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A B S T R A C T   

Experience-related brain activity patterns reactivate during sleep, wakeful rest, and brief pauses from active 
behavior. In parallel, machine learning research has found that experience replay can lead to substantial per-
formance improvements in artificial agents. Together, these lines of research suggest that replay has a variety of 
computational benefits for decision-making and learning. Here, we provide an overview of putative computa-
tional functions of replay as suggested by machine learning and neuroscientific research. We show that replay 
can lead to faster learning, less forgetting, reorganization or augmentation of experiences, and support planning 
and generalization. In addition, we highlight the benefits of reactivating abstracted internal representations 
rather than veridical memories, and discuss how replay could provide a mechanism to build internal repre-
sentations that improve learning and decision-making.   

Memory, planning and imagination are important aspects of intelli-
gent behavior; they allow the mind to go beyond merely observing and 
reacting to its surroundings. But how the brain implements these func-
tions, and how they could help to improve artificial intelligent agents, is 
not yet fully understood. In this review, we will provide an overview of 
one important candidate mechanism involved in memory, imagination 
and planning: Replay. The term replay is used to refer to a wide variety 
of mechanisms that relate to the reactivation of past memories. This 
reactivation has been observed in the brain and is commonly imple-
mented in artificial agents. Replay occurs often, but not always, in 
sequential form, and mostly while the agent or animal is not interacting 
with its environment. This article asks why the brain and artificial agents 
might use replay. 

1. Replay in the brain 

Before we discuss the benefits of replay, we will give a brief historical 
overview of the subject from a neuroscientific point of view. In neuro-
science, much research on memory, planning and imagination has 
focused on the hippocampus (e.g., Squire, 1992; Buckner, 2010). Early 
indications that the hippocampus gives rise to memory functioning came 
from studies of lesion patients (Scoville and Milner, 1957), and studies of 
rodent spatial navigation (O’Keefe and Nadel, 1978). Of particular 
importance were rodent recordings from hippocampal pyramidal neu-
rons, known as place cells, that demonstrated spatial firing selectivity 

when animals navigated in a spatial environment (O’Keefe and Dos-
trovsky, 1971; O’Keefe et al., 1978). These place cells have since been 
regarded as a core neural substrate for a cognitive map (Tolman, 1948) of 
physical space that supports spatial navigation (O’Keefe and Nadel, 
1974, 1978; Moser et al., 2008), as well as memory (Cohen and 
Eichenbaum, 1993; Redish and Touretzky, 1998). 

It soon became clear that hippocampal place cells are also active 
when an animal is not engaged in a particular task, in line with theo-
retical proposals that a reactivation mechanism could support consoli-
dation of recent memory traces into an aggregated memory store (Marr, 
1971). Following early empirical support for this idea (Buzsáki, 1989; 
Pavlides and Winson, 1989), multi-unit recordings in rodents led to the 
discovery of replay – the finding that during periods of rest and sleep, 
hippocampal cells reactivate sequentially in fast bursts, as if retracing 
paths the animal had taken during wakefulness (Wilson and 
McNaughton, 1994; Skaggs and McNaughton, 1996; Kudrimoti et al., 
1999; Nádasdy et al., 1999; Gerrard et al., 2001; Lee and Wilson, 2002; 
Louie and Wilson, 2001, for reviews of these earlier findings, see Redish, 
1999; Sutherland and McNaughton, 2000). These observations were 
followed by a wealth of findings that established the now classic 
neuroscientific view of replay: replay is sequential, occurs during sleep 
or rest, reflects previous experience in spatial navigation and memory 
tasks, and happens on a temporally compressed timescale (for review, 
see e.g., Foster, 2017). 

Over the following decades, much more became known about the 
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Fig. 1. Diversity of replay. Each panel outlines one example of one possible form of replay. In each case, we show an agent (black dot / robot) that stores a policy π, a 
value function Q and a model M see Box 1. Depicted is also the closest goal / reward (grey square), the relevant episode (blue bar), whether the episode is internally 
transformed (blue striped bar) and which aspect of the agent is updated through replay (green arrow). (A) A case in which encountering a goal triggers reverse replay. 
Reverse replay is then used to update the agent’s value function, similar to Lin (1992). (B) Interleaved replay in which episodes from a previous task are replayed to 
prevent catastrophic forgetting, see McClelland et al. (1995). (C) Replay of uniformly / randomly selected individual transitions (Mnih et al., 2015). (D) An agent can 
also learn a model through online updating, and replay from the model during offline periods to update its value function (Sutton, 1991). (E) Episodes can be selected 
for replay based on the magnitude of prediction errors or other reward-related signals experienced during task performance (Schaul et al., 2015). (F) Instead of 
replaying previously experienced episodes, an agent can simulate possible episodes based on its model and policy in order to update the agent’s value function 
(“offline policy evaluation”, Sutton and Barto, 2018), or to plan the next actions (the policy π) at a choice point, without updating values. (G) Previously experienced 
episodes can also be abstracted before they are replayed, as done for instance when internal representations instead of observations are reactivated (Kapturowski 
et al., 2019). This can be used to e.g., update the agent’s model and / or value function. (H) Agents can also insert imagined sub-goals into replayed episodes, in 
particular in order to leverage information from episodes in which the agent never reached the final goal. This is done in hindsight replay (Andrychowicz et al., 
2017). (I) Replay occurring during sleep, i.e., while the agent is not engaging in any task at all. This is commonly observed in animals (Klinzing et al., 2019), but 
analogies from the ML literature are lacking because artificial agents do not sleep. Note, that this figure is not meant to be complete and merely illustrates some but 
not all aspects of the referenced algorithms. © Wittkuhn et al., doi: 10.6084/m9.figshare.14261636.v4, CC-BY 4.0 license (https://creativecommons.org/lice 
nses/by/4.0/). 
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biological aspects of replay, and many findings supported the idea that 
replay is important for memory. First, replay is commonly detected 
during brief, high-frequency oscillations called sharp wave-ripples 
(SWRs) (for review, see e.g., Buzsáki, 2015; Joo and Frank, 2018), 
which have also been found in human medial temporal lobe (MTL) 
(Bragin et al., 1999; Staba et al., 2002) and can be linked to memory 
consolidation during sleep, rest, and awake episodic memory retrieval 
(Axmacher et al., 2008; Staresina et al., 2015; Zhang et al., 2018; Hel-
frich et al., 2019; Norman et al., 2019; Vaz et al., 2019, 2020). A link to 
memory is also supported by findings showing that the selective 
disruption of SWRs during post-task rest slows learning in 
hippocampus-dependent spatial memory tasks (Girardeau et al., 2009; 
Ego-Stengel and Wilson, 2010; Jadhav et al., 2012), and that memory 
can be influenced by playing sounds during SWR events while an animal 
sleeps (Bendor and Wilson, 2012; Rothschild et al., 2016). Second, 
replay is much faster than wakeful experience, and this temporal 
compression is believed to induce the conditions that drive learning and 
the strengthening of memory traces through synaptic plasticity (Bliss 
and Collingridge, 1993; Magee and Johnston, 1997; King et al., 1999). 
Third, interactions between the hippocampus and prefrontal cortex 
(PFC) during replay events support the idea of consolidating reactivated 
memories in the brain (for reviews, see e.g., Tang and Jadhav, 2019; 
Zielinski et al., 2020). 

Due to the fast and anatomically localized nature of the replay 
phenomenon, these insights were almost exclusively gained from inva-
sive recordings in rodents and human patient populations. But existing 
studies focusing on non-invasive detection of replay in humans point to 
similar conclusions. Memory benefits of non-sequential reactivation 
during rest or sleep are well documented in humans (Staresina et al., 
2013; Deuker et al., 2013; Tambini and Davachi, 2013; Tambini et al., 
2010; Gruber et al., 2016). Memory consolidation in humans can also be 
biased by presenting learning-associated sensory cues, a technique 
known as targeted memory reactivation (TMR), during 
replay-associated sleep phases in humans (Oudiette and Paller, 2013; 
Lewis and Bendor, 2019). Recent progress in neuroimaging analyses 
have also been able to capture the sequentiality of fast replay events 
using magnetoencephalography (MEG) (Kurth-Nelson et al., 2016; Liu 
et al., 2021a) and functional magnetic resonance imaging (fMRI) 
(Schuck and Niv, 2019; Wittkuhn and Schuck, 2021). In combination, 
these findings have demonstrated that replay exists in a variety of spe-
cies and support the idea that it reflects a consolidation process that 
strengthens memory associations (for reviews, see Sutherland and 
McNaughton, 2000; Rasch and Born, 2007; O’Neill et al., 2010; Die-
kelmann and Born, 2010; Carr et al., 2011; Zhang et al., 2017; Tambini 
and Davachi, 2019). 

While the above findings have established a foundational knowledge of 
replay, our understanding of this phenomenon has undergone significant 
and continued change that sometimes challenged the classic picture of 
replay (for review, see e.g., Foster, 2017). For instance, replay seems to be 
significantly more frequent than initially thought, happening not only 
during sleep or rest but also during brief wakeful pauses from active 
behavior (Csicsvari et al., 2007; Davidson et al., 2009; Diba and Buzsáki, 
2007; Foster and Wilson, 2006; Karlsson and Frank, 2009, for reviews of 
awake replay, see e.g., Carr et al., 2011; Tambini and Davachi, 2019). 
Replay-like sequential reactivation patterns occur at various speeds, from 
highly accelerated to much slower behavioral timescales (Deng et al., 2020; 
Denovellis et al., 2020; Tang et al., 2021). Recordings outside of the hip-
pocampus have identified replay-like phenomena in a large number of other 
brain areas, including entorhinal (Ólafsdóttir et al., 2016; Ólafsdóttir et al., 
2017; O’Neill et al., 2017; Trettel et al., 2019), prefrontal (Euston et al., 
2007; Peyrache et al., 2009; Jadhav et al., 2016; Yu et al., 2018; Shin et al., 
2019; Kaefer et al., 2020; Tang et al., 2021), visual and auditory sensory 
cortices (Ji and Wilson, 2006; Rothschild et al., 2016; Wittkuhn and Schuck, 
2021), parietal cortex (Qin et al., 1997; Hoffman and McNaughton, 2002; 
Harvey et al., 2012), motor cortex (Ramanathan et al., 2015; Gulati et al., 
2017), and ventral striatum (Lansink et al., 2009, 2008; Pennartz, 2004; 

Gomperts et al., 2015). Moreover, replay is not necessarily a faithful repli-
cation of previous behavioral sequences but can also reverse the order of 
experiences (Csicsvari et al., 2007; Davidson et al., 2009; Diba and Buzsáki, 
2007; Foster and Wilson, 2006; Karlsson and Frank, 2009) or change the 
order of actual experiences according to a learned task rule (Liu et al., 
2019a). It can also represent remote, non-local and never-experienced lo-
cations (Karlsson and Frank, 2009; Gupta et al., 2010; Ólafsdóttir et al., 
2015), reflect non-spatial and partially observable task features (Schuck and 
Niv, 2019), and occur even after tasks without explicit memory re-
quirements (Wittkuhn and Schuck, 2021). Collectively, these results suggest 
that replay (1) occurs during a variety of behavioral states, including rest, 
sleep and pausing, (2) occurs on a variety of time scales, (3) occurs in a 
variety of brain areas, and (4) does not only reflect previous experience, but 
is involved in a much broader range of cognitive functions than memory 
consolidation and spatial navigation alone. 

Indeed, our understanding of hippocampal place cells, and the neural 
architecture underlying memory and spatial navigation more generally, 
has also evolved considerably. The “places” represented by hippocampal 
neurons are not exclusively determined by location in physical space, 
but can also incorporate other task-relevant aspects, such as sounds 
(Aronov et al., 2017) and time (MacDonald et al., 2011), but see also 
O’Keefe and Krupic (2021). Other studies have pointed out that the 
hippocampus may learn and predict transitions between states in the 
environment (Gaussier et al., 2002) or encode representations that are 
predictive of future locations, so called successor representations (SRs), 
that can be used for reinforcement learning (RL) (Stachenfeld et al., 
2017), and that grid-like patterns in the entorhinal cortex and ventro-
medial PFC may represent coordinates of a non-spatial space (Con-
stantinescu et al., 2016). Thus, today the cognitive map in the 
hippocampal-entorhinal system is often thought to represent relation-
ships of locations and events beyond physical space, from conceptual 
knowledge to social cognition (for reviews and perspectives, see Kha-
massi and Humphries, 2012; Kaplan et al., 2017; Epstein et al., 2017; 
Schafer and Schiller, 2018; Behrens et al., 2018; Bellmund et al., 2018; 
Peer et al., 2020; Bottini and Doeller, 2020; Spiers, 2020). Map-like 
representations also exist beyond the hippocampus, most notably in 
the medial entorhinal cortex (Hafting et al., 2005; Fyhn et al., 2007; 
Høydal et al., 2019), and in prefrontal and orbitofrontal cortex (OFC) 
(Wilson et al., 2014; Schuck et al., 2016; Constantinescu et al., 2016, for 
a review, see e.g., Schuck et al., 2018). These findings may have 
important implications for our understanding of the nature of replayed 
representations, and suggest a mechanism that is much broader than a 
mere recapitulation of past observations in the hippocampus. 

