at specific later time points for all speed conditions (TRs 5 – 7 at 32 ms,66

ps ≤ .02, ds ≥ 0.43; TRs 5 – 6 at 64 ms, ps ≤ .01, ds ≥ 0.47; TRs 5 – 7 at 128 ms, ps ≤ .01,67

ds ≥ 0.48; TRs 6 – 7 at 512 ms, ps < .001, ds ≥ 0.98; TRs 8 – 12 at 2048 ms, ps < .001, ds68

≥ 0.70; all ps FDR-corrected for 38 comparisons; S4a). As can be seen in Fig. S4b–d these results69

were qualitatively similar for all indices of linear association tested.70
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Figure S4: Classification time courses on sequence trials. Time courses (in TRs from sequence onset; x-axis)
of (a) mean linear regression coefficients (slope), (b) mean correlation coefficients (Kendall’s τ), (c) mean step size
between probability-ordered within-TR events, and (d) mean decoded serial event position with maximum probability
for each sequence presentation speed (in ms; panels / colors). Shaded areas represent ±1 SEM. The blue and red
rectangles indicate forward and backward period, respectively. Red dots indicate significant differences from baseline
(horizontal gray line at zero; all ps ≤ .05, FDR-corrected for 38 comparisons). 1 TR = 1.25 s.

As reported in the main text, we verified that the sequentiality effects observed on sequence71
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trials (Fig. 3b) are not only driven by the event with the maximum probability but that sequentiality72

is also present if the event with the maximum probability is removed. Examining the mean slope73

coefficients within the expected forward and backward period (adjusted by considering only four74

sequence events) after removing the event with the maximum probability showed that we could still75

find evidence for sequential ordering (Fig. S5a). Significant forward ordering in the forward period76

was still evident at sequence speeds of 512 and 2048 ms (ts ≥ 3.99; ps ≤ .001, FDR-corrected;77

ds ≥ 0.67) and significant backward ordering in the backward period for all speed conditions (ts78

≥ 2.95; ps ≤ .009, FDR-corrected; ds ≥ 0.49; Fig. S5b) except the 128 ms speed condition79

(p = .10). The main analysis reported in the Results section highlighted an apparent asymmetry80

in detecting forward and backward sequentiality. To determine the extent to which this asymmetry81

was driven by the first or last item in the sequence we conducted two additional control analyses by82

either removing the first or last sequence item from the analysis. Removing the first sequence item83

did not change the observed sequentiality effects qualitatively (Fig. S5c) as we still found significant84

forward ordering in the forward period at sequence speeds of 512 and 2048 ms (ts ≥ 6.45; ps85

≤ .001, FDR-corrected; ds ≥ 1.07) and significant backward ordering in the backward period for86

all speed conditions (ts ≥ 3.05; ps ≤ .006, FDR-corrected; ds ≥ 0.51; Fig. S5d). Removing the87

last sequence item, in contrast, made any significant sequentiality disappear for speed conditions of88

128 ms or faster (p ≥ .12), while forward and backward sequentiality were still evident at sequence89

speeds of 512 ms and 2048 ms (ts ≥ 4.57; ps ≤ .001, FDR-corrected; ds ≥ 0.76; Fig. S5e–f).90

Additional analyses of repetition trials91

We conducted two additional analyses for the data on repetition trials. First, we analyzed the effect of92

event duration (number of repetitions) on event probability in more detail by calculating the average93

event probability for each event type (first, second, and averaged non-sequence) as a function of94

event duration (number of repetitions). Importantly, while we focused only on the two repetition95

conditions with the highest degree of interference before, we now also included the data from all96

intermediate repetition trial types. As before, we averaged the probabilities for each serial event97

type but this time as a function of how often each item type was repeated in any given trial. Then,98

in order to test how likely we were in decoding each serial event type (first, second, non-sequence),99

when each item was only shown briefly once, we conducted three independent pairwise two-sample100

t-tests comparing the mean probabilities of all three event types with one another (correcting for101

multiple comparisons using Bonferroni correction).102

The results reported in the main text focused on the two repetition conditions with the strongest103

expected effects of forward and backward interference. Additionally, we characterized the effect104

of event duration (number of repetitions) in more detail by analyzing the average probability of105

event types (first, second, non-sequence) as a function of event duration also for all intermediate106

repetition conditions. The results revealed a main effect of event type (first, second, non-sequence),107

F2,282.12 = 23.46, p < .001 and event duration (number of repetitions), F1,71.89 = 196.71, p < .001108

as well as an interaction between event type and event duration, F2,753.00 = 52.46, p < .001 (see109