How can such a diverse set of findings about replay in the hippo-
campus and the rest of the brain be integrated? We argue that insights 
into this question can be gained by considering the machine learning 
(ML) literature, where “experience replay” was introduced in the early 
90s (Lin, 1991). More recently, experience replay has become particu-
larly popular after its importance for training deep neural networks 
(DNNs) to play Atari video games became clear (e.g., Mnih et al., 2013, 
2015; Hessel et al., 2018). This led experience replay to rise to promi-
nence as a crucial ingredient in building human-level intelligence in 
artificial agents (Kumaran et al., 2016). Despite the conceptual simi-
larity of biological and artificial replay, research on this subject in 
neuroscience and ML has progressed largely in parallel. Here, we aim to 
connect insights from both research fields and review computational 
perspectives taken in ML on the replay phenomenon. Our goal is to 
highlight the diversity of possible computational and cognitive functions 
that might be served by a replay mechanism and attempt to answer the 
question of why agents would replay in the first place. Fig. 1 provides a 
non-exhaustive overview of different forms of replay, which differ in 
which experiences are selected for replay and in how replayed infor-
mation affects the subsequent behavior of an agent. We will discuss 
these different instantiations of replay below. 
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2. Computational benefits of replay 

Replay has become a highly studied aspect of artificial agents. But 
why do machines need replay, and do animals and machines have the 
same reasons to employ this process? In the following sections, we will 
compare the roles of replay in both biological and artificial agents, and 
distill the most significant benefits of replay. 

Before we begin, we would like to point out some significant aspects 
in which the concept of replay differs between ML and neuroscience. 
First, neuroscience emphasizes the sequential and often accelerated 
nature of replay (Genzel et al., 2020). In ML, in contrast, some methods 
focus on replaying sets of individual transitions (e.g., Mnih et al., 2015), 
rather than sequences (but see e.g., Hausknecht and Stone, 2015). The 
issue of replay speed has not been a major consideration in ML, as 
artificial agents are not bound to physical interaction with the envi-
ronment and the timescales of biology. A second difference is that un-
derstanding the distinction between sleep replay and replay during 
wakeful pauses from active behavior has a prominence in neuroscience 
(and is covered extensively in previous reviews; see e.g., Findlay et al., 
2021; Klinzing et al., 2019) that is not equivalently mirrored in ML 
research. While the contrast between sleep and wakefulness is a theme 
that has inspired ML research conceptually (see e.g., Hinton et al., 
1995), the mere fact that artificial agents do not “sleep” in the way that 
biological agents do, makes it practically impossible to investigate those 
differences in artificial agents. While biological agents have several 
“modes” in which they are “off-policy” (sleeping, resting, pausing, 
mind-wandering, etc.), to our knowledge no comparable distinctions 
have been made for artificial agents. Third, ML researchers often 
distinguish between experience replay, which corresponds to sampling 
experiences from a memory buffer, and model-based methods, in which 
the agent internally generates new experiences from a learned model of 
the environment. While these model-based methods involve an offline 

reactivation process, they are not always called replay in the ML liter-
ature, but are often referred to as planning instead. In neuroscience, in 
contrast, many sequential reactivation phenomena are universally 
referred to as replay, whereas planning is considered to be one of the 
cognitive processes that might be supported by a replay mechanism. 

Similar to previous work (e.g., Foster and Knierim, 2012; Cazé et al., 
2018; Momennejad, 2020), our review focuses on the frameworks of RL 
(Sutton and Barto, 2018) and neural networks. The formalism of RL 
allows parallels to be drawn between reactivation of neural patterns in 
biological agents and replay of task states in artificial agents. The RL 
framework considers agents that learn from interactions with their 
environment and thereby gather experiences one at a time. RL tech-
niques are designed to learn from experience gradually, through 
trial-and-error, using every new experience immediately to adjust the 
agent’s knowledge about the task. This has the benefit of accruing 
knowledge without delay, while integrating information over all expe-
riences gained so far, rather than using just the most recent experience to 
make decisions. Typically, small adjustments are made to the agent’s 
knowledge with each new experience because large updates risk over-
writing the effects of earlier learning and can limit generalization. Box 1 
describes the fundamental aspects of RL. Next to RL, we will also draw 
on insights from (supervised) deep learning (for overviews, see e.g., 
LeCun et al., 2015; McClelland and Botvinick, 2020) and the successful 
combination of the two approaches, deep RL (Mnih et al., 2015, see 
Tesauro, 1995 for an earlier integration). 

Which benefits can an agent obtain from using replay? In the next 
sections, we will discuss five potential computational functions of 
replay: increasing speed and data efficiency of learning, reducing 
forgetting, reorganizing experiences, planning, and generalization. We 
do not consider these functions to be entirely separable. We distinguish 
them because they each offer a unique perspective on what an intelligent 
agent, biological or artificial, stands to gain from replaying past 

Box 1 
What is reinforcement learning? 

Reinforcement learning (RL) theory provides a formal framework to describe how agents learn to optimize their behavior through interactions 
with an environment that yields rewards or punishments (Sutton and Barto, 2018). The agent-environment interaction is modelled as a Markov 
decision process (MDP), which consists of (1) an environment, described by of a set of states S, (2) a set of actions A available to the agent, (3) a 
state transition function M(st ,at ,st+1), also called a model, reflecting the probabilities of moving from state st to the next state st+1 after taking 
action at, and (4) a reward function R(st , at , st+1) that maps each [state, action, next-state]-triplet to a scalar reinforcement signal r. MDPs can 
have continuous state or action spaces, although most applications consider finite and discrete cases. 

In MDPs, the agent-environment interaction is assumed to be Markovian with respect to reward and state, which means that the state and reward 
at the next time point t + 1 depend only on the state and action of the current time point t, but not on any states or actions before. The current 
state st therefore contains all relevant information from the previous history to determine the next state after an action has been performed. In 
brief, this means that we can think of learning from trial-and-error as the following process: the agent represents the current state of the 
environment, st and then performs an action at . The action will affect the environment, changing the agent’s state from st to st+1 as described by 
the state transition function M, and potentially yield a reward, as described by the reward function R. The agent’s goal is to always perform the 
actions that maximize return – the expected (discounted) sum of total rewards over the course of its interaction with the environment. In value- 
based approaches, the agent learns values that estimate the return, and then implements a policy π that maximizes the values. One popular 
approach is to estimate values with so-called temporal difference (TD) learning, using a Q-learning algorithm (Watkins and Dayan, 1992): 

Qk+1

(

st, at

)

= Qk

(

st, at

)

+ α
[

rt + γmax
at+1

Qk

(

st+1, at+1

)

− Qk

(

st, at

)]

(1) 

where γ ∈ [0, 1], the discount factor, attenuates the influence of distal rewards, and α ∈ [0,1] is a learning rate. Based on the Bellman 
equation, Q-learning estimates the discounted sum of future rewards in an iterative bootstrapping process that involves the current and future 
Q-value. Notably, because the algorithm uses the value of the best action on the next step, rather than the value of the action that was actually 
performed, it is a so-called off-policy approach. Q-learning does not require a transition model of the environment, and hence is a model-free 
method. One important question that is not addressed by the framework of RL is what information about the environment is encoded in an 
agent’s internal states. It is important to realize that agents mostly do not have a way to simply know the objective, “true” state of the envi-
ronment, but rather must infer that state from their observations. An agent’s internal state representation therefore may not be equivalent to the 
true state, which, as we will discuss in Section 2.6, has many repercussions. The agent could simply take its sensory data to be the states, but this 
is not sufficient for many tasks; rather the agent needs to supplement its internal state representations with non-observable information (e.g., 
Wilson et al., 2014; Schuck et al., 2018).  
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experiences. This perspective also sheds light on why replay can have 
different properties in different study contexts, which have found replay 
to be sometimes backward and sometimes forward, or in some cases to 
occur immediately and in other cases long after the experience was 
acquired. 

In addition to the topics above, we will consider one underexplored 
aspect of replay: whether replay reflects sensory memories, or past in-
ternal representations, and whether replay may also be involved in 
shaping internal representations as well. We hypothesize that the content 
and function of replay is determined by its interplay with the agent’s 
current representation of the task and the representational demands of 
the task at hand, a notion which has recently received some computa-
tional (Russek et al., 2017; Caselles-Dupré et al., 2019; Momennejad, 
2020) as well as empirical support (Schuck and Niv, 2019). In this view, 
replay can be understood not only as a phenomenon that retrieves 
relational information stored in a cognitive map, but also as a process 
that changes relational information and internal state representations of 
an agent (see Box 1 for a definition of state representations). 

Each of the sections will be organized as follows. First, we will state a 
computational problem that any learning agent will be faced with. Then 
we discuss how this problem has been approached in ML using replay, 
highlighting both theoretical and empirical results. Finally, we will 
discuss empirical findings from the neuroscience literature that support 
a particular ML proposal, or suggest alternative mechanisms. 

2.1. Faster learning and data efficiency 

The gradual approach to learning in RL has many benefits, but it 
results in very slow learning that may need thousands of iterations to 
achieve the optimal policy. Even worse, the slowness of learning grows 
exponentially with the number of states in the task environment, a 
phenomenon known as the “curse of dimensionality” (Bellman, 1957). 
To be a feasible approach to learning in complex and changing envi-
ronments, gradual methods must therefore be complemented by mech-
anisms that will speed up learning without sacrificing the benefits of 
immediate knowledge acquisition and stable long-term memory. In this 
light, the idea of recapitulating previous experiences seems particularly 
appealing for machines, because it is easy and cheap for artificial agents 
to relearn from past experience that is retrieved from a memory buffer. 

The brain arguably faces a similar computational challenge. 
Humans, and other animals, often have to learn directly from the out-
comes of their decisions. Yet, repeating errors can pose actual risks, 
which limits the usefulness of exclusively relying on a slow, trial-and- 
error-based learning mechanism. More generally, the number of expe-
riences that is acquired with a particular situation in a lifetime is quite 
limited in relation to the complexity of the environments and the brain, 
which contains approximately 1014 synapses (Tang et al., 2001). In 
order to make thousands of gradual adjustments to each of these syn-
apses, the ability to reuse experience efficiently is paramount. Replay 
might be one mechanism to do just that. 

2.1.1. Replay can speed-up gradual learning from experience and support 
temporal credit assignment 

In the RL literature, “experience replay” was initially introduced to 
address the issues of slow learning and data inefficiency (Lin, 1991, 
1992, 1993). In his seminal paper, Lin (1992) wrote that “[…Q-learning 
algorithms […] are inefficient in that experiences obtained by 
trial-and-error are utilized to adjust the networks only once and then 
thrown away. […] Experiences should be reused in an effective way.” (p. 
299). Lin (1992) proposed that experiences can be used to update 
knowledge in a dual fashion; (1) immediately when experiences are 
acquired, and (2) at later time points, after experience itself may have 
long passed. Specifically, Lin (1992) proposed replaying full sequences 
of experiences, starting from an initial state to a final state, in backward 
order, and learning from these experiences, as if they were real. Lin 
(1992) then showed that this is a more efficient use of data that 

accelerates learning of an RL agent. In line with these ideas, many others 
have since emphasized the computational benefit of replay for maxi-
mizing data efficiency and the speed of learning (for reviews, see e.g., 
Hassabis et al., 2017; Kumaran et al., 2016). 

There are several reasons why replay can help learning. In the real 
world, outcomes are often only obtained after a long sequence of events 
and actions but agents still need to know how to behave at the start of 
the sequence, as for instance, in a chess game. This problem is known in 
RL as the temporal credit assignment problem (Minsky, 1961) and replay 
may help to solve it. The early work by Lin (1991, 1992, 1993) pointed 
out that replay could help an agent to remember the sequence of pre-
vious states and actions that led to a given outcome, and assign credit for 
the reward to the sequence of states and actions that preceded it. This 
also explains why sequential replay may proceed in backward order 
(Lin, 1992). Another aspect is that as the agent’s knowledge of the re-
wards becomes better with time, outcomes in the past should be 
re-evaluated in light of this updated knowledge (van Seijen and Sutton, 
2015). Replay could serve this function by retrieving past rewards which 
can then be compared to current value estimates. 

Several neuroscientific studies suggest an important role of replay in 
speeding up learning in biological agents too. First, studies in rodents re-
ported increases in SWR-associated reactivation following initial learning in 
novel environments (Cheng and Frank, 2008; Eschenko et al., 2008; O’Neill 
et al., 2008; van de Ven et al., 2016; Tang et al., 2017), when an acceleration 
of learning from replay might be most beneficial. Second, several studies 
reported that it requires only a few experiences in a novel environment for 
replay to occur, and that it can be detected already during the awake state 
immediately after behavior (Foster and Wilson, 2006), but see Jackson et al. 
(2006). Third, disrupting replay-related SWRs during awake rest in rodents 
slows learning in a spatial navigation task (Jadhav et al., 2012). 

Previous research has also suggested that backward replay reflects 
learning through temporal credit assignment in the brain. First, awake 
backward replay has indeed been frequently observed, where rewarded 
spatial trajectories of an animal are replayed in reverse order (Diba and 
Buzsáki, 2007; Foster and Wilson, 2006; Singer and Frank, 2009), and the 
frequency of awake backward (but not forward) replay is modulated by the 
change in reward magnitude (Ambrose et al., 2016; Liu et al., 2019b). 
Second, the rate of backward replay was observed to be more frequent in 
novel compared to familiar environments (Foster and Wilson, 2006; Singer 
and Frank, 2009) and to decrease its bias to reflect previous paths to the goal 
location as a function of learning (Shin et al., 2019). This could suggest that 
the relevant trajectory has been learned and does not need to be reinforced 
through replay anymore (Foster and Knierim, 2012). Interestingly, Cazé 
et al. (2018) have shown that in particular model-based replay will also 
decrease its tendency to replay paths to the goal with learning, while 
changes in forward planning (Johnson and Redish, 2007) might stem from a 
model-free process. In a task setting with a stable goal, the replay buffer of a 
model-free learner will increasingly accumulate rewarded episodes while a 
model-based learner draws on a learned model to sample episodes in a more 
balanced fashion. The learning-related changes discussed here might 
therefore reflect a shift from a model-free to a model-based process with 
learning – although further data will be needed, and model-based and 
model-free replay might be difficult to disentangle experimentally (Kha-
massi and Girard, 2020). The third line of support comes from computa-
tional work that shows how backward replay can strengthen forward 
synaptic pathways through spike timing dependent plasticity (STDP) (Haga 
and Fukai, 2018) and thus support forward replay during sleep and active 
behavior (Johnson and Redish, 2007; Pfeiffer and Foster, 2013; Wikenheiser 
and Redish, 2015b, 2013). Fourth, further evidence for the role of replay in 
assigning credit is provided by findings that show replay is coordinated with 
subcortical activation of brain areas related to processing reward (Lansink 
et al., 2009; Pennartz, 2004; Gomperts et al., 2015), which could convey 
reward signals to other brain regions like the hippocampus. Finally, in a 
recent MEG study in humans, backward replay following reward receipt 
was found to be related to non-local learning of task sequences leading to 
the reward (Liu et al., 2021b). In summary, existing empirical studies 
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support the idea that awake backward replay supports temporal credit 
assignment by retrieving states that led to the outcome, accelerating 
learning for cases in which a long delay between rewards and actions must 
be encoded. 

2.1.2. An example simulation of backward replay 
Fig. 2 provides an illustration of how backward replay of full se-

quences works in the context of RL. We consider an RL agent navigating 
in a square environment with 20 × 20 tiles that contains several walls 
and one goal location with a reward (see Fig. 2A). The agent can move 

into one of the four cardinal directions (up, down, left, right). A small 
negative reward is given for bumping into a wall (− 0.1), and a reward of 
1 when arriving at the goal location. Otherwise no rewards are provided. 
The best policy in this case is to navigate to the reward with as little steps 
as possible, avoiding the wall. This is a well-known “grid world” prob-
lem that can be solved using RL, but might be painfully slow without 
replay. For illustrative purposes, we use the off-policy, model-free 
Q-learning algorithm described in Equation 1 in Box 1. The learning rate 
α, temperature τ and discounting factor γ were arbitrarily set to 0.3, 1 
and 0.99 for the purposes of this illustration. 

Fig. 2. Replay speeds up learning to navigate to a goal in a grid world. (A) Square environment (“grid world”) with 20 × 20 tiles (shown in gray) that contains 
several walls (black tiles) and one goal location (white tile labelled “G”) that contains a reward. At the beginning of each episode, an RL agent is placed in a random 
location and can move into one of four cardinal directions (up, down, left, right). The agent receives no reward for moving, a small negative reward for bumping into 
a wall ( − 0.1), and a reward of 1 when arriving at the goal location. An episode is terminated once the agent reaches the goal location or a maximum of allowed steps 
per episode set to 1000. (B) Illustration of the learned value function after the first episode of experience (top left), following replay of the first episode (top right), 
and after the 50th and 250th episode (bottom). Colors indicate the values of locations from smallest (blue) to highest (red). Values are under the best possible policy, 
which is assuming that the agent would perform the value-maximizing action in each location. The increasing prevalence of red tiles after 250 episodes therefore 
reflects that after training the agent has learned a policy for most locations that will avoid any collisions with the wall and reach the goal within the maximum 
number of allowed steps. Color mapping is scaled for each plot and values smaller than 0.1 are shown as gray tiles. (C) Number of steps (y-axis) needed by the RL 
agent in each consecutive episode (x-axis) to reach the goal location when using no replay (blue line) between episodes, or when replaying the previous episode in 
backward order once (brown line) or five times (yellow line). (D) Mean reward (y-axis) achieved by the RL agent in each consecutive episode (x-axis). Colors as in (c). 
The computer code for the simulations is publicly available at https://github.com/nschuck/replaysim-wittkuhn-etal2021. © Wittkuhn et al., doi: 10.6084/m9. 
figshare.14261636.v4, CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). 
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The algorithm is described in Algorithm 1. Briefly, in each episode, 
the agent starts in a random position and navigates until it has found the 
reward or the maximum search time has elapsed. The starting locations 
varied randomly, although start location distances to the reward loca-
tion were constrained to lie at least 10 tiles away from the goal location 
(in order to avoid episodes which were too simple). If the agent found 
the reward, it internally traversed backwards through the sequence of 
states, actions and rewards until the beginning of the episode, updating 
its Q-value at each step. 

The blue lines in Fig. 2C–D show the number of steps the agent needs 
to navigate to the goal location; about 250 episodes are needed before 
the the agent quickly finds the goal location from a new start position. 
But the speed of learning increases when we supply the agent with a 
simple replay mechanism described in Table 1, as can be seen in 
Fig. 2C–D (brown and yellow lines). Adding replay reduced the number 
of interactions needed to achieve ceiling performance to less than half of 
what was observed without replay. Note that the choice to replay the full 
sequence of states, actions and rewards between the start location and 
the goal location is not without consequence, and a variety of different 
definitions of what constitutes an episode are common in RL and 
neuroscience (see Box 2). There are multiple ways to instantiate replay 
in an RL agent, and the illustration in Fig. 2 only serves as a basic 
introduction to computational replay (see Fig. 1). 

2.2. Less forgetting 

Increasing the speed of learning is an important computational 
benefit of replay, but not the only one. Replay may also help to reduce 
forgetting. The problem of forgetting arises because many statistical 
learning mechanisms were built under the assumption that the agent 
encounters its environment entirely at random, and therefore can learn 
from examples that are independent and identically distributed (i.i.d.). 
Yet, experiences in real life are often not “i.i.d.”. First, we typically 
experience the world as a sequence of related events, chunked in time. 
Second, some events are much rarer than others, partly because of the 
way we interact with the environment. These temporal auto-correlations 
and uneven distributions of events can be an important obstacle for 
learning. Why does this pose a computational challenge for gradual 
learning algorithms? Gradual learning mechanisms are designed to 
integrate experiences over longer periods, but they emphasize the most 
recent experience. This can cause the agent to forget about important 
past experiences that were not re-experienced for a long time. This 
problem is particularly apparent in a supervised learning setting in 
which neural networks that rely on stochastic gradient descent (SGD) for 

learning engage in two tasks in a blocked manner. RL-based networks 
also struggle with this phenomenon (Atkinson et al., 2021). If a DNN, for 
instance, is first trained to perform a task A and subsequently trained 
with another task B, performance on task A drops dramatically, as if the 
network forgot how to solve A. In other words: learning task B interfered 
with what was learned about task A. This problem is known as cata-
strophic forgetting, or catastrophic interference, and has long been 
recognized as a major problem in the ML field (McCloskey and Cohen, 
1989; Ratcliff, 1990; French, 1999; Hassabis and Maguire, 2007; 
Kumaran et al., 2016; Parisi et al., 2019). Catastrophic forgetting is one 
of the main reasons why artificial agents can usually learn a single task 
quite well but subsequent training on a different task results in poor 
performance on the previously learned task. This prevents the agent 
from achieving competencies across multiple tasks, which comes rela-
tively easily to humans. Catastrophic interference can also be under-
stood as an issue threatening the stability of a cognitive map 
representation (Gupta et al., 2010; McClelland et al., 1995; O’Reilly and 
McClelland, 1994). 

2.2.1. Replay can prevent overwriting of previous experiences 
A potential solution to the computational problem of catastrophic 

interference is interleaved learning where new experiences are inter-
leaved with existing knowledge to reconcile competing memory repre-
sentations (McClelland et al., 1995). This influential idea, rooted in the 
complementary learning systems (CLS) theory (McClelland et al., 1995; 
O’Reilly et al., 2014; Schapiro et al., 2017), also suggests that replay 
may be the mechanism that agents can use to “mentally” interleave past 
with present experience. While the DNN tunes its connection weights to 
solve task A, the experienced episodes are stored in a memory buffer. 
During learning of task B, previous experience with task A is integrated 
during offline periods via a replay-like mechanism, preventing forget-
ting, and allowing the agent to perform well on both tasks. Shin et al. 
(2017), for instance, proposed an approach that learns a generative 
model based on experience with one classification task A. When 
switching to an independent classification task B, the system is retrained 
using a combination of new task data and fictitious sequences from the 
generative model, resulting in rapid generalization to the new task with 
little performance loss. Similarly, implementing replay in this way in 
DNNs can help to overcome performance deficits in incremental task 
learning scenarios and continuous task environments (van de Ven and 
Tolias, 2018; van de Ven et al., 2020). Of note, non-sequential replay has 
been shown to become necessary in an artificial neural network (ANN) 
when an internal model of a continuous task environment has to be 
learned (Aubin et al., 2018). 
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Despite its benefits, interleaved replay can result in problems if the 
agent’s current policy is very different from the behavioral policy when 
the experiences were collected. To account for this, several authors have 
argued that replay needs to be corrected for such “off-policyness” using 
importance sampling (Meuleau et al., 2010) or other off-policy correc-
tion methods such as Retrace (Munos et al., 2016) or V-trace (Espeholt 
et al., 2018). These approaches essentially weight updates that result 
from replay in proportion to the mismatch between the policy used to 
generate the replay and the agent’s current policy. This issue is partic-
ularly pressing in distributed replay approaches (e.g., Horgan et al., 
2018), where virtual experiences are simulated in parallel and are then 
used for learning only with some time gap. 

Given that humans and other animals do not necessarily seem to 
suffer from the computational problem of catastrophic interference, the 

question arises how the brain has apparently solved this issue and, for 
the purpose of this review, whether replay plays a role in the solution. 
Humans and animals can solve a wide set of tasks throughout their 
lifetime, despite temporal autocorrelation of experience and even learn 
well from blocked experience which troubles DNNs (Flesch et al., 2018). 
The idea that this ability might be related to replay (Antony and Scha-
piro, 2019) is supported by several studies. Karlsson and Frank (2009) 
for instance have observed replay of episodes from a remote spatial 
context. In humans, reactivation of previously learned events in the 
hippocampus that overlap with newly encoded memories leads to better 
retention (Kuhl et al., 2010). 

2.2.2. Replay can amplify the influence of rare events on learning 
Another challenge arises when learning must occur in environments 

Box 2 
What is replayed? 

Replay is generally thought to represent previous experience. How is this experience stored in artificial and biological agents? In artificial 
agents, an experience at time t, et, is commonly defined as a quadruple consisting of the state st , the taken action at, the reward rt received after 
taking action at in state st, and the next state st+1, together et = (st ,at ,rt ,st+1), effectively describing a single transition between two states as the 
atomic unit of an artificial replay event. Although in some cases individual transitions are replayed, such as in the Deep Q-Network (DQN) 
approach by Mnih et al. (2015) where the states S consisted of pre-processed versions of Atari pixel frames, other work uses sequential replay of 
past states (e.g., the early version of experience replay by Lin (1992), see Fig. 2, or replay in recurrent neural networks (RNNs), see e.g., 
Hausknecht and Stone, 2015; Kapturowski et al., 2019). Interestingly, replay techniques in ML increasingly reactivate internal state repre-
sentations, rather than observations like pixel values (Hayes et al., 2021). We will discuss this aspect in more detail in Section 2.6 on repre-
sentation learning. 