Fig. S6). In order to further characterize the origin of this interaction, we also conceived a reduced110
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Figure S5: Effects of sequence item removal on sequentiality metrics. (a, c, e) Time courses (in TRs from
sequence onset; x-axis) of mean slope coefficients of a linear regression between serial event position and classifier
probability (y-axis) for each speed condition (in ms; colors) on sequence trials after removal of (a) the sequence item
with the highest classification probability, (c) the first sequence item, (e) the last sequence item. (b, d, f) Mean
slope coefficients (y-axis) as a function of time period (forward versus backward; x-axis) and sequence speed (in ms;
colors) after removal of (b) the sequence item with the highest classification probability, (d) the first sequence item,
(f) the last sequence item. Each dot represents averaged data of one participant. Shaded areas in (a, c, e) and
errorbars in (b, d, f) represent ±1 SEM. 1 TR = 1.25 s.

model that did not include the data from non-sequence events. The results of this reduced model111

again showed a main effect of event type (first, second), F1,370.98 = 15.32, p < .001 and event112

duration (number of repetitions), F1,82.32 = 203.32, p < .001 but no interaction between event113

type and event duration, F1,502.00 = 0.0054, p = .94. If only shown briefly, the second event had114

a mean probability (M = 17.11%, SD = 5.83%) that was higher than for the first event (M =115

12.62%, SD = 5.58%), t(39) = 2.98, p = .005 and the averaged non-sequence items (M = 7.32%,116

SD = 2.74%), t(39) = 8.95, p < .001 while the average probability of the first event was also117

7

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.15.950667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950667
http://creativecommons.org/licenses/by-nc-nd/4.0/


higher compared to the out-of-sequence items, t(39) = 5.80, p < .001 (all ps were adjusted for six118

multiple comparisons, using the Bonferroni correction). If the event duration was prolonged (eight119

consecutive repetitions) the second event had a mean probability (M = 31.11%, SD = 6.87%) that120

was significantly different from the first event (M = 26.13%, SD = 8.28%), t(39) = 2.70, p = .01121

and the averaged non-sequence items (M = 7.49%, SD = 2.82%), t(39) = 18.42, p < .001 while122

the average probability of the first event was also higher compared to the non-sequence items,123

t(39) = 11.91, p < .001 (all ps were adjusted for six multiple comparisons, using the Bonferroni124

correction).125

These effects were attenuated but qualitatively similar when data from all TRs were considered.126

Specifically, a test of the model including out-of-sequence events again revealed main effects of event127

type, F2,915 = 14.31, p < .001, and event duration , F1,915 = 68.97, p < .001, and an interaction128

between the two factors, F2,915 = 17.90, p < .001. Testing a model without out-of-sequence129

events again revealed main effects of event type F2,597 = 10.92, p = .001, and event duration,130

F1,597 = 78.92, p < .001, but no interaction between the two factors, F2,597 = 0.18, p = .68. Again,131

the mean probability of detecting a briefly presented second (M = 14.41) was higher compared to132

a briefly presented first event (M = 12.02, t(39) = 2.46, p = .02, Bonferroni-corrected for six133

comparisons). The mean probability for both briefly presented sequence items was also higher134

compared to out-of-sequence events (M = 10.28, both ts ≥ 2.52, both ps ≤ .02, Bonferroni-135

corrected for six comparisons). When items were repeated eight times the effect was similar: The136

mean probability of detecting a long second event (M = 19.37) was higher compared to a long first137

event (M = 16.54, t(39) = 2.27, p = .03, Bonferroni-corrected for six comparisons). The mean138

probability for both briefly presented sequence items was also higher compared to out-of-sequence139

events (M = 9.96, both ts ≥ 7.99, both ps ≤ .001, Bonferroni-corrected for six comparisons).140
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Figure S6: Effects of event duration (element repetition) Average probability (in %; y-axis) as a function of the
number of item repetitions (i.e., total event duration), separately for event types (first, second, and out-of-sequence
events; colors) based on data of all TRs.