What constitutes a replayed experience is more difficult to answer for biological agents. Unlike in artificial agents, replay in biological agents is 
thought to be sequential (Genzel et al., 2020), and typically involves hippocampal place cells that represent locations in a spatial environment, 
akin to previously experienced trajectories of locations. However, hippocampal cells appear to be quite flexible in encoding task-relevant in-
formation other than physical space, for instance sounds (Aronov et al., 2017), trial history (Wood et al., 2000; Sun et al., 2020) or abstract task 
states (Schuck and Niv, 2019). Moreover, a prominent theme in neuroscience emphasizes that the brain segments continuous experience into 
representations of distinct neural states that transition at event boundaries or shifts in context (for reviews, see e.g., Bird, 2020; Brunec et al., 
2018; Maurer and Nadel, 2021; Richmond and Zacks, 2017; Shin and DuBrow, 2020). To complicate matters, this process might also happen 
retroactively, i.e., after experiences have been obtained (Clewett et al., 2019). This formation of segmented memory traces is thought to be 
driven by various factors, including inferred changes in the environment (DuBrow et al., 2017), prediction error signals elicited by reward 
outcomes (Rouhani et al., 2020) or discontinuities in the statistical structure of the environment (Gershman et al., 2014). We suggest that a 
practical approach for human research therefore seems to be to define events as “meaningful” units of experience (Bird, 2020) within the current 
experimental paradigm, and to potentially formalize them as states in an MDP, as for instance in Schuck et al. (2016). Finally, in understanding 
memory as a constructive process, it is important to note that neural task representations may change from perception to reactivation (Favila 
et al., 2020). We argue that this aspect is particularly crucial for the study of replay in humans, because activity patterns that are expected to 
reactivate are commonly determined based on simple localizer tasks that do not involve mnemonic task components (see e.g., Wittkuhn and 
Schuck, 2021). The brain might have already transformed its input data to a representation that is different from what the researcher was hoping 
to see re-merge from replayed activity patterns. 

How many experiences are stored and for how long? In DNNs using replay, the newest experiences are stored at each time step in a memory 
buffer D = e1,…, et with finite size N (e.g., Mnih et al., 2013, 2015; Zhang and Sutton, 2017). Since the success of the DNN by Mnih et al. (2015), 
the memory buffer is typically set to a size of N = 106 newest experiences, which continuously replace the oldest experiences (Fedus et al., 2020; 
Zhang and Sutton, 2017). Recently, Fedus et al. (2020) investigated the relationship between the number and age of experiences stored in the 
memory buffer. First, they found that increased memory capacity improved learning performance, likely due to a larger coverage of state-action 
pairs (Fedus et al., 2020). Second, decreasing the age of the oldest experience in the memory buffer also improved performance, likely because of 
older experiences that resulted from policies that are inconsistent with the current on-policy decision strategy, which is in line with earlier 
findings noting that experience replay is only beneficial if it is consistent with the current decision policy (Lin, 1991, 1993). An exception to this 
are certain Atari games that are characterized by sparse rewards and require high levels of exploration. In such tasks, sampling from older 
off-policy experiences is still beneficial (Fedus et al., 2020). These considerations about the size and age of the memory buffer in artificial agents 
point to an intriguing trade-off between the utilities of old and new memories: On the one hand, a youthful memory buffer storing only recent 
experiences can effectively drive the current decision policy and quickly abandon outdated and potentially inefficient behavior. On the other 
hand, keeping older experiences and integrating them with recent ones may foster generalization and prevent an agent from becoming stuck in a 
decision policy that is suboptimal. 

While the size and content of a memory buffer in artificial agents can be crafted by ML researchers, determining number and nature of memories 
in brains is topic of ongoing debate for neuroscientists. The human brain is famously known to have a very large storage capacity, owing to the 
large number of modifiable synapses (Bartol Jr. et al., 2015). But forgetting is a common phenomenon. Although decay plays some role in 
forgetting (Hardt et al., 2013), other factors, such as interference and usage seem to be important as well (Feld and Born, 2017). Indeed 
forgetting might also be an important aspect of sleep, even while replay processes lead to consolidation (Feld and Born, 2017). Moreover, even if 
biological agents had an unlimited memory storage, selecting memories for replay from that storage would become challenging with a large 
amount of experiences, and, from a decision-making perspective, memory representations are only useful in so far they have utility for behavior.  
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where some events happen rarely, but are nevertheless of great signifi-
cance for the agent’s success or well-being. Naive DNNs will, for 
instance, often forget about dangerous states and revisit them (García 
and Fernández, 2015). This can be mitigated by replay when separate 
replay buffers for safe and dangerous states are maintained, such that 
the model cannot forget, and will frequently be reminded about dangers 
(Meuleau et al., 2010; Lipton et al., 2016). More generally, importance 
sampling techniques have been used to ensure that those experiences are 
sampled which are most important for the current policy of the agent, 
rather than those that occurred most frequently (Wang et al., 2016). 

Evidence that replay might be used to mitigate this problem in ani-
mals comes from studies showing that actions which should be avoided 
will be reactivated, like paths to a shock zone (Wu et al., 2017) or paths 
to devalued outcomes (Carey et al., 2019). In addition to learning about 
events that should be avoided, replaying rare events that are only 
weakly encoded could allow the agent to form a stable representation of 
the entire environment even if only a smaller subset is experienced 
frequently. In Gupta et al. (2010) non-local replay was stronger for 
remote sequences if they were experienced less frequently. Using MEG 
in humans, Jafarpour et al. (2017) showed that stronger reactivation of 
one of three previously encoded stimuli was determined by how weakly 
the stimulus was attended to during encoding. These findings are sup-
ported by an fMRI study by Schapiro et al. (2018), who demonstrated 
that older, less well remembered task stimuli were selectively reac-
tivated during a subsequent rest period resulting in memory improve-
ment, an effect that was particularly strong in participants who slept in 
the 12-hr interval between test sessions, which likely offered opportu-
nity for additional consolidation through replay. In another study, the 
benefits of targeted memory reactivation (TMR) were stronger for 
weakly learned information (Tambini et al., 2017). Further, 
replay-associated electroencephalography (EEG) sleep spindles during a 
nap following difficult (potentially weaker) but not easy (potentially 
stronger) memory encoding were related to improved subsequent 
memory performance (Schmidt et al., 2006). Together, we suggest that 
replay liberates an agent from needing to consider transitions only in 
proportion to how many times they were experienced. Instead, replay 
can flexibly increase or decrease the number of opportunities for 
learning from single episodes. 

2.3. Re-inventing the past 

In our introductory example (see Fig. 2), replayed content was a 
close reflection of past experience. Replay occurred immediately after an 
episode was experienced and reflected past trajectories from start to 
finish, albeit in reverse order. This setup stands in contrast to the ideas 
discussed in Section 2.2 on forgetting, which imply that replay must not 
necessarily respect the structure of experiences, but could, for instance, 
change the order and frequency of events. Beyond dealing with unevenly 
distributed events, replay could in fact be used to arbitrarily alter the 
distribution of events upon which memory is built. 

Such a reorganization of experience also requires a different under-
standing of what constitutes an episode. In our simulation, we had 
assumed that the minimal unit of replayed content is one entire 
sequence of states, actions and rewards that occurred between a random 
start position and the encounter of a goal. This meant that episodes were 
often quite long, involving several hundreds of steps particularly early in 
learning (see Fig. 2C), and that the transitions between locations had to 
be replayed in the order in which they were experienced. But for replay 
to be able to reorganize experience, an episode could be divided into a 
much smaller unit of experience, a simple sequence of just one state, one 
action, one reward and the next state, known as a (st , at, rt, st+1)-tuple. 
Arguably, replaying such minimal experiences risks losing the benefits 
of temporal credit assignment, because values will not necessarily 
propagate along the trajectory to starting positions. But it does offer 
important advantages, discussed in Subsections 2.3.1 to 2.3.4. In 
consequence, the question of what constitutes an atomic unit of 

experience from the perspective of replay has important implications 
and is therefore actively debated (see Box 2). 

2.3.1. Replay can reactivate experiences randomly 
Using minimal transitions, there is a large variety of ways in which 

replay may alter the structure of experiences that have been discussed in 
the ML and neuroscience literature. One possibility is to reactivate (st, at, 
rt, st+1)-tuples in a random order, which artificially crafts similar con-
ditions as during supervised learning that allows ANNs trained with 
stochastic gradient descent (SGD) to excel (Botvinick et al., 2020). Such 
uniformly sampled (st, at , rt, st+1)-tuples have therefore played an 
important role in adapting DNNs to RL problems, such as the famous 
DQN (Mnih et al., 2015). Random replay has also been found to be useful 
when updates are done incrementally (learning from each example as it 
arrives), rather than in a batch-wise manner (learning from groups of 
examples gathered over time), as is common in ML (Chaudhry et al., 
2018). Interestingly, some animal studies have also found replay of 
seemingly random trajectories following exploration of a familiar 
open-field arena (Stella et al., 2019). Note however, that Stella et al. 
(2019) still observed replay of sequentially organized transitions that 
reflected the spatial constraints of the environment, whereas random 
replay used in ML can involve sets of single transitions that do not form 
sequential trajectories. This highlights the different understanding of 
replay content in ML and neuroscience. Additionally, most animal 
studies impose the assumption of sequentiality during data analysis, and 
would discard fully random activation of transitions as noise. In both ML 
and neuroscience, however, random replay refers to sequential reac-
tivation that is unrelated to previously experienced action sequences, 
and can be seen at one extreme of a continuum describing how closely 
replay matches actual behavioral sequences (see Swanson et al., 2020, 
their Figure 2). 

2.3.2. Replay can prioritize rewarding experiences 
Another particularly important idea from the ML literature is to 

prioritize replay of transitions that led to large surprises, which often 
prove to be more informative than others and result in more efficient 
learning (Schaul et al., 2015; Horgan et al., 2018). Such prioritized 
replay records a prediction error (PE), the difference between the ex-
pected and actual reward, for every encountered transition and uses this 
signal to select experiences for replay later. This method is very similar 
to, and inspired by, an earlier algorithm in model-based planning known 
as prioritized sweeping, which selects the state to be updated according 
to the magnitude of the change in value upon the execution of the up-
date (Andre et al., 1998; Moore and Atkeson, 1993; Peng and Williams, 
1993). Based on the success of the prioritized replay approach, more 
frequent sampling of transitions with a high absolute TD error is now a 
common approach to train DNNs (Fedus et al., 2020). Using RL models, 
Mattar and Daw (2018) extended previous approaches by focusing pri-
oritization on behaviorally relevant states that are likely to be encoun-
tered again in the future and those transitions where a policy change 
would yield the largest net increase in discounted future reward. Note 
that although prioritization algorithms assume selection of replay con-
tent on the level of individual transitions, they can, under some cir-
cumstances, still lead to sequential replay. This is true, for example, in 
the model from Mattar and Daw (2018), because expectations about 
increases in future reward are themselves often auto-correlated. 

The idea that replay should be influenced by reward and surprise is 
in line with several animal studies. Place cell sequences associated with 
reward are replayed more often (Ólafsdóttir et al., 2015; Foster and 
Wilson, 2006; Bhattarai et al., 2019), in particular those with a high PE 
(Singer and Frank, 2009; Michon et al., 2019; Roscow et al., 2019), and 
the rate of SWRs is also influenced by reward (Ambrose et al., 2016; 
Singer and Frank, 2009). These results highlight replay’s role in credit 
assignment, as discussed in Section 2.1. In human neuroimaging studies, 
hippocampal activity is modulated by reward magnitude (Wolosin et al., 
2012; Igloi et al., 2015). This is in line with the link between backward 
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replay and selection of transitions based on changes in value, proposed 
by Mattar and Daw (2018) and Cazé et al. (2018). Replay is also more 
likely to contain behaviorally significant locations, such as the current 
goal (Gupta et al., 2010; Pfeiffer and Foster, 2013; Ólafsdóttir et al., 
2015) and is biased by novelty (Cheng and Frank, 2008; Foster and 
Wilson, 2006). It has also been observed that optogenetic manipulation 
of dopaminergic input neurons, thought to signal PEs, increase replay 
during subsequent sleep (McNamara et al., 2014). Note that reward 
prediction errors might be accompanied by state prediction errors, 
which in the brain might both be conveyed by dopaminergic signals (see 
e.g., Sharpe et al., 2017; Gardner et al., 2018 Gardner et al., 2018). 