We asked whether we would be more likely to decode items that were part of the sequence actually141

shown to participants (within-sequence items) as compared to items not part of the sequence (out-142

of-sequence items). To this end, we assessed if the serial events 1 and 2 were more likely to be143

decoded in the repetition trials than other events. As before, we identified the item with the highest144

classifier probability at every TR of each trial and then calculated the relative frequency of each145

item in the decoded sequence of events. These frequencies were then averaged separately for each146
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repetition condition across all trials and participants. Next, using paired t-tests, we performed two147

statistical tests: First, we tested how well we were able to decode a single briefly presented item148

in a 32 ms sequence compared to items that were not presented, when the item is followed by a149

statistical representation that could mask its activation pattern (short → long trials). Second, we150

tested how well we were able to decode a single briefly presented item (first serial event) in a 32 ms151

sequence compared to items that were not part of the sequence, when the item (last serial event)152

is followed by a random statistical signal, for example, during an ITI (long → short trials).153

Analyzing the average proportion of decoded serial events across all TRs for the backward154

interference and forward interference conditions separately revealed a main effect of serial event155

type (first, second, averaged out-of-sequence), F2,234 = 40.70, p = 6.80× 10–16. No main effect of156

repetition condition (short → long versus long → short) was found, F1,234 = 0.08, p = .78, but an157

interaction between serial event position and repetition condition, F2,234 = 23.92, p = 3.54× 10–10
158

(see Fig. 4e). Post-hoc comparisons indicated that in the short→ long condition the longer second159

event had a higher frequency (M = 29.0%) compared to the out-of-sequence (M = 17.4%) as well160

as the short, first event (M = 18.9%, ps < .0001). The short first event did not differ from the161

out-of-sequence events (p = .47, Tukey-correction for three comparisons). In the long → short162

condition, in contrast, there was no difference between the long first (M = 24.6%) and short second163

event (M = 22.3%, p = .17, Tukey-correction for three comparisons) but significant differences164

between both within-sequence items and the averaged out-of-sequence (M = 17.7%) items (both165

ps < .001, Tukey-correction for three comparisons).166

Analyzing the mean probability for the three event types (first, second, and out-of-sequence167

events) on repetition trials as a function of the absolute event occurrence per trial using data168

from all 13 TRs revealed a main effect of event type (first, second, out-of-sequence), F2,915 =169

14.31, p < .001 and event duration (number of repetitions), F1,915 = 68.97, p < .001 as well as170

an interaction between event type and event duration, F2,915 = 17.90, p < .001 (see Fig. 4d).171

In order to further characterize the origin of this interaction, we also conceived a reduced model172

that did not include the data from out-of-sequence events. The results of this reduced model again173

showed a main effect of event type (first, second), F1,597 = 10.92, p = .001 and event duration174

(number of repetitions), F1,597 = 78.92, p < .001 but no interaction between event type and event175

duration, F1,597 = 0.18, p = 0.68. If only shown briefly, the second event had a mean probability176

(M = 14.41%, SD = 4.53%) that was higher than for the first event (M = 12.02%, SD = 4.78%),177

t(39) = 2.46, p = .03 and the averaged out-of-sequence items (M = 10.28%, SD = 2.88%),178

t(39) = 5.80, p < .001 while the average probability of the first event was also higher compared179

to the out-of-sequence items, t(39) = 2.52, p = .03 (all p values were adjusted for six multiple180

comparisons, using the FDR correction). If the event duration was prolonged (eight consecutive181

repetitions) the second event had a mean probability (M = 19.37%, SD = 6.44%) that was not182

significantly different from the first event (M = 16.54%, SD = 4.75%), t(39) = 2.27, p = .06 but183

from the averaged out-of-sequence items (M = 9.75%, SD = 3.05%), t(39) = 9.36, p < .001 while184

the average probability of the first event was also higher compared to the out-of-sequence items,185

t(39) = 7.99, p < .001 (all p values were adjusted for six multiple comparisons, using the FDR186
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correction).187

We also analyzed the trial-wise proportion of transition types between consecutively decoded188

events using data from all 13 TRs following stimulus onset. This analysis revealed that in the short189

→ long condition the mean trial-wise proportion of forward transitions (M = 6.50) was higher than190

the mean proportion of outward transitions (M = 2.48), t(39) = 4.82, p < .001 and also differed191

from the mean trial-wise proportion of outside transitions (M = 1.28), t(39) = 6.14, p < .001 (all p192

values were corrected for four comparisons using Bonferroni correction; see Fig. 4f)). Similarly, in the193

long→ short condition, the mean trial-wise proportion of forward transitions (M = 6.80) was higher194

than the mean proportion of outward transitions (M = 2.58), t(39) = 6.11, p < .001 and also differ195

compared to the mean trial-wise proportion of outside transitions (M = 1.18), t(39) = 7.71, p < .001196

(all p values were corrected for four comparisons using Bonferroni correction).197

Repeating analyses of repetition trials using data from all TRs As reported in the main198

text, we focused the analyses of repetition trials on data from a relevant period of six TRs (from199

the second to the seventh TR) and the two trial conditions with maximum forward and backward200

interference, respectively. Here, we report results of the same analyses repeated using data from all201