2.3.3. Replay can connect experiences in novel ways 
Reactivating reordered sequences can also be used to connect ex-

periences in novel ways or strengthen weakly learned relationships. 
Replay can for instance correspond more closely to sampling from an 
internal model of the environment, rather than a veridical recapitulation 
of past experiences (Sutton, 1991). Among the most early ideas about 
replay, the Dyna architecture (Sutton, 1991) used an internal model to 
generate experiences that were then used to train a model-free agent. 
Indeed, replay can be seen as a way to blur the lines between model-free 
RL, such as the Q-learning method introduced in Box 1, and model-based 
RL, during which the agent stores an explicit model of the environment 
and can use it for planning (van Seijen and Sutton, 2015; Russek et al., 
2017; Momennejad et al., 2017). 

Neuroscientific evidence for reorganized experience has also been 
reported. During behavior, replay events can switch between reflecting 
immediately preceding, upcoming or more remote episodes, depending 
on the behavioral state of the animal at the time of replay (Pfeiffer and 
Foster, 2013; Ólafsdóttir et al., 2017). Even single replay events can 
depict more than one trajectory, such as the next one and the path the 
animal will take after reaching the goal location (Pfeiffer and Foster, 
2013), as if representing a multi-step planning process (Foster, 2017; 
Miller and Venditto, 2021). Note, however, that another reason why 
experiences from a more distant past might be replayed could simply be 
that the agent is using a period during which it does not have to engage 
with the environment to optimize memory. This is particularly apparent 
for replay during sleep, when the brain has idle time to process expe-
riences while not being actively engaged with any task. Sleep replay has 
frequently been observed in animals and humans, and been linked in 
particular to memory consolidation. Following sleep, memory interfer-
ence is reduced (Baran et al., 2010; McDevitt et al., 2015 McDevitt et al., 
2015) and memory integration or differentiation has been found in fMRI 
patterns after a delay period with sleep (Favila et al., 2016; Tompary and 
Davachi, 2017). 

2.3.4. Replay can reuse past experiences to learn about new goals 
A final aspect of reorganization relates to re-considering the useful-

ness of past experiences in light of one’s knowledge about a goal. The RL 
framework presented thus far is aimed at the pursuit of a single goal (e. 
g., the single reward location in our grid world, see Fig. 2). However, in 
many real-world applications, such as the movements of a robotic arm 
that needs to pick and place objects, an RL strategy incorporating mul-
tiple goals would be far more beneficial. Consider again the grid world 
example in Fig. 2, but this time the agent can only move a finite number 
of steps. Since there is only one goal state that returns a reward, most of 
the transitions do not land in the goal state and therefore receive no 
reward. In such a sparse binary reward situation, where success only 
results from those sequences of transitions ending in the goal state, most 
sequences of transitions end in uninformative failures, often related to 
early termination without reward (“giving up”). For instance, when an 
agent gives up because a goal was not found after a particular amount of 
time, it can not know how close it was to the goal. Humans, however, 
can learn from failure as well as success. Inspired by this idea, an ML 
technique known as hindsight experience replay (Andrychowicz et al., 
2017) is used to relabel the unsuccessful transitions by simply changing 
the goal state, such that the transitions would now be considered as 
successful under the new goal, thus contributing to the agent’s learning. 
To the best of our knowledge, no directly equivalent observation has 
been made in the brain so far. 

2.4. Planning for a better future 

So far, we have mainly focused on the various ways in which replay 
serves learning and memory. Yet, psychological, neuroscientific and ML 
research has pointed out the importance of another mechanism that is 
crucial for goal-directed behavior: planning. A core aspect of this process 
is the prospective evaluation during which an agent deliberates which of 
the available sequences of actions and states leads to the best among 
several potential outcomes. In most cases, planning requires a mental 
model, or cognitive map (Tolman, 1938, 1948), of the environment, that 
describes the agent’s knowledge about the transition structure of events, 
including the outcomes at each potential location (e.g., Moerland et al., 
2020). Knowledge about the causal structure of the environment allows 
an agent to predict and compare the outcomes of sequences of states and 
actions and to choose the one that yields most reward. Yet, as we will see 
below, a replay buffer can be used instead of a model in order to perform 
planning functions too. Fig. 3 provides an illustration of how planning 
differs from the other two aspects of cognition we have considered so 
far, acting and learning. 

Within the RL framework, the difference between acting based on 
learned (cached) values versus acting based on an internal planning 

Fig. 3. Illustration of replay content. The agent is represented by the robot. The goal location is indicated by the yellow circle. Red arrows indicate behavioral 
trajectories of the agent in the T-maze environment or internally generated trajectories during replay. During planning (left panel) the agent engages in prospective 
evaluation of potential behavioral sequences in order to select the one that leads to the goal location, using forward replay. During goal-directed behavior (center 
panel) the agent instantiates the behavioral trajectory that is immediately relevant to prepare action using forward replay. During learning (right panel), the agent 
retrospectively evaluates its previous behavior, usually upon reaching a goal location, using backward replay. © Wittkuhn et al., doi: 10.6084/m9.figshare.14261 
636.v4, CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). 
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process is embodied by the distinction between model-free and model- 
based systems (Sutton and Barto, 2018; Daw et al., 2005). In 
model-based RL, the agent uses experience to learn a model of the 
environment that is described by a function that relates the current state 
st and action at to the next state st+1 and the reward rt (see Box 1). The 
agent can use this model at decision time or during offline periods to 
simulate experience (Sutton, 1990). Simulated replay can be used to 
update cached values or to determine which action would be best to 
execute next, considering the rewards obtained and how the environ-
ment would change if a particular action was taken. This deliberation 
process has two advantages. First, planning allows the agent to remain in 
the safety of mental imagination and avoid the risk of suffering from 
potentially harmful consequences. Second, planning can be used to 
decide between never-experienced, entirely hypothetical courses of ac-
tion (Liu et al., 2019a), a feat which would not be possible with purely 
experience-based replay. 

Despite these differences between planning and learning, much work 
in RL has emphasized their similarities (Sutton, 1990, 1991; Sutton 
et al., 2012; van Seijen and Sutton, 2015). This research points to a 
function of planning that goes beyond deliberation and has shown that 
planning functions can be achieved without an explicit model (van 
Seijen and Sutton, 2015; van Hasselt et al., 2019). 

As we have seen in our discussion of Lin (1992), the same learning 
mechanisms can be applied to real or simulated experience. Planning 
can thus not only be used to determine immediate behavior, but also to 
shape value functions, a process referred to as background planning (as 
opposed to decision-time planning and deliberation, see Pezzulo et al., 
2019). This can be illustrated by the Dyna architecture (Sutton, 1990, 
1991). Just as any model-free RL agent, a Dyna agent selects actions 
according to learned Q-values, and uses experiences to update these 
Q-values. But it also uses experiences to observe which states and re-
wards follow the current action, using this information to update its 
internal model of the world. Importantly, in Dyna the model is then used 
to train the model-free agent by replaying simulated episodes, and 
updating the agent’s Q-values based on prediction errors, just like real 
experiences. 

A second aspect is that replaying experiences stored in a memory 
buffer in some sense replaces functions that would otherwise be sub-
served by a model (van Seijen and Sutton, 2015; Hessel et al., 2018; van 
Hasselt et al., 2019), or at least enhance model-based planning functions 
(Eysenbach et al., 2019). van Seijen and Sutton (2015), for instance, 
have shown that learning value functions by a model-free method with 
replay can be equivalent to learning value functions with a model-based 
method. Empirically, van Hasselt et al. (2019) have shown that 
state-of-the-art replay methods, involving prioritization based on a 
Kullback-Leibler (KL) loss, can outperform model-based methods on 
Atari games (Kaiser et al., 2019), in part because an inaccurate model 
can lead to unstable learning. Moreover, Eysenbach et al. (2019) have 
shown that replay can be used to infer a graph representation of the 
current task that provides insights into subgoals, which in turn can be 
used for planning (cf. Pong et al., 2018). This is reminiscent of hindsight 
replay, which retroactively inserts rewards into stored replay sequences 
in order to facilitate learning about hierarchical subgoals (Andrycho-
wicz et al., 2017). We note, however, that model-based planning 
methods remain popular in ML (Pan et al., 2018; Kaiser et al., 2019; 
Moerland et al., 2020). Planning methods provide the flexibility needed 
to generate unseen but possible transitions, and planning over long 
horizons can be achieved using algorithms such as tree search (Guo 
et al., 2014; Silver et al., 2016; Anthony et al., 2017). 

While the potential benefits of replay for planning have been 
recognized early on in RL (Sutton, 1990), consideration of this aspect in 
neuroscience only appeared later, when studies demonstrated replay 
events in the awake state, often during short pauses from active behavior 
(e.g., Csicsvari et al., 2007; Diba and Buzsáki, 2007; Eldar et al., 2020; 
Foster and Wilson, 2006; Kudrimoti et al., 1999; Kurth-Nelson et al., 
2016). This allowed researchers to draw closer correspondence between 

the replayed and the behavioral trajectories, and has resulted in a wealth 
of findings supporting the idea that replay supports model-based plan-
ning in animals as well as humans (for reviews, see e.g., Yu and Frank, 
2015; Pezzulo et al., 2019; Wang et al., 2020; Tambini and Davachi, 
2019; Carr et al., 2011; Ólafsdóttir et al., 2018). Disruption of awake 
hippocampal SWRs during a spatial alternation task specifically 
impaired the ability to decide between two trajectories to alternating 
goal locations, whereas place field representations, reactivation during 
rest, and other navigation behavior remained intact (Jadhav et al., 
2012). Replay events in the awake state predominantly co-occur with 
SWRs during short pauses from ongoing exploratory behavior. Forward 
replay trajectories during awake SWRs often start at the current location 
of the animal (a well-known “initiation bias”, Ambrose et al., 2016; 
Davidson et al., 2009; Diba and Buzsáki, 2007; Karlsson and Frank, 
2009; Pfeiffer and Foster, 2013; Singer et al., 2013), and end at the goal 
location (Dupret et al., 2010; Pfeiffer and Foster, 2013), but not always 
(see e.g., Johnson and Redish, 2007). 

A behavioral correlate of deliberation was already described in the 
1930s in rodents (Tolman, 1926; Muenzinger and Fletcher, 1936), who 
tend to pause at a decision point to look back and forth between possible 
paths, a behavior called vicarious trial and error (VTE) (for review, see 
Redish, 2016). Later studies found that during VTE events, hippocampal 
place cells associated with theta sequences sweep ahead from the ani-
mal’s current location (Johnson and Redish, 2007; Wikenheiser and 
Redish, 2015b; Amemiya and Redish, 2016; Papale et al., 2016). It was 
also found that during VTE-like behavior, place cell activity influenced 
the formation of place fields thought to stabilize the cognitive map 
(Monaco et al., 2014). Note that VTE-associated replay is often accom-
panied by theta sequences, which differ from SWRs in their neuro-
physiology. Nonetheless, both can be described as sequential activation 
of hippocampal cell populations, a simplifying assumption that is 
helpful from a computational perspective (Foster, 2017; Pezzulo et al., 
2019). Recently, theta sequences have been shown to quickly cycle 
between possible future trajectories (Kay et al., 2020), and increases in 
theta power in the MTL have been observed in humans in a spatial 
planning task (Kaplan et al., 2020). In human fMRI, blood-oxygen-level 
dependent (BOLD) activity in the hippocampus has been shown to in-
crease with deliberation time when deciding between two food items 
with similar value (Bakkour et al., 2019) and hippocampal activity 
patterns reflect routes to navigational goal locations (Brown et al., 
2016). Another study has found that when humans re-learn outcomes 
associated with choices at lower levels of a decision tree, the extent to 
which higher levels of the decision tree are reactivated during rest 
correlates with how much their decisions change, to reach the new 
downstream reward states (Momennejad et al., 2018). 

2.4.1. Replay can influence behavior directly or indirectly 
It should be noted that although awake replay during deliberation of 

future choices is often related to improved task performance, the 
replayed trajectories do not necessarily correspond to the behavioral 
trajectory the animal will subsequently take, and sometimes do not end 
in the goal location (Johnson and Redish, 2007; Singer et al., 2013). In 
the study by Singer et al. (2013), hippocampal replay during SWRs that 
preceded correct choices reflected trajectories for the correct and 
incorrect option in a two-alternative W-maze. Once correct performance 
became stable (at 85% correct), replayed trajectories shifted to represent 
the correct future choice more frequently than the incorrect one (Singer 
et al., 2013). One interpretation of these findings is that the hippo-
campus uses replay to evaluate all potential trajectories and the 
behaviorally relevant trajectory is instantiated in a different brain re-
gion. Furthermore, backward replay, which backpropagates value in-
formation from the goal location, and forward replay, which samples 
possible trajectories ahead of the animal, might connect their trajec-
tories as proposed by models of bidirectional planning (Khamassi and 
Girard, 2020). Forward replay events have been shown to end at or close 
to the goal location (Pfeiffer and Foster, 2013) and might efficiently stop 
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in states where value estimates have already been updated by a back-
ward replay mechanism, as could be instantiated by prioritized sweep-
ing (see Khamassi and Girard, 2020). In sum, these findings support the 
idea that deliberation and learning may interact. Changes in a familiar 
environment might increase deliberation, while the need for model 
updating and deliberation could diminish with learning, e.g., because 
decisions become more habitual and less deliberate (Dolan and Dayan, 
2013). Thus, replayed trajectories in the hippocampus that evaluate all 
potential trajectories might be only predictive of behavior during earlier 
phases of learning (Singer et al., 2013) or vanish from the hippocampus 
(e.g., Wimmer and Büchel, 2019) when behavior becomes stereotyped. 
Findings by Papale et al. (2016) also demonstrate an inverse relationship 
between SWRs at reward sites and deliberation at choice points. 

One additional complicating factor regarding the relationship be-
tween replay and subsequent behavior concerns the task setting and 
motivational state of the animal (e.g., Carey et al., 2019; Wu et al., 
2017). Take the example of replayed place cell sequences representing 
the trajectory into a shock zone that is subsequently avoided (Wu et al., 
2017). This might serve the purpose of learning strongly from and not 
forget about significant outcomes, and thus in this circumstance replay 
is related to avoiding rather than initiating trajectories. In line with this 
idea, a growing literature on computational psychiatry posits that replay 
could underlie symptoms like avoidance and rumination that charac-
terize psychiatric disorders like anxiety (Gagne et al., 2018; Heller and 
Bagot, 2020; Mobbs et al., 2020). 

If replay is related to planning, but the ultimate determination of 
behavior also depends on other brain areas, then replayed trajectories 
might be influenced by concurrent reactivation outside the hippocam-
pus, such as the amygdala in the case of aversive outcomes (Girardeau 
et al., 2017). A number of studies sheds light on how replay in the 
hippocampus is coordinated with other brain regions to instantiate 
behavior. Replay is known to be coordinated with PFC (Jadhav et al., 
2016; Pezzulo et al., 2014; Peyrache et al., 2009; Tang et al., 2017), and 
some work has placed particular focus on the interaction of hippocampal 
replay and the OFC (Schuck and Niv, 2019; Steiner and Redish, 2012). 
Indeed, disruption of nearby medial PFC attenuated components of 
hippocampal theta sequences representing the current location of the 
animal (Schmidt et al., 2019) and suppression of hippocampal input 
impaired the integration of task state structure in the OFC (Wikenheiser 
et al., 2017). Similarly, a recent study in humans has found that hip-
pocampal replay at rest was not directly linked to behavior during a task 
(Schuck and Niv, 2019). Rather, replay at rest was linked to how well the 
different task-states were represented in the OFC, which in turn were 
linked to behavior (Schuck and Niv, 2019). Outside of the PFC, ento-
rhinal grid cells that are thought to enable vector-based spatial navi-
gation likely contribute to planning, as implicated in computational 
work (see e.g., Erdem and Hasselmo, 2012; Bush et al., 2015). 

2.4.2. Preplay can help planning in unknown environments 
While replay is mostly thought to occur after experiences have been 

made, some ideas have been put forth that assume a “preplay” mecha-
nism, in which experiences are mapped out before they are encountered. 
Few models related to this idea have been proposed in ML, but perhaps 
the closest concepts are related to attractor dynamics or reservoir 
computing (for a review, see e.g., Lukoševičius and Jaeger, 2009). 
Indeed, recent computational work has suggested a link between pre-
play and efficient learning, arguing that attractor dynamics can account 
for replay (Corneil and Gerstner, 2015) or preexisting internal sequences 
could be used as a dynamical reservoir (Leibold, 2020). In work by Cazin 
et al. (2019), the framework of reservoir computing is used to model the 
PFC that is shown to integrate replayed sequences into larger sequence 
assemblies that can be recalled. 

Preplay has also been observed in neuroscience, with some studies 
reporting apparent “preplay” of place cell sequences before the envi-
ronment was ever experienced (Dragoi and Tonegawa, 2011, 2013). 
While preplay seems reminiscent of a planning process, most findings 

highlight that apparent sequentiality can also reflect hippocampal cell 
assemblies that are connected in a way that constrains sequential firing, 
even prior to experience of a new maze. Nevertheless, other findings 
indicate that previous experience is required for such spontaneous 
sequential activation to occur (Silva et al., 2015). The extent to which 
the hippocampus is able to seemingly preplay novel experiences could 
depend on the similarity between pre-existing hippocampal represen-
tations and new memories about to be formed (Eichenbaum, 2015). 
Methodologically, this nevertheless highlights the necessity of 
comparing pre- versus post-task replay (e.g., Buhry et al., 2011), as 
shown by recent research that observed pre-vs.-post changes in replay 
can indeed be explained by cell activation and firing rate correlations 
during experience (Farooq et al., 2019). 

2.5. Inference and generalization 

Although past information provides a glimpse into what we might 
expect in the future, every new experience is different from the past in 
some form or another. In order to use experiences effectively, agents 
must therefore know how to abstract from their details and store, and 
replay, information which could generalize best to future challenges. 
Past experiences should also be used to perform inferences that give 
novel insights that go beyond what has been observed. 

2.5.1. Replay can reflect generalizable information and transition structure 
Apart from its role in learning and planning, recent developments in 

ML and neuroscience research suggest that replay also contributes to 
inference and generalization (for previous reviews and perspectives, see 
Kumaran, 2012; Kumaran and McClelland, 2012; Cazé et al., 2018; 
Herszage and Censor, 2018; Lewis et al., 2018; Momennejad, 2020). One 
theme in this domain has been to build artificial agents that learn 
generative models from experience, which can then be used to infer new 
connections based on latent structural rules (Evans and Burgess, 2019), 
infer the correct context when given new data (Stoianov et al., 2020) 
and generalize information to new tasks to mitigate performance losses 
(Shin et al., 2017). In the model proposed by Stoianov et al. (2020), for 
instance, trajectories through a maze are used to learn a generative 
model, which can produce new trajectories consistent with the current 
maze structure during offline periods. As new mazes are learned, novel 
trajectories continue to be generated offline, but from all the mazes that 
have been experienced, preventing information about any one maze 
from being lost (similar to our considerations about forgetting in Section 
2.2). The hierarchical structure of the model results in trajectories being 
clustered into distinct maze contexts, which allows maze categories to 
be inferred when presented with new data. Unlike replay used in other 
contexts, the model by Stoianov et al. (2020) does not suggest that 
prioritized replay helps to improve behavioral outcomes. Generative 
replay that was prioritized based on how surprising observations were 
under the generative model increased the number of reactivation events 
that contained important goal locations but did not further improve 
inference performance (Stoianov et al., 2020). 

The clustering of trajectories seen in the model above is related to a 
broader theoretical view, which has emphasized that separate encoding 
of transition information and sensory information during learning will 
allow knowledge about transitions to be reused across situations with 
structural similarities but new sensory specifics (Behrens et al., 2018; 
Baram et al., 2020; Whittington et al., 2020). Because replay provides a 
strong candidate mechanism for learning about transition structure 
(Stoianov et al., 2020), replay of abstract (sensory-independent) tran-
sition information could help to build representations of task structure 
that can be generalized and used to guide behaviour in new sensory 
environments (Liu et al., 2019b) or combined with sensory observations 
to make inferences about the current environment (Evans and Burgess, 
2019; Stoianov et al., 2020). 

Another major computational approach has focused on replay as a 
mechanism to learn successor representations, a predictive representa-
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tion that reflects the expected future visitation of states, given the cur-
rent state (Dayan, 1993). Unlike the one-step transition matrices that are 
known as models in model-based RL, the successor matrix can reflect 
non-adjacent dependencies. This allows the agent to understand re-
lationships between a state and multiple successor states, knowledge 
which can be used to solve inference problems, such as finding the 
shortest path to a new reward location (Russek et al., 2017; Momennejad 
et al., 2017). The eigenvectors of a successor matrix can also partition 
the environment into clusters that help planning (Stachenfeld et al., 
2017). Critically, replay of past experiences could be used to update the 
successor matrix during offline periods (e.g., Russek et al., 2017), 
resonating with the general theme of using replay for model updating 
(Aubin et al., 2018). In recent work, Russek et al. (2017) proposed 
replay of (st , at, st+1)-tuples that are prioritized by recency, in which 
rewards are not needed to update the successor matrix. Using this 
approach, it was shown that learning SRs with offline replay gives an 
agent unique benefits compared to agents without replay. In particular, 
the fast updating of successor states through replay allowed the agent to 
quickly infer policy updates needed to adapt to changes in the task 
environment, like a new barrier, that affect the state transition structure. 

A potential role of replay in generalization and inference has also 
been suggested by neuroscientific studies. In a recent study from Barron 
et al. (2020), hippocampal cells selective to cues and rewarding out-
comes that have not been directly experienced together, but whose 
relationship can be inferred based on sensory pre-conditioning (Brog-
den, 1939), were found to be co-active during SWR events (Barron et al., 
2020). These cells also tended to be reactivated during SWR events in a 
specific order, with reward selective cells reactivated prior to cue se-
lective cells akin to backward replay. Using MEG, researchers have 
discovered that visual stimuli are reactivated in a non-experienced order 
that was based on prior learning of a rule about how items should be 
reported (Liu et al., 2019a). This indicates that sequential reactivation is 
able to combine prior learning with new sensory inputs to produce 
behavior relevant to new environments. Recordings in the hippocampus 
and PFC have also shown that hippocampal place cells are reactivated 
with subsets of prefrontal cells that encode generalizable task elements 
(Yu et al., 2018) and that at least some medial PFC neurons involved in 
replay have generalized firing fields that cover multiple starting loca-
tions or multiple goal locations within a maze (Kaefer et al., 2020), 
suggesting that replay could also contribute to generalization through 
coordinating the appropriate reactivation of PFC neurons. Finally, 
neuroscientific studies have found supporting evidence for SRs, which 
have similar properties to place fields, skewing in the opposite direction 
of travel and over-representing goal locations, while the eigenvectors of 
SRs can account for entorhinal grid cells in some spatial contexts (Sta-
chenfeld et al., 2017). Hippocampal-entorhinal fMRI signals have also 
been shown to reflect relationships between successive non-spatial ob-
jects organized in a graph (Schapiro et al., 2013; Garvert et al., 2017), 
consistent with the SR (Stachenfeld et al., 2017). 

2.6. Representation learning 

A final important aspect for understanding replay in minds and 
machines concerns states, the internal representations agents use to 
describe their environment. In this last section, we highlight findings 
indicating that replay is not specific to spatial locations or sensory ob-
servations, but might instead involve task-dependent state representa-
tions. We argue that replaying states has unique benefits as opposed to 
replaying only observations. Moreover, we speculate that replay might 
also have a role in learning the representations that guide behavior. As 
such, replay could offer a window into the operations the brain performs 
to craft useful representations of the possible task states. 

2.6.1. Replay can reflect state representations 
The internal states of an agent are a major determinant of its success 

(see Box 1). In most environments, sensory input alone will be neither 

fully necessary nor fully sufficient for predicting outcomes. It contains 
too much task-irrelevant information, and what is needed to determine 
the best action can often not be observed (a property called “partial 
observability”). Even when doing a mundane task such as crossing the 
street, there will be many perceived aspects you can safely ignore (the 
color of the cars, the behavior of passers-by, etc.), but also factors that 
are very important for your decision that might not be in your current 
sensory input, such as your expectation that cars can appear quickly 
from behind a sharp bend. Hence, representing sensory input alone is 
often insufficient as a state representation. As Dayan (1993) has put it: 
“difficult problems can be rendered trivial if looked at in the correct 
way” (p. 613). 

Moreover, since the agent does not know what the true states of the 
environment are, learning useful state representations constitutes a 
major challenge (Bengio et al., 2013; Niv, 2019). This learning involves 
focusing attention on task-relevant dimensions (e.g., Niv et al., 2015; 
Leong et al., 2017), representing non-observable context, such as past 
events, in combination with current observations (e.g., Wilson et al., 
2014; Schuck et al., 2016, 2018), and leveraging similarity among the 
states to determine which experiences might reflect the same hidden 
causes and which information can be generalized (e.g., Gershman and 
Niv, 2010). 