TRs. The estimated probabilities of each stimulus class given the data for all repetition conditions202

are shown in Fig. S7. Analyzing the mean probabilities of the different event types (first, second,203

out-of-sequence) using data from all TRs (see Fig. S8a) revealed qualitatively similar results. Event204

type still influenced the average decoding probability, F2,55.555 = 41.05, p < .001 (see Fig. S8b).205

Post-hoc comparisons indicated that sequence items had a higher mean probability than out-of-206

sequence (9.55%) items (both ps < .001, Tukey-correction for three comparisons), while the second207

(16.77%) and first (16.77%) within-sequence event type also differed (p = .01, Tukey-correction208

for three comparisons). Repeating the analysis for the forward and backward interference conditions209

using data from all TRs again revealed smaller but qualitatively similar effects, with a main effect210

of event type (first, second, out-of-sequence), F2,43.34 = 55.42, p < .001, an interaction between211

event type and duration, F2,105.00 = 37.72, p < .001, and no main effect of duration (number of212

repetitions), F1,35.70 = 0.08, p = .78 (see Fig. S8c). Post-hoc comparisons indicated that in the213

forward interference condition the longer second event had a higher probability (19.20%) compared214

to both the out-of-sequence (M = 9.74%) and the short, first event (M = 11.42%, ps < .001,215

Tukey-correction for three comparisons). As reported in the main text, when using data from all216

TRs, the short first event did not differ from the out-of-sequence events (p = .13, Tukey-correction217

for three comparisons). In the backward interference condition, in contrast, there was no difference218

between the long first (16.25%) and short second event (14.34%, p = .22, Tukey-correction for three219

comparisons) but significant differences between both within-sequence items and the averaged out-220

of-sequence (9.36%) items (ps < .001, Tukey-correction for three comparisons). We also repeated221

the analysis investigating trial-wise proportions of transitions between consecutively decoded events222

using data from all TRs. Based on the full transition matrix (see Fig. S8e), this analysis revealed223

qualitatively similar effects (Fig. S8d): Forward transitions (3.98%) between the two sequence224

items were as frequent as outward transitions (2.86%, t(35) = 2.40, p = .09, Bonferroni-corrected225

for four comparisons) but more frequent than outside transitions (2.27%, t(35) = 3.42, p = .006,226
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Bonferroni-corrected for four comparisons) in the forward interference condition. The same was true227

for the backward interference condition (forward transitions: 4.49%; outwards transitions: 2.89%;228

outside transitions: 2.35%, all ts ≥ 4.81, all ps ¡ .001; Bonferroni-corrected for four comparisons).229
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Figure S7: Time courses of probabilistic classifier evidence for all repetition conditions. Time courses (in TR
from sequence onset; x-axis) of probabilistic classifier evidence (in %; y-axis) on repetition trials grouped by event
type (colors), separately for each repetition condition (gray panels). Each panel indicates the number of repetitions
per sequence event (e.g., the top-left panel indicates 1 versus 8 repeats of the first versus second event). Time-courses
of classifier evidence for the first and second event are shown in blue and red, respectively, while all other stimuli that
were not part of the sequence are shown in three shades of gray. Shaded areas represent ±1 SEM. 1 TR = 1.25 s.
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Figure S8: Ordering of two-item pairs on repetition trials. (a) Time-courses of probabilistic classifier evidence
(in %; y-axis) on repetition trials as a function of time from sequence onset (in TRs; x-axis) grouped by event
type (colors) for trials with backward (left panel) or forward interference (right panel). Time-courses of classifier
evidence for the first and second event are shown in blue and red, respectively, while all other stimuli that were not
part of the trial sequence are shown in three shades of gray. The gray rectangular area indicates the relevant time
period. Ribbons represent one SEM. (b) Mean probability (in %; y-axis) of event types (colors) averaged across all
relevant TRs). (c) Average probability (in %; y-axis) of event types, separately for the short → long and long →
short condition (gray panels). (d) Mean trial-wise proportion (in %; y-axis) of each transition type, separately for
the short → long and long → short condition (gray panels). (e) Full transition matrix of decoded event sequences
indicating the mean proportion per trial (in %; circle size), separately for the short→ long and long→ short condition
(gray panels), highlighting the transition types (colors). For all plots, each dot represents averaged data from one
participant, if not indicated otherwise. The shaded areas (rain cloud plots) indicate the probability density function
of the data [cf. 59]. The overlaid boxplots indicate the sample median alongside the interquartile range. The barplots
show the sample mean and one SEM.
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