Many replay algorithms for DNNs store past observations, and during 
replay internally convert observations into a suitable feature space using 
a previously learned transformation, such as a convolutional network (e. 
g., Mnih et al., 2015). But the benefits of directly storing internal rep-
resentations for replay are increasingly acknowledged (Kapturowski 
et al., 2019; Iscen et al., 2020; Caccia et al., 2019; Hayes et al., 2019, 
2021; van de Ven et al., 2020; Pellegrini et al., 2019). Amongst others, 
storing internal representations is often more memory efficient (Iscen 
et al., 2020; Hayes et al., 2019), while observations can still be recreated 
from compressed internal representations if they are needed (van de Ven 
et al., 2020). Moreover, representational replay can capture unobserv-
able context that was necessary to process a given observation when it 
was made (Kapturowski et al., 2019). 

However, representational replay, also called state replay, comes 
with its own set of challenges, in particular in the context of recurrent 
networks. Specifically, the problem of partial observability is often 
addressed by combining long short-term memory (LSTM) (Hochreiter 
and Schmidhuber, 1997) with DNNs, an architecture known as Deep 
Recurrent Q-Networks (Hausknecht and Stone, 2015). Because the 
agent’s internal state representations in these networks depend on the 
history of previous observations, replay of past observations risks being 
out of context, and replay of internal states becomes necessary. Yet, as 
agents continue to learn from their experience, the way external inputs 
are mapped onto internal states changes too; in consequence, the way 
observations were represented internally in the past might be outdated, 
a phenomenon known as representational drift. It has therefore been 
suggested that while replaying internal representations, offline learning 
should be regularized in a way that captures the amount of represen-
tational drift since the replay episode (Pomponi et al., 2020; Balaji et al., 
2020). The problem of representational drift will be most severe for 
RNNs, where observational replay will not lead to useful updates if 
recreated internal states do not match the internal states when the 
observation was made originally (e.g., Kapturowski et al., 2019). 
Although initial research has suggested that simply “zeroing” the agents 
internal state at the start of a replay event is useful in some circum-
stances (Hausknecht and Stone, 2015), this makes learning longer 
temporal dependencies more difficult. Accordingly, Kapturowski et al. 
(2019) have shown that it is beneficial for an agent to store its own past 
internal states and re-initialize the appropriate state at the start of a 
replay event. To account for representational drift, a part of the stored 
state sequences can first be replayed without updating, to reach a more 
appropriate internal state, and only the remainder of the sequence is 
then used for offline learning. In sum, replay can be beneficial for 
learning if it involves not only past observations but also past states. 
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In animals, several findings indicate that a large variety of repre-
sentations, including non-spatial sensory as well as state-like represen-
tations, might be replayed. First, the firing of hippocampal “place” cells 
can reflect a number of non-spatial aspects of the environment, if they 
are task-relevant, such as sounds (Aronov et al., 2017), time (MacDonald 
et al., 2011), accumulated evidence for a choice (Nieh et al., 2021), or 
successor representations (Stachenfeld et al., 2017), but see O’Keefe and 
Krupic (2021). In fact, findings by Cabral et al. (2014) show that hip-
pocampal neurons in mice flexibly switch between representations of 
spatial or temporal aspects of a task, depending on which strategy was 
needed to solve it. More directly, one fMRI study by Schuck and Niv, 
2019 has found that sequential hippocampal replay during post-task rest 
reflected the non-spatial states of a sequential decision-making task. 
Importantly, observed transitions between decoded replay events were 
best explained by replay of states that include non-observable task as-
pects, such as information from the previous trial, rather than by replay 
of sensory features of the task stimuli alone. This study therefore pro-
vides direct evidence for the idea that replay involves state representa-
tions that are optimized for the operation of RL algorithms. In an 
MEG-study by Liu et al. (2019b), human participants first learned an 
abstract rule governing how objects should be ordered in a sequence and 
later replayed a novel set of objects according to the learned rule rather 
than in order of experience. Replayed sequences consisted of factorized 
representations of sensory objects, the identity of the sequence they 
belonged to, as well as the position within that sequence, supporting the 
notion that replay is not limited to one kind of information. Moreover, 
Jadhav et al. (2012) showed that disruption of SWRs in a spatial alter-
nation task impaired navigation when it required unobservable knowl-
edge of the previous trial, thus hinting at the activation of state 
representations rather than observations during replay. 

Interestingly, much evidence in neuroscience indicates that replay 
involves multiple representations which are reactivated in parallel, 
possibly suggesting that observations might be recreated at the time of 
replay (van de Ven et al., 2020). These representations reflect visual (Ji 
and Wilson, 2006; Wittkuhn and Schuck, 2021), auditory (Rothschild 
et al., 2016) or grid-like (Ólafsdóttir et al., 2016; Ólafsdóttir et al., 2017; 
O’Neill et al., 2017) information. These reactivated offline and online 
representations might interact, as it has been observed for the case of 
hippocampus and OFC (Schuck and Niv, 2019). This interaction be-
tween the OFC and the hippocampus (for reviews, see Wikenheiser and 
Redish, 2015a; Wikenheiser and Schoenbaum, 2016Wikenheiser and 
Redish, 2015a; Wikenheiser and Schoenbaum, 2016) is particularly 
interesting given that the OFC might store an agent’s task state repre-
sentations (Schuck et al., 2016, see also Kaplan et al., 2017). Disruption 
of the medial PFC particularly attenuated components of hippocampal 
theta sequences representing the current location of the animal (Schmidt 
et al., 2019) and suppression of hippocampal input to the OFC impaired 
the integration of task state structure (Wikenheiser et al., 2017). 
Conversely, disruption of SWRs during sleep impaired the integrity of 
hippocampal maps but they re-emerged following re-learning (Gridchyn 
et al., 2020) suggesting that relevant maps are stored in brain areas 
other than the hippocampus (Niethard and Born, 2020). Despite these 
interactions, it should also be noted that a number of investigations have 
shown replay events outside the hippocampus need not be coordinated 
with hippocampal activity (O’Neill et al., 2017; Kaefer et al., 2020; 
Wittkuhn and Schuck, 2021). In sum, hippocampal “place cell” firing 
can reflect a variety of non-spatial but task-relevant aspects (e.g., Aro-
nov et al., 2017), replay occurs in a wide variety of interacting brain 
areas that reflect an animal’s understanding of what is task-relevant, and 
replay has also be found to directly reflect partially observable task 
states (Schuck and Niv, 2019). 

2.6.2. Can replay support learning useful representations? 
Simultaneous replay on different levels of representation, including 

states and sensory observations, might convey benefits beyond those 
discussed so far; it might help to build better state representations. One 

interesting instance concerns successor representation (SR), a form of 
state representation that provides an efficient way to incorporate 
knowledge about the transitions between states into the state definition. 
Computational work by Russek et al. (2017) has shown that SRs can also 
be learned and updated through replay. More generally, information 
about state transitions can give rise to further graph analytical insights 
that are known to provide a good basis for state representations 
(Mahadevan and Maggioni, 2007). Sequential replay is a natural match 
as a mechanism to learn states that encode transitional information. 
Possibly, it could also be used to extract graph properties from experi-
enced transition structures, such as bottleneck states, which then 
become integrated into state representations. A similar approach has 
been proposed by Eysenbach et al. (2019), who used replay to infer 
graph representations that can be used for planning. Other work has 
highlighted that representations which predict latent embeddings of 
future observations are particularly useful (Guo et al., 2020). An eval-
uation of predictiveness could therefore be an important contribution of 
replay to state representation learning. 

More speculatively, coordinated replay across several levels might 
serve as a mechanism to identify which aspects of sensory observations 
exhibit transitions that are uncorrelated with state transitions of stored 
outcomes. Note that RL models benefit from transition information be-
tween states, but they could be affected adversely if transitions of task- 
irrelevant aspects influenced the agent’s internal model. For example, 
representing states as specific locations in physical space will result in a 
transition matrix that is different from a transition matrix of more ab-
stract task states, but if spatial position is irrelevant to the task at hand, 
then transitions between locations could be harmful for learning and 
planning. If replay can be used to find unattended aspects of sensory 
observations that correlate with reward or relevant transitions, in turn it 
might be used to determine which dimensions of observed input are 
task-irrelevant (see e.g., Schuck et al., 2015, for an example of how 
recognizing correlations in the environment could lead to changes in 
state representations). To the best of our knowledge, this idea has not 
been evaluated yet. 

Other evidence suggests that the role of replay for state learning 
could go beyond information about observed transitions. SRs, for 
instance, can be extended to deal with partially observable task envi-
ronments (Vértes et al., 2019). Caselles-Dupré and colleagues proposed 
another interesting account that involves variational autoencoders 
(VAEs) (Caselles-Dupré et al., 2018; Caselles-Dupré et al., 2019). 
Building on earlier work that used generative models to circumvent the 
memory requirements of observational replay (Shin et al., 2017), 
Caselles-Dupré et al. (2019) proposed storing latent representations 
rather than observations, and using past experiences in this form to 
continually train a VAE that acts as a state model. Importantly, only by 
replaying past episodes can the VAE learn to form a state representation 
that allows the agent to act efficiently across more than one 
environment. 

In the brain, only some evidence so far suggests that replay can 
change state representations. Schuck and Niv, 2019 observed that replay 
in the hippocampus during rest was related to better decodability of 
partially observable state representations from the OFC during the task. 
Moreover, decoding of state representations in the OFC increased over 
time, suggesting that representation learning continued during the task, 
and perhaps was related to replay. Although this evidence is correla-
tional, it hints at a relationship between replay and state representation 
learning. Yet, much work is left to do, and uncovering representational 
changes during or following replay will require new analytical ap-
proaches which for instance do not use localizer tasks. It is therefore still 
unclear, whether state learning mechanisms provide a realistic account 
for biological replay. 

3. Goal-directed behavior without replay? 

In this review, we have outlined the myriad ways in which replay- 
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like mechanisms can support intelligent behavior. But can the function 
of replay really be so broad, or has replay simply become a scientific 
bandwagon? One part of the problem is that replay has no definition that 
is universally agreed on by the whole scientific community, and given 
the popularity of the topic, this has led to subsuming a vast variety of 
phenomena under the same term (but see Genzel et al., 2020, for a 
consensus statement). Moreover, the search for an inclusive under-
standing across the ML and neuroscience communities has probably led 
to further broadening of the concept. Against this backdrop, the concept 
of replay has occupied a large share of the scientific study of memory, 
and memory undoubtedly is a very fundamental building block of 
intelligent behavior in minds and machines alike. 

Although our review covers the broad range of functions associated 
with replay, it is meant as an attempt to differentiate the debate about 
the topic. We belief that the field needs to be careful with not over-
burdening a single concept. In this spirit, we hope to have elucidated 
how, for instance, interleaved replay of past task experiences differs 
from replay observed during planning, or coordinated replay during 
offline periods. These differences can be both computational and 
implementational in nature: replay in these scenarios presumably serves 
a different function, and it is implemented in the brain, and in com-
puters, in different ways. 

In addition, we would like to underline that despite replay’s 
continued popularity in ML, many state-of-the-art techniques exist 
which do not use replay. Efficient learning can be achieved without 
replay, for instance using Asynchronous Advantage Actor-Critic (A3C; 
Mnih et al., 2016) or on-policy policy gradient optimization (V-MPO; 
Song et al., 2019). Moreover, novel transformer models (Vaswani et al., 
2017), which dispense of the need for convolutional and recurrent 
computations, have emerged as a powerful framework for solving 
complex tasks such as language processing (Dai et al., 2019) or RL 
(Parisotto et al., 2019). Some transformer models incorporate replay 
(Wu et al., 2020), but many powerful transformers have been proposed 
which do not require replay, including for RL problems (Parisotto et al., 
2019). 

Where replay ends and other forms of memory access start is often 
unclear as well. Consider, for instance, approaches in which agents rely 
directly on specific single episodes for behavioral control, such as in the 
context of episodic RL (for recent reviews, see e.g., Gershman and Daw, 
2017; Botvinick et al., 2019). During episodic RL, specific single epi-
sodes are stored in memory and retrieved to directly determine behavior 
when the same or a similar situation is encountered again (Lengyel and 
Dayan, 2007; Gershman and Daw, 2017; Botvinick et al., 2019). In 
humans, the retrieval of single experiences in decision-making is asso-
ciated with the hippocampus (Bornstein and Norman, 2017; Lee et al., 
2015; Wimmer and Büchel, 2020) and reinstatement of information 
from past choice trials at decision-time biases present choices towards 
decisions made previously in the reinstated context (Duncan and 
Shohamy, 2016; Bornstein et al., 2017; Bornstein and Norman, 2017). 
To what extent these retrievals of single episodes are supported by 
sequential replay remains an open question. 

Moreover, even if complex memory computations are needed to 
solve a task, external memory architectures, such as MERLIN (Wayne 
et al., 2018), can store past experiences in a memory buffer and learn 
how to read out only relevant experiences when needed. Memory stor-
age in this model can still be efficient as the model can learn to store 
lower dimensional state representations instead of raw observations, 
and memory access is targeted to only the currently needed past infor-
mation. MERLIN has been shown to outperform the LSTM architectures 
discussed above. But is MERLIN a replay mechanism? In some ways yes, 
and in others not. But a more important question is which predictions 
the algorithm makes, and whether they might fit neuroscientific obser-
vations. This can be nicely illustrated in the case of the MERLIN algo-
rithm: although this model is computationally distinct from the 
“traditional” replay-based architectures, MERLIN predicts sophisticated 
reactivation phenomena. In a task in which the agent had to navigate to 

a goal location, for instance, the agent’s memory read-out alternated 
between the subgoals along the way to the goal. In our opinion, asking 
whether this prediction is true in the brain, and in which environments 
such a mechanism could be helpful, rather than labeling it as replay or 
not, would be the most fruitful way forward. This also illustrates that 
replay is not a single testable theory, but rather a framework within 
which memory, planning and imagination-related functions, as well as 
their relationships, can be understood. 

4. Conclusion and outlook 

In this review, we have summarized the literature on replay in 
neuroscience and ML to showcase which computational benefits bio-
logical and artificial agents can gain from replaying previous experi-
ence. We have discussed five main computational benefits that, although 
overlapping, provide useful categories for thinking about what might 
motivate an agent to employ replay: faster learning and increased data 
efficiency, less forgetting, the reorganization of experience, planning 
and generalization. In addition we have argued that replayed content is 
much richer than a sequence of locations, and could reflect the agent’s 
current state representation. State representations are often task- and 
context-dependent, being influenced by a range of factors, including the 
goal-relevant aspects of the agents observations, the transition structure 
of states, the location, number and value of goal locations and the 
motivational and metabolic state of the animal. We have argued that RL 
theory provides useful guidance to understand which form state repre-
sentations might take in a given task, and which implications a partic-
ular state representation would have for an agent’s behavior. Finally, we 
have discussed how replay might not only reflect but could help the 
agent to learn those states to begin with. While many questions in 
particular regarding the latter idea still remain, considering these factors 
will greatly help to determine what replayed representations represent 
and how replay updates decision-making policies that are used to con-
trol behavior. 

Declaration of competing interest 

The authors declare no competing interests. 

Acknowledgements 

This work was supported by an Independent Max Planck Research 
Group grant awarded to N.W.S by the Max Planck Society (M.TN.A. 
BILD0004), a Starting Grant awarded to N.W.S by the European Union 
(ERC-2019-StG REPLAY-852669), and a Humboldt Research Fellowship 
awarded to S.H.M. by the Alexander von Humboldt Foundation. We 
thank members of the Max Planck Research Group NeuroCode for 
helpful discussions about the contents of this manuscript. We thank 
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Singh, Aarti (Eds.), Proceedings of the 37th International Conference on Machine 
Learning, volume 119 of Proceedings of Machine Learning Research. PMLR, 
pp. 3875–3886 (13-18 July) URL http://proceedings.mlr.press/v119/guo20g.html.  

Gupta, Anoopum S., van der Meer, Matthijs A.A., Touretzky, David S., Redish, Aaron 
David, 2010. Hippocampal replay is not a simple function of experience. Neuron 65 
(5), 695–705. https://doi.org/10.1016/j.neuron.2010.01.034. ISSN 0896-6273.  

Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and 
planning. Hippocampus 25 (10), 2015, 1073–1188. https://doi.org/10.1002/ 
hipo.22488. ISSN 1050-9631.  

Hafting, Torkel, Fyhn, Marianne, Molden, Sturla, Moser, May-Britt, Moser, Edvard I., 
2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436 (7052), 
801–806. https://doi.org/10.1038/nature03721. ISSN 1476-4687.  

Haga, Tatsuya, Fukai, Tomoki, 2018. Recurrent network model for learning goal-directed 
sequences through reverse replay. eLife 7. https://doi.org/10.7554/elife.34171. 
ISSN 2050-084X.  

Hardt, Oliver, Nader, Karim, Nadel, Lynn, 2013. Decay happens: The role of active 
forgetting in memory. Trends Cogn. Sci. 17 (3), 111–120. https://doi.org/10.1016/j. 
tics.2013.01.001. ISSN 1364-6613.  

Harvey, Christopher D., Coen, Philip, Tank, David W., 2012. Choice-specific sequences in 
parietal cortex during a virtual-navigation decision task. Nature 484 (7392), 62–68. 
https://doi.org/10.1038/nature10918. ISSN 1476-4687.  

Hassabis, Demis, Kumaran, Dharshan, Summerfield, Christopher, Botvinick, Matthew, 
2017. Neuroscience-inspired artificial intelligence. Neuron 95 (2), 245–258. https:// 
doi.org/10.1016/j.neuron.2017.06.011. ISSN 0896-6273.  

Hassabis, Demis, Maguire, Eleanor A., 2007. Deconstructing episodic memory with 
construction. Trends Cogn. Sci. 11 (7), 299–306. https://doi.org/10.1016/j. 
tics.2007.05.001. ISSN 1364-6613.  

Hausknecht, Matthew, Stone, Peter, 2015. Deep Recurrent Q-Learning for Partially 
Observable MDPs (July) arXiv e-prints, page arXiv:1507.06527, URL https://ui. 
adsabs.harvard.edu/abs/2015arXiv150706527H.  

Hayes, Tyler L., Kafle, Kushal, Shrestha, Robik, Acharya, Manoj, Kanan, Christopher, 
2019. REMIND your Neural Network to Prevent Catastrophic Forgetting (October) 
arXiv e-prints, page arXiv:1910.02509.  

Hayes, Tyler L., Krishnan, Giri P., Bazhenov, Maxim, Siegelmann, Hava T., 
Sejnowski, Terrence J., Kanan, Christopher, 2021. Replay in Deep Learning: Current 
Approaches and Missing Biological Elements (April) arXiv e-prints, page arXiv: 
2104.04132.  

Helfrich, Randolph F., Lendner, Janna D., Mander, Bryce A., Guillen, Heriberto, 
Paff, Michelle, Mnatsakanyan, Lilit, Vadera, Sumeet, Walker, Matthew P., Lin, Jack 
J., Knight, Robert T., 2019. Bidirectional prefrontal-hippocampal dynamics organize 
information transfer during sleep in humans. Nat. Commun. 10 (1) https://doi.org/ 
10.1038/s41467-019-11444-x. ISSN 2041-1723.  

Heller, Aaron S., Bagot, Rosemary C., 2020. Is hippocampal replay a mechanism for 
anxiety and depression? JAMA Psychiatry 77 (4), 431–432. https://doi.org/ 
10.1001/jamapsychiatry.2019.4788. ISSN 2168-622X.  

Herszage, Jasmine, Censor, Nitzan, 2018. Modulation of learning and memory: a shared 
framework for interference and generalization. Neuroscience 392, 270–280. https:// 
doi.org/10.1016/j.neuroscience.2018.08.006. ISSN 0306-4522.  

Hessel, Matteo, Modayil, Joseph, van Hasselt, Hado, Schaul, Tom, Ostrovski, Georg, 
Dabney, Will, Horgan, Dan, Piot, Bilal, Azar, Mohammad, Silver, David, 2018. 
Rainbow: combining improvements in deep reinforcement learning. Proceedings of 
the AAAI Conference on Artificial Intelligence 32 (1). https://ojs.aaai.org/index.ph 
p/AAAI/article/view/11796. 

Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M., 1995. The “wake-sleep” algorithm for 
unsupervised neural networks. Science 268 (5214), 1158–1161. https://doi.org/ 
10.1126/science.7761831. ISSN 0036-8075.  

Hochreiter, Sepp, Schmidhuber, Jürgen, 1997. Long short-term memory. Neural Comput. 
9 (8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. ISSN 0899-7667.  

Hoffman, Kari L., McNaughton, Bruce L., 2002. Coordinated reactivation of distributed 
memory traces in primate neocortex. Science 297 (5589), 2070–2073. https://doi. 
org/10.1126/science.1073538. ISSN 1095-9203.  

Horgan, Dan, Quan, John, Budden, David, Barth-Maron, Gabriel, Hessel, Matteo, van 
Hasselt, Hado, Silver, David, 2018. Distributed Prioritized Experience Replay 
(March) arXiv e-prints, page arXiv:1803.00933, URL https://ui.adsabs.harvard.edu/ 
abs/2018arXiv180300933H.  

Høydal, Øyvind Arne, Skytøen, Emilie Ranheim, Andersson, Sebastian Ola, Moser, May- 
Britt, Moser, Edvard I., 2019. Object-vector coding in the medial entorhinal cortex. 
Nature 568 (7752), 400–404. https://doi.org/10.1038/s41586-019-1077-7. ISSN 
1476-4687.  

Igloi, Kinga, Gaggioni, Giulia, Sterpenich, Virginie, Schwartz, Sophie, 2015. A nap to 
recap or how reward regulates hippocampal-prefrontal memory networks during 
daytime sleep in humans. eLife 4, e07903. https://doi.org/10.7554/eLife.07903. 
ISSN 2050-084X.  

Iscen, Ahmet, Zhang, Jeffrey, Lazebnik, Svetlana, Schmid, Cordelia, 2020. Memory- 
Efficient Incremental Learning Through Feature Adaptation (April) arXiv e-prints, 
page arXiv:2004.00713.  

Jackson, Jadin C., Johnson, Adam, Redish, Aaron David, 2006. Hippocampal sharp 
waves and reactivation during awake states depend on repeated sequential 

experience. J. Neurosci. 26 (48), 12415–12426. https://doi.org/10.1523/ 
jneurosci.4118-06.2006. ISSN 1529-2401.  

Jadhav, Shantanu P., Kemere, Celeb, German, P. Walter, Frank, Loren M., 2012. Awake 
hippocampal sharp-wave ripples support spatial memory. Science 336 (6087), 
1454–1458. https://doi.org/10.1126/science.1217230. ISSN 1095-9203.  

Jadhav, Shantanu P., Rothschild, Gideon, Roumis, Demetris K., Frank, Loren M., 2016. 
Coordinated excitation and inhibition of prefrontal ensembles during awake 
hippocampal sharp-wave ripple events. Neuron 90 (1), 113–127. https://doi.org/ 
10.1016/j.neuron.2016.02.010. ISSN 0896-6273.  

Jafarpour, Anna, Penny, Will, Barnes, Gareth, Knight, Robert T., Duzel, Emrah, 2017. 
Working memory replay prioritizes weakly attended events. eNeuro 4 (4), 1–11. 
https://doi.org/10.1523/eneuro.0171-17.2017. ISSN 2373-2822.  

Ji, Daoyun, Wilson, Matthew A., 2006. Coordinated memory replay in the visual cortex 
and hippocampus during sleep. Nat. Neurosci. 10 (1), 100–107. https://doi.org/ 
10.1038/nn1825. ISSN 1546-1726.  

Johnson, Adam, Redish, Aaron David, 2007. Neural ensembles in CA3 transiently encode 
paths forward of the animal at a decision point. J. Neurosci. 27 (45), 12176–12189. 
https://doi.org/10.1523/jneurosci.3761-07.2007. ISSN 1529-2401.  

Joo, Hannah R., Frank, Loren M., 2018. The hippocampal sharp wave-ripple in memory 
retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19 (12), 744–757. 
https://doi.org/10.1038/s41583-018-0077-1. ISSN 1471-0048.  

Kaefer, Karola, Nardin, Michele, Blahna, Karel, Csicsvari, Jozsef, 2020. Replay of 
behavioral sequences in the medial prefrontal cortex during rule switching. Neuron 
106 (1), 154–165.e6. https://doi.org/10.1016/j.neuron.2020.01.015. ISSN 0896- 
6273.  

Kaiser, Lukasz, Babaeizadeh, Mohammad, Milos, Piotr, Osinski, Blazej, Campbell, Roy 
H., Czechowski, Konrad, Erhan, Dumitru, Finn, Chelsea, Kozakowski, Piotr, 
Levine, Sergey, Mohiuddin, Afroz, Sepassi, Ryan, Tucker, George, 
Michalewski, Henryk, 2019. Model-Based Reinforcement Learning for Atari (March) 
arXiv e-prints, page arXiv:1903.00374.  

Kaplan, Raphael, Schuck, Nicolas W., Doeller, Christian F., 2017. The role of mental 
maps in decision-making. Trends Neurosci. 40 (5), 256–259. https://doi.org/ 
10.1016/j.tins.2017.03.002. ISSN 0166-2236.  
